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Abstract: Cell adhesion ability is one of the components to establish cell organization and shows
a great contribution to human body construction consisting of various types of cells mixture to
orchestrate tissue specific function. The cell adhesion molecule 1 (CADM]1) is a molecule of cell
adhesion with multiple functions and has been identified as a tumor suppressor gene. CADM1 has
multifunctions on the pathogenesis of malignancies, and other normal cells such as immune cells.
However, little is known about the function of CADM1 on cutaneous cells and cutaneous malignancies.
CADM1 plays an important role in connecting cells with each other, contacting cells to deliver their
signal, and acting as a scaffolding molecule for other immune cells to develop their immune responses.
A limited number of studies reveal the contribution of CADM1 on the development of cutaneous
malignancies. Solid cutaneous malignancies, such as cutaneous squamous cell carcinoma and
malignant melanoma, reduce their CADM1 expression to promote the invasion and metastasis of the
tumor. On the contrary to these cutaneous solid tumors except for Merkel cell carcinoma, cutaneous
lymphomas, such as adult-T cell leukemia/lymphoma, mycosis fungoides, and Sézary syndrome,
increase their CADM1 expression for the development of tumor environment. Based on the role of
CADMI in the etiology of tumor development, the theory of CADMI1 contribution will desirably be
applied to skin tumors according to other organ malignancies, however, the characteristics of skin as
a multicomponent peripheral organ should be kept in mind to conclude their prognoses.
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1. Introduction

The classical phenomenon of differential adhesion is hypothesized to develop a better understanding
of how cells connect with each other, establish tissue rearrangement, and organize the human body [1].
As a part of this contribution, cell adhesion is one of the established natures for constructing the
human body.

Cell adhesion involves various cell’s dynamic function, such as movement and interaction with
other cells. These cell adhesion components have developed stylishly to accelerate the potential of cell
function. One of the adhesion molecules, the cell adhesion molecule 1 (CADM1) has multiple functions
as a member of the immunoglobulin superfamily of transmembrane glycoproteins. This adhesion
molecule has been identified as a suppressor gene of tumors, and CADM1-transfected large lung cell
cancer cells showed decreased development of the tumor [2]. After this novel finding, there are many
reports focused on CADM]1 function in malignancies, and other cells such as immune cells have been
postulated [2-5]. Various normal tissues and organs express CADM1 under physiological condition,
such as mast cells, neurons, and vascular endothelial cells [6-8]. On the contrary to these normal
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cells, various malignancies take advantage by dysregulation of this cell adhesion component for the
development of their tumor microenvironment.

Skin is the most outer layer organ, and consists of various cell components with tight junctions
and cell adhesion to communicate with other cells to protect against the external environment.
These characteristics are a first line of defense by establishing the tightly organized skin surface against
the external environment, therefore the skin has a robust structure to protect the human body from
the external environment. For example, skin surface disruption by toxic epidermal necrolysis causes
life-threatening clinical outcomes [9]. These clinical observations reveal how skin plays an important
role to defend against the external environment. Therefore, skin seems to be one of the organs most
contributed to by these cell adhesion molecules, however, little is known about the cutaneous cells
and skin malignancies. In this review, we focused on the contribution of CADM1 on the skin and the
development of cutaneous malignancies. There is a limited amount of research focused on CADM1 in
dermatology fields, therefore we also mention some contemporary advances of CADM1 research to be
expected for future investigation in dermatology. Finally, the clinical application of CADM1-targeted
therapy and the usefulness of CADM]1 as a biomarker to evaluate disease severity and progression are
also described.

2. The Role of CADM1 in Cell Types

CADM1 encodes an immunoglobulin-like cell adhesion molecule consisting of three loops of
immunoglobulin [2]. The CADM1 ectodomain acts as an intercellular adhesion mediated by homophilic
or heterophilic trans-interaction in each cell [10]. On the other hand, the CADM]1 cytoplasmic domain
consists two conserved protein-interaction modules, the submembranous protein 4.1-binding motif
(protein 4.1-BM), and the type Il PDZ-binding motif (PDZ-BM) [2]. Protein 4.1-BM combines CADM1
to the intracellular actin cytoskeleton structures [11]. PDZ-BM is a membrane-associated guanylate
kinase homolog (MAGUK) that interacts through PDZ (PSD-95, Discs large and ZO-1) domains [12],
and induces various cellular functions. For instance, TIAM1 (T-lymphoma invasion and metastasis 1)
bears a type Il PDZ domain and CADM1 promotes Tiam1-mediated Rac activation, which are involved
in cell migration [13]. The detailed functions of intracellular domain of CADM1 are little known,
therefore it is desirable for it to be clarified in various cells and tumor cells.

CADML1 contributes to the interaction in each individual cell and other types of cells. In addition,
CADM1 is known to act as a scaffolding molecule for various cells to support cell motility. In this
section, we mainly focused on the CADM1 function in skin components or related cells, such as
keratinocyte, vascular endothelial cells, mast cells, dendritic cells, natural killer (NK) cells, CD8* cells,
and neuron cells (Figure 1).

This scheme represents CADM1 involving cell functions in the skin. CADM1 on keratinocytes
acts as a scaffolding molecule for immune cells. CADM1 on vascular endothelial cells promotes the
repair of the endothelial barrier. CADM1 on immune cells, such as dendritic cells (DC), T cells, NK cells
and mast cells, contributes to the development of their immune functions.

2.1. Keratinocytes

Keratinocytes are the major components in the epidermis and exert a defense function
against the external environment. Keratinocytes express CADM1, which contributes to CD8* cell
infiltration into the epidermis in patients with alopecia areata. Overexpressed-CADM1 in human
epidermal keratinocytes increases adhesion of cytotoxic T cells and enhances their cytotoxic function.
Epidermal overexpressed-CADMI1 transgenic mice had an enhanced autoimmune alopecia reaction,
suggesting that CADM1 supports adhesion ability of lymphocytes [14] and acts as a scaffolding
molecule for other cells to promote inflammation in the epidermis.
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2.2. Mast Cells

A mast cell contains granules with enriched histamine and heparins and is located in the connective
tissues [15]. A study has revealed the diverse and multiple functions of mast cells in skin diseases [16,17].
CADMI1 is expressed in human mast cells [18], and the secretion of inflammatory cytokines is enhanced
by the adhesion to sensory neurons in a CADM1-dependent manner [19]. CADMI1 also controls
mast cell migration and extra-matrix adhesion, and contacts other cells in an actin cytoskeleton
assembling-dependent manner [6,20].
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Figure 1. The involvement of cell adhesion molecule 1 (CADM1) in cutaneous cell function.

2.3. Dendritic Cells

Denderitic cells are representative antigen presentation cells and masters of orchestrating of
immune responses. Furthermore, dendritic cells determine the direction of immune responses after
the exposure to external antigens [13,21,22]. CADM]1 is expressed on cutaneous CD141" dendritic
cells [23], which exhibit a high expression of toll-like receptor 3, and production of inflammatory
cytokines, IL-12p70, and IFN-f3. Furthermore, this DC subset has a greater ability for the induction of
Th1l immune responses [24].

2.4. NK Cells and CD8™* Cells

NK cells and CD8* T cells are lymphocytes in the circulating peripheral blood that recognize tumor
cells. NK cells respond to inflammatory chemokines and other stimulations released by damaged
tissues [25]. The activated NK cells show cytotoxic activity and produce inflammatory cytokines and
chemokines to amplify immune responses [26]. During antigen presentation by antigen-presenting
cells in acquired immunity, the activated cytotoxic CD8" T cells in the inflammatory site accelerate
antigen-specific antitumor immunity [27]. CADMI1 has the potential to activate tumor lysates by
NK cells and strong IFN-y production by CD8" T cells [28], indicating that CADMI1 acts as the
communication molecule for immune cells to invoke their immune ability against tumors.
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2.5. Neuron Cells

Neurons involve various skin physiological and pathological functions, leading to the development
of various skin diseases [29]. Nerves also exert various cells to promote physiological and pathological
functions [30]. CADM1 develops synaptic adhesion which drives synapse assembly [7].

3. CADM1 and Human Cutaneous Malignancies

CADM1 was first noticed as a suppressor gene of tumor in a non-small cell lung cancer, which was
found as a favorable clinical factor in malignancies of solid tumors [2]. In general, as the first step of invasion
and metastasis of the solid tumors, the fragility of adhesion ability in the tumor is necessary for release
from the primary sites. Therefore, it is assumed that the invasion and metastasis is closely related with
the loss of CADM1 expression. Actually, CADM1 expression in lung cancer tissues is inversely correlated
with clinical stage progression [3,4]. On the contrary to the solid malignancies, CADM1 exhibits the
opposite clinical behavior in bone marrow-derived tumors. Adult T cell leukemia/lymphoma (ATLL)
tumor cells highly upregulate CADM1 [5]. As one of the mechanisms, the expression of CADM1 on
ATLL cells contributes to infiltration and the adhesion ability to vessels and the skin to form nodules
and tumors. In this review, we focused on the role of CADM1 in the development of cutaneous
malignancies and discussed the difference between cutaneous solid tumors and lymphomas (Table 1).

Table 1. Summary of the role of CADM]1 in cutaneous malignancies.

Cutaneous Malignancies The Role of CADMI1 in the Risk of Each Malignancies
Solid tumor

Melanoma Favorable [31-34].

Squamous cell carcinoma Favorable [35,36]

Merkel cell carcinoma Unfavorable [37].

Lymphoma

Adult T cell leukemia/lymphoma Unfavorable [10,38].

Mycosis fungoides Unfavorable [39,40]

Sezary syndrome Unfavorable [41]

3.1. Cutaneous Squamous Cell Carcinoma

Cutaneous squamous cell carcinoma is a malignancy derived from keratinocytes in the epidermis,
and the importance of increasing incidence rate is highlighted for clinicians [42,43]. The metastatic
form of cutaneous squamous cell carcinoma exhibits an unfavorable prognosis due to there being no
effective treatment against advanced squamous cell carcinoma [44,45].

Decreased CADMI1 expression in cutaneous squamous cell carcinoma demonstrates poor survival
rates [35]. In addition, a genome-wide study also suggested that CADMI1 plays a role in tumor
development [36]. Therefore, these results indicate that CADM]1 is a key molecule in cutaneous
squamous cell carcinoma to develop the advanced form by inhibition of CADM1 expression of the
tumor. However, the tumor differentiation is also one of the prognostic factors in squamous cell
carcinoma [44], and is closely related with the degree of cell adhesion molecules [46]. The actual role of
CADM1 in squamous cell carcinoma is largely unknown, however, the degree of CADM1 expression
in squamous cell carcinoma might also affect the infiltration of inflammatory cell migration into the
tumor. Squamous cell carcinoma is a keratinocytes origin malignancy, and the reduction in CADM1
might impair the adhesion ability of lymphocytes [14], due to the loss of the scaffolding molecule for
immune cells to promote inflammation in the epidermis. To clarify the detailed clinical impact of
CADMI1 on the development of cutaneous squamous cell carcinoma, large scale statistical analysis is
needed to clarify whether CADM1 is an independent prognostic factor in cutaneous squamous cell
carcinoma in the future analysis.
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3.2. Malignant Melanoma

Melanoma is a melanocyte-derived malignancy with an unfavorable and severe life-threatening
clinical behavior because of the characteristics of its malignancy in addition to the lack of radical
treatment [47,48]. Current immune checkpoint inhibitors and v-raf murine sarcoma viral oncogene
homolog B1 (BRAF)-targeted treatments develop their clinical outcomes. However, these do not
reach satisfactory levels in their clinical outcomes. The average expression levels of CADM1 mRNA
and protein in melanoma are significantly decreased compared with dysplastic nevi lesions and
normal skin [49]. The tumor invasion and metastasis are a critical factor relating to an unfavorable
clinical behavior in patients with malignant melanoma. It activates cell migration and the invasion
of malignant melanoma by suppressing CADM1 expression [31]. There is a significant reduction in
the expression of CADMI in advanced melanoma compared to dysplastic compound melanocytic
nevi [50]. The CADM1-transfected melanoma cells are significantly suppressed in their growth in vitro,
and the ability of invasion is also reduced [32]. Increased expression of CADMI1 results in a significant
inhibition of motility and invasiveness of melanoma cells [33]. The survival of melanoma is significantly
decreased in reduced expression of CADM1 patients with melanoma or harboring methylated CADM]1,
indicating that the epigenetic modification of CADM1 by hypermethylation is also an important factor
in the pathogenesis of melanoma [34].

3.3. Cutaneous Lymphoma

3.3.1. ATLL

ATLL is the human T cell lymphotropic virus type I (HTLV-1) associated with a malignancy of
mature CD4* T cells [51,52]. Based on the severity, organ involvement, and the number of abnormal
lymphocytes, ATLL is divided into four clinical categories according to Shimoyama’s classification:
acute, lymphoma, chronic, and smoldering types [52]. Skin involvement is observed in approximately
50% of ATLL patients; the evaluation of skin lesions is useful to estimate their prognosis [53-55].
While the acute and lymphoma types of ATLL exhibit unfavorable clinical behavior [56-58], the chronic
and smoldering types are indolent and can usually be managed with “watchful waiting” until the acute
crisis progression [59]. CADM1 is known to contribute to the development of ATLL. The frequency of
CADM1™ T cells positively correlates with abnormal lymphocytes in the peripheral blood of ATLL
patients. In addition, over 1% of CD4*CADMI1™ cells show a significantly positive correlation with
the copy number of HTLV-1 provirus in HTLV-1 carriers and ATLL patients [60]. Whole-genome
microarrays in patients with acute ATLL identified that the expression of CADM1 increased more
than 30-fold. The insertion of CADM1 promotes ATLL cells to cause aggregation and adhesion to
vascular endothelial cells, suggesting that CADM1 is a biomarker for acute ATLL and its involvement
in tumor invasion [5]. In experiments using immunodeficient mice, highly CADM1-expressed
ATLL cells activated tumor formation and aggressive infiltration of various organs, suggesting that
CADM1 plays an important role in the tumor growth and invasion into organs of ATLL cells [38].
Furthermore, CADM1 directly regulates Rac activity interactions, resulting in lamellipodia formation,
which may lead to the tissue infiltration of leukemic cells in ATLL patients [10].

3.3.2. Mycosis Fungoides

Mycosis fungoides are an epidermotropic T lymphocyte which infiltrate cutaneous T cell
lymphoma [51,61,62]. Mycosis fungoides exhibit a basic indolent clinical behavior, with slow progression
from patches to a more-infiltrated form of plaque, and eventually develops into nodules and tumors [51].
Therefore, the prognosis of patients with mycosis fungoides depends on the clinical stages, the skin
lesions, and the extended systemic organ lesions [51]. Regarding the contribution of CADM1 on the
pathogenesis of mycosis fungoides, our study has revealed that the survival rate in mycosis fungoides
is significantly lower in patients with high CADM1-expressed groups. Therefore, CADM1 expression
in mycosis fungoid tumor cells is negatively related to the prognosis of mycosis fungoides [39].
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In addition, another study has revealed a more precise and detailed analysis of the contribution of
CADM1 on mycosis fungoides [40]. They investigated CADM1 expression in mycosis fungoides tumor
cells to identify its utility as a diagnostic marker for mycosis fungoides. CADM]1 is expressed in mRNA
in infiltrating lymphocytes into the dermis in patients with mycosis fungoides, although no CADM1
expression could be detected in those of patients with inflammatory skin diseases, suggesting it
as a distinguished tool for an early stage of mycosis fungoides compared with inflammatory skin
diseases [40].

3.3.3. Sézary Syndrome

Sézary syndrome is defined as a leukemic form of cutaneous T cell lymphoma, showing clinical
manifestations as erythroderma, pruritus, adenopathy, and circulating CD4* atypical cells [61-63].
Only one study has reported the involvement of CADM1 in Sézary syndrome, however, their analyses
suggest to us an important insight of CADMI roles in cutaneous lymphoma. In their Sézary syndrome
patient series analysis, CADM1 was expressed in patients with progressive type Sézary syndrome.
Sézary syndrome (SS) patients with high frequency of peripheral CADM1™ cells show an unfavorable
clinical behavior. The expression of CADM]1 is not only an activation marker of SS tumor cells, but also
the possible involvement of CADM1 as a scaffolding molecule in the epidermotropic infiltration of
tumor cells into epidermal keratinocytes and penetration through the basement membrane zone.

4. Merkel Cell Carcinoma

Merkel cell carcinoma (MCC) is a rare cutaneous malignancy derived from a neuroendocrine
origin of the mechanoreceptor unit of the skin with an aggressive clinical course [64]. Merkel cell
carcinoma clinically presents as a flesh-colored or violaceous intracutaneous nodule with rapid
growth [65,66]. Immune checkpoint inhibitor, anti-PD-L1 antibody, shows clinical efficacy for the
treatment of advanced Merkel cell carcinoma [67], however, these treatments could not gain enough
therapeutic effect. Cell adhesion molecule expressions relates with the development of outside
spreading of this tumor [37]. The higher CADM1 expression in Merkel cell carcinoma is significantly
correlated with the decreased overall survival, and one case has been identified where CADM1 is
associated with hypermethylation of the promoter region [37]. Merkel cell polyomavirus is closed
related to the pathogenesis of Merkel cell carcinoma, and Merkel cell polyomavirus-related MCCs show
a significantly lower expression of CADM]1, suggesting that high expression of CADM1 in Merkel cell
carcinoma is significantly related to an unfavorable clinical outcome.

4.1. Advances of CADM1 Research in Non-Dermatological Fields

To determine the future direction of CADM1 research in dermatology, CADM1 research in the
non-dermatological fields will be helpful to understand the future direction of CADM1 research.
Contemporary studies have identified the role of CADM1 in various tumor progression, such as
esophageal cancer [68], colon cancer [69], breast cancer [70], bladder cancer [71], and ovarian cancer [72].
In addition, research has also revealed the unexpected roles of CADML.

Several studies have identified the protective role of CADM1 in the body. CADM1 is involved
in renal function and expresses in the renal distal tubules [73]. The reduced CADML1 is correlated
with tubulointerstitial and tubular injuries and increased serum creatinine and BUN. Apoptosis of
renal tubular epithelial cells is positively related to the CADM1 reduction. In addition, CADM1
silencing treatment enhances apoptosis of renal tubular epithelial cells in vitro. The decreased CADM1
expression causes apoptosis of renal tubular epithelial cells and promotes renal tubulointerstitial and
tubular injuries, resulting in the development of chronic kidney disease. Another study showed the
importance of CADML1 in cell survival [74]. The expression of CADM1 is observed in pulmonary
epithelial cells, and CADMI silencing treatment increases the apoptotic cells by TUNEL assays.
Increased expression of CADM1 contributes to cell survival.
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Another study showed the possible beneficial impact of CADMI in modulating intestinal barrier
function [75]. Overexpression of CADM1 shows an increased Claudin-1 expression, while the silencing
CADML1 improves the intestinal barrier function. Claudin-1 is responsible for barrier function in the
skin [76,77], therefore CADM]1 in keratinocytes is expected to exhibit a positive regulation in the skin
barrier and have a beneficial impact on skin barrier-related diseases [78]. However, the actual impact
of CADML1 in epidermal barrier function remains unclear.

CADM1 has been reported to relate to the metabolic system [79,80]. The expression of CADM1
was upregulated in an obesity mouse model. CADM]1 in neurons impairs the gain of body weight
while promoting energy consumption [79]. CADMI1 reduction in the hippocampus and hypothalamus
promoted weight loss. In addition, CADM1 deficiency in excitatory neurons increases leptin sensitivity
and bone mass reduction, such as bone mineral content, femoral length, and bone strength [80].

Several parts of novel CADM1-mediated signal pathways have also been identified in the current
research [81,82]. CADMI is involved in the Hippo pathway core kinases, MST1/2 and LATS1/2,
leading to the enhancement of YAP1 phosphorylation and downmodulated downstream pathway
in lung adenocarcinoma cell line [81]. The estimated prognostic impact of CADM1 is currently
roughly estimated, therefore the prognosis as to whether they are solid malignancies or hematological
malignancies, different types of origin tumors, might explain the differences.

Another study has identified CADM1-mediated cell spreading mediated by PI3K [82]. PI3K inhibitors,
Wortmannin and LY294002, inhibit cell spread in HEK293, although there are no inhibitory effects
by JAK, MAPK, and NF-KB inhibitors. CADM1-mediated PI3K activation promotes Akt and Racl
downstream, which enhance cell spreading. As the detailed mechanisms, CADM1 indirectly interacts
with a PI3K subunit p85 by creating a protein complex with Dlg and MPP3 through the direct binding
with PDZ-BM of CADM1 and is involved in cell spreading. Interestingly, this phenomenon is only
observed under a high cell density, indicating that there are some mechanisms to activate this CADM1
function. In addition, this pathway is helpful to obtain a better understanding of CADM1-mediated
cell motility by Rac activation in various cells, because Rac in almost all cells is mediated by PI3K
activation [83-85].

4.2. CADM1 as a Biomarker

This section describes the usefulness of CADM1 as a biomarker to evaluate the disease progression
and severity in several diseases, such as ATLL [86,87], cervical cancer [88], and chronic kidney
disease [89].

Although soluble interleukin-2 receptor & (sIL-2Rc) is known to predict the progression of ATLL,
plasma-soluble CADM1 was reported as a biomarker for aggressive ATLL [86]. Serum-soluble CADM1
becomes a biomarker for monitoring therapeutic efficacy to chemotherapy and the evaluation of
ATLL relapse.

Another study has investigated flow cytometric analysis to identify CADM1 expression on CD4*
cells to predict the future risk of aggressive-type development [87]. Less than 25% CADM1 expression
showed that no apparent progression of clinical disease was observed. However, cases of CADM1
expression over 25% and less than 50% showed that 55.5% of patients advanced from asymptomatic
to smoldering type of ATLL. Furthermore, among CADM!1 expression cases of over 50%, 28.4% of
patients received systemic chemotherapy at three years. The percentage of the CD4* CADM1" cells is
useful for estimating the progression of the disease.

The usefulness of plasma CADM1 methylation as a metastasis biomarker in cervical cancer has
been reported [88]. Plasma levels of methylated CADM]1 are increased in patients with advanced
cervical cancer.

CADM1 is also reported to be a possible biomarker for chronic kidney disease [89]. The expression
of CADM1 is observed on renal tubular epithelia. A total of 44 patients (35%) had elevated serum
CADMI1 concentration in chronic kidney disease, suggesting that CADM1 is a marker for evaluating
the damage in tubulointerstitial tissues in chronic kidney disease.
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Among solid tumors, melanoma and squamous cell carcinoma have been known to be the diseases
in which CADM]1 can be utilized as a biomarker. The expression of CADML1 is reduced in melanoma
above 1 mm in thickness [50]. In esophageal squamous cell carcinoma, CADM1 expression is related
with the tumor development and the advanced tumor-node-metastasis stage [68]. Therefore, it is
possible that CADM1 could be used as the biomarker for other cutaneous malignancies to estimate the
disease progression, which should be explored in future.

4.3. Epigenetic Modification of CADM1

The mechanisms of phenotypic plasticity regulation and the cell capacity against changing its
state in response to external stimuli had been largely unknown for a long time. The traditional central
dogma of biological states is that DNA is thought to transcribe to RNA, subsequently leading to
translation into proteins, cellular processes, and functions [90]. However, the diverse responses to
varying stimuli show a variety of distinct functions and phenotypes. Classically, it had been thought
that an attribution of phenotypic variation in primary DNA structure was explained by a sequence
allele or mutation. However, while this theory could explain some aspects of variation, it is difficult to
explain how diverse cellular responses are organized under various environmental stimuli.

Epigenetic changes are reversible modifications on DNA or histones and influence the gene
expression without altering the sequence of DNA information [91,92]. Epigenetic changes are involved
in numerous cellular processes, such as differentiation, immune responses, and tumor development.
Based on the knowledge gained from the findings of epigenetic modification, DNA methylation
and histone modifications are stable, heritable, and are also reversible processes that influence gene
expression with altering chromatin structure. Among epigenetic modifications, DNA methylation
occurs at promoter regions, contributing to the repression of gene expression. DNA methylation is
known to regulate CADM1 in various tumors, such as ATLL [93], cervical cancer [94-97], epithelial ovarian
cancer [98], oral squamous cell carcinoma [99], and breast cancer [100], and this epigenetic modification-
targeted treatment exhibits therapeutic potential against malignancy [93].

In cutaneous solid tumors, the CADM1 promoter is highly methylated in cutaneous melanoma
and is also associated with the advance of the tumor stage and disease-related survival methylation,
suggesting that CADM]1 is an indicator for poor prognoses of melanoma [34]. In addition, long non-coding
RNA lymph node metastasis associated transcript 1 (LNMAT1) epigenetically impairs the expression
of CADM1 in melanoma by EZH?2 recruitment, which is the key enzyme of trimethylation of histone
H3 at lysine 27 (H3K27me3) and promotes hypermethylation of the CADM1 promoter, resulting in the
transcriptional inhibition of CADM1 [31].

In squamous cell carcinoma, HPV16/18-positive patients with cervical squamous cell carcinoma
showed significant differences in the hypermethylation of CADM1 [96]. CADM1 promoter methylation
is associated with unfavorable survival rates in patients with oral squamous cell carcinoma [99].
This hypermethylation is expected to be observed in cutaneous squamous cell carcinoma.

4.4. The Future Direction of Clinical Application of CADM1-Targeted Therapy

We have summarized possible therapeutic potentials for CADM1-targeted treatment under
investigation in current research (Table 2). Several pieces of research conducted a possible therapeutic
approach which targeted CADM1. HTLV-1-infected regions gradually advance DNA hypermethylation,
indicating the progression of ATLL and contributing to the ATLL leukemogenesis. Inhibition of DNA
hypermethylation by a chemical agent, OD-2100, exerts anti-ATLL activity and suppresses tumor
growth [93]. Therefore, based on the epigenetic modification of CADM1 by DNA hypermethylation,
CADM]1-targeted therapy mediated by epigenetic modification will also become a novel therapeutic
approach in the future.

Anti-CADM1 antibodies exhibit antibody-dependent cell-mediated cytotoxic activity, and inhibit
the interaction between endothelial cells and CADM1-positive ATLL cells [101]. In mice experiments
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of the transplantation of lymphoma cells expressing CADM1, anti-CADM!1 antibodies suppress the
organ invasion of lymphoma cells, resulting in improved survival rates.

Table 2. Summary of the possible therapeutic potential for CADMI1 targeted treatment in
cutaneous malignancies.

Cutaneous Malignancies Possible Therapeutic Options

Solid tumor

Melanoma MicroRNA-214 inhibitor [102]

Squamous cell carcinoma miR-424-5p inhibitor [103]

Lymphoma

Adult T cell leukemia/lymphoma OD-2100 [93], anti-CADM1 antibody [101]

As a relationship with cutaneous malignancies, melanoma and squamous cell carcinoma are also
candidate diseases for CADM1-targeted therapy. MicroRNA-214 enhances the process of epithelial-
mesenchymal transition EMT in melanoma by the downmodulation of CADM1, which is recovered by
miR-214 inhibitor, leading to the suppressive effect against EMT processes [102]. In squamous cell
carcinoma, CADM1 is a direct target of miR-424-5p, and the overexpression of miR-424-5p promoted
tumor development [103]. Therefore, miR-424-5p-targeted indirect suppressive reactions to CADM1
in squamous cell carcinoma might also become a therapeutic tool for the suppression of CADM1 in
squamous cell carcinoma.

The expression of CADM1 is low in liver cancer cells and tumor tissues [104]. The lower expression
of CADMLI is related with the development of hepatocellular carcinoma. MiR-194 inhibits CADM1
protein level expression in hepatocellular carcinoma (HCC) by inhibiting mRNA translation of CADM1,
and promoting proliferation, invasion, migration, and cell cycle progression of HCC cells by inhibition
of CADM1 [104]. Therefore, miR-194 might be useful to aid the suppression of CADM1 in the
tumor cells.

5. Conclusions

We summarized the role of CADM1 on various cutaneous malignancies. The role of CADM1 is
different in bone marrow-derived malignancies and solid tumors, and cutaneous malignancies exhibited
different clinical behavior depending on CADM1 expression. These characteristics of CADM1 in cutaneous
malignancies basically show the same tendency as the malignancies in other organs. CADM1 acts
as adhesion molecules in other cells. Especially, CADM1 contributes to bone marrow-derived cells
to the communication with other type cells and promotes cell migration as a scaffolding molecule,
which also contributes to cutaneous lymphoma to develop the tumor environment. On the contrary to
cutaneous lymphomas, CADM1 contributes to the favorable clinical behavior in solid tumors, except
for in Merkel cell carcinoma. Although the reason remains unclear, the characteristics of tumor
origins might be associated with the role of CADM1 in tumor development. Skin consists of various
components such as eccrine glands, hair follicles, and sensory nerves and receptors, and is therefore
problematic. Thus, we cannot predict the CADM1 role in the prognosis of cutaneous tumors simply
depending on whether they are solid or bone marrow-derived. Furthermore, the role of CADM1 on
other cutaneous malignancies, such as basal cell carcinoma, solar keratosis, and soft tissue malignant
tumors, especially angiosarcoma, has not yet been elucidated. Based on the role of CADM]1 in the
etiology of tumor development, the theory of CADM1 contribution will need to be applied to skin
tumors according to other organ malignancies, however, the characteristics of skin as a multicomponent
peripheral organ should be kept in mind to conclude prognoses in further investigations. In addition,
the regulatory mechanisms of CADM1 in cutaneous malignancies and the usefulness of CADM]1 as
a biomarker will have to be clarified for therapeutic application in the future. Currently, there are
several methods of indirect CADM1-targeted therapy using miRNA, and various aspects of approach
will be available in cutaneous malignancies in the future. The incidence of cutaneous malignancy is
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gradually increasing due to the risk of exposure to ultraviolet light and other environmental stimuli,
therefore cutaneous malignancies are highlighted for clinicians. As one of the therapeutic potential
targets, CADML1 is expected to become a major investigative field for future advancement of oncological
research in the skin and overcome the current limitation of the treatment.
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