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Abstract

Cooperation is necessary for solving numerous social issues, including climate change, effective governance and economic
stability. Value-based decision models contend that prosocial tendencies and social context shape people’s preferences for
cooperative or selfish behavior. Using functional neuroimaging and computational modeling, we tested these predictions by
comparing activity in brain regions previously linked to valuation and executive function during decision-making—the
ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC), respectively. Participants played Public
Goods Games with students from fictitious universities, where social norms were selfish or cooperative. Prosocial
participants showed greater vmPFC activity when cooperating and dlPFC-vmPFC connectivity when acting selfishly,
whereas selfish participants displayed the opposite pattern. Norm-sensitive participants showed greater dlPFC-vmPFC
connectivity when defying group norms. Modeling expectations of cooperation was associated with activity near the right
temporoparietal junction. Consistent with value-based models, this suggests that prosocial tendencies and contextual
norms flexibly determine whether people prefer cooperation or defection.
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Introduction
When individuals prioritize themselves over their communities,
the consequences can damage global economies, scientific
institutions and the planet. Philosophers and scientists have
debated the origins of human prosociality for centuries
(Curry, 2016). The study of cooperation has evolved beyond
philosophy and consumed the energy of scientists across
numerous disciplines, from primatology to economics (Brosnan,
2018; Declerck and Boone, 2018). To better understand the
nature of cooperation, we took an interdisciplinary approach
that combined neuroeconomics, social and personality psy-
chology, and cognitive neuroscience. We examined the neu-
ral systems that guide cooperation in groups, and how
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these systems are shaped by social norms and individual
differences.

For many years, prosocial restraint models asserted that
cooperation stems from deliberate restraint of selfish impulses
(Stevens and Hauser, 2004; DeWall et al., 2008; Kocher et al.,
2017). More recently, prosocial intuition models have argued that
cooperation stems from intuition, whereas deliberation always
maximizes self-interest (Rand et al., 2012; Rand, 2016). Both
models carve the mind into two core processes: intuition (i.e.
rapid, automatic, reflexive mental processing) and deliberation
(i.e. delayed, controlled, reflective processing). They differ on
the role these processes play in promoting selfish vs collective
interest. Despite extensive research on this issue, studies of the
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mental processes underlying cooperation have yielded mixed
evidence for existing theoretical models (Bouwmeester et al.,
2017; Rand, 2017). To help reconcile these issues, we considered
an alternative approach to cooperation.

Value-based decision models argue that the cooperative
decisions hinge on preferences that vary between individuals
and situations. According to this approach, the neural systems
involved in storing, representing and learning value play a role in
all decisions, whether they are motor actions, food preferences
or cooperative behavior (Chib et al., 2009; Levy and Glimcher,
2012; Krajbich et al., 2015b). By specifying the conditions under
which cooperation requires effortful deliberation, value-based
models explain when (and for whom) interventions to boost
cooperation will be most effective. Furthermore, these models
can reconcile opposing predictions from prosocial restraint and
prosocial intuition models. For instance, consider two car drivers
(one prosocial and the other selfish) who witness a collision and
decide to pull over and help. Although the driver with prosocial
preferences might find the decision to pull over easy, the selfish
driver might find the decision hard. Understanding the value
each individual places on human welfare may determine which
processes produce cooperation.

Research on human cooperation often involves social dilem-
mas, such as the public goods game (PGG). In this economic
game, players can make monetary contributions to their group
that get multiplied and distributed equally (including to players
who keep all their money for themselves). It is in the group’s
collective interest if all players contribute, but it is in each indi-
vidual’s self-interest to contribute nothing and reap the benefits
of other’s generosity (i.e. free-riding). Consistent with the proso-
cial intuition model, faster decisions have been associated with
larger group contributions in a PGG, suggesting intuitive coop-
eration (Rand et al., 2012). However, value-based models posit
that longer decisions reflect decision-conflict during choices in
which the agent is close to being indifferent between options
(Evans et al., 2015). In addition, prosocial individuals (i.e. those
who generally help others) are faster to cooperate than free-ride
(i.e. prioritize themselves over the group), whereas selfish indi-
viduals are faster to free-ride than cooperate (Hutcherson et al.,
2015; Krajbich et al., 2015a). Thus, individual differences in proso-
ciality shape which mental computations steer cooperation (Van
Lange et al., 1992, 2013).

The value-based approach also contends that situational
factors shift these mental computations. Increasing the cost of
cooperation renders selfish decisions faster and less conflicted
(Krajbich et al., 2015a). Therefore, descriptive norms (i.e. percep-
tions of typical social behavior) may also shape cooperation.
Humans have strong needs for belonging and tendencies toward
conformity (Asch, 1951; Cialdini et al., 1990; Baumeister and
Leary, 1995), and norms can increase prosocial behavior (Nook
et al., 2016) as well as the intrinsic value of socially preferred
stimuli (Zaki et al., 2011). Indeed, one’s cooperation is related to
the mean levels of cooperation of others around (Smith et al.,
2018). As a result, it may take more effort to defy group norms—
cooperating when others are selfish or free-riding when others
are generous. In sum, whether people are faster to cooperate or
free-ride depends on their prosocial tendencies and context.

We examined whether neural regions involved in decision-
making show a similar pattern. While early evidence from neu-
roimaging studies implicated the ventromedial prefrontal cortex
(vmPFC) in affective evaluations (Bechara et al., 1997; Satpute and
Lieberman, 2006; Lebreton et al., 2009), the vmPFC is now widely
considered a hub for value-based decision-making. For instance,
activity in vmPFC is proportional to the expected value that

would be obtained by taking an action (Kable and Glimcher, 2007;
Levy and Glimcher, 2012). In contrast, the dorsolateral prefrontal
cortex (dlPFC) is associated with executive function and supports
goal pursuit (Carter and Van Veen, 2007). Indeed, dlPFC damage
impairs executive functions like working memory, reasoning and
self-regulation (Zhu et al., 2014). Functional connectivity between
dlPFC and vmPFC is thought to reflect modulation of value
during goal-directed decisions (Hare et al., 2009). Moreover, the
connectivity of these regions hinges on individual preferences
(e.g. healthy eating among dieters; Hare et al., 2009) and context
(e.g. regulating cravings; Hutcherson et al., 2012). In sum, vmPFC
activation reflects expected value whereas dlPFC may index
overcoming prepotent response tendencies (Barber and Carter,
2004), decision difficulty (Saraiva and Marshall, 2015) and goal-
directed modulation of vmPFC’s expected value signal (Rangel
and Hare, 2010).

This suggests that individuals’ prosociality and the social
contexts in which they are embedded should determine the
value of cooperation. According to the value-based approach,
we should observe greater vmPFC activity during choices that
align with one’s prosocial tendency since value computations
will be higher. Likewise, we should observe dlPFC-vmPFC con-
nectivity during choices that conflict with this tendency, since
the dlPFC will need to modulate value signals in the vmPFC to
steer decision-making. In this manner, fMRI can provide insight
into group-based cooperation.

Indeed, past research has found roles for vmPFC and dlPFC in
cooperation consistent with a value-based approach (Pärnamets
et al., in press). For instance, people show greater activation
in vmPFC when mutually cooperating in a Prisoner’s Dilemma
(Rilling et al., 2002, 2007) or when inferring cooperative intentions
in others (Cooper et al., 2010). However, people show enhanced
dlPFC activity when cooperating in a Prisoner’s Dilemma with
someone who typically defects (Suzuki et al., 2011) or when
trusting out-group members in a Trust Game (Hughes et al.,
2017)—situations that might require modulating prepotent value
representations. Moreover, a recent study found that patients
with dlPFC damage were less likely to cooperate in a Public
Goods Game (Wills et al., 2018), again highlighting that dlPFC
can contribute to cooperative choice. To clarify the contributions
of these regions in group-based cooperation, we examined here
how individual differences and social norms shape vmPFC and
dlPFC activity during contributions to public goods.

Current research

We examined two variables that could influence the neural
computations underlying cooperation: (1) prosocial tendencies
and (2) descriptive norms. We measured brain activity while par-
ticipants played one-shot PGGs ostensibly with other university
students. Prosocial tendencies were measured as the proportion
of cooperative PGG decisions made by each participant (Krajbich
et al., 2015a). To test that PGG decisions reflected broader individ-
ual differences in prosociality, we further measured giving in a
dictator game (see Supplemental Section S7). We created proso-
cial and antisocial social norms by manipulating the feedback
from the other university students in the PGG (see Figure 1). To
verify these norms, we asked participants to estimate how often
students cooperated at each university. These estimates indexed
individual differences in norm detection.

We tested four hypotheses derived from the value-based
approach: (VBH1) prosocial tendencies will moderate the relative
contribution of vmPFC and dlPFC, such that choices aligned with
one’s tendency (i.e. selfish participants free-riding or prosocial
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Fig. 1. Public goods game with descriptive norm manipulation. (a) At the beginning of each block, participants were instructed, ‘You will now encounter students from

University [X/Y]’ with one of the corresponding emblems shown. The base rates were fixed for each university such that 30% of students cooperated in one university

(antisocial) whereas 70% of students cooperated in the other (prosocial). Participants alternated between antisocial and prosocial schools (order counterbalanced) for a

total of four blocks with 25 trials within each block. (b) Each trial consisted of a decision phase (4 s) and a feedback phase (7 s) that was broken down into three stages:

(1) each student’s contribution to the public pot, (2) the pot multiplying by two and (3) each student’s earnings after the pot is evenly divided four ways. Students who

gave to the pot were always pictured in blue whereas students who kept their money were displayed in yellow. ITI and ISI durations were jittered in order to dissociate

neural activity between decision and outcome phases.

participants cooperating) will elicit greater vmPFC responses
whereas (VBH2) choices that conflict with one’s tendency (e.g.
selfish participants cooperating or prosocial participants free-
riding) will elicit greater dlPFC-vmPFC connectivity. Social con-
text should moderate activity in these regions, such that (VBH3)
deviating from group norms (i.e. cooperating with free-riders or
free-riding against cooperators) will elicit greater dlPFC-vmPFC
connectivity whereas (VBH4) complying with group norms (e.g.
cooperating with cooperators or free-riding against other free-
riders) will elicit greater vmPFC activity.

Methods
Participants

Our target sample was 45–50 participants. Forty-seven university
students (32 female) were recruited (via online posters) from
the New York City area and paid $20 (or two research credit
hours). Students (M = 20.85, SD = 2.60) spanned across 16 north-
eastern colleges. All participants were right-handed, healthy,
had normal or corrected-to-normal vision, and had no history of
psychiatric diagnoses, neurological or metabolic illnesses. The
study was approved by the review board of New York University.
We report how we determined sample size, all data exclusions,
all manipulations and all measures.

Five participants were excluded from analyses, leaving a
sample of 42 participants. Participants were excluded if they
met at least one of the criteria defined prior to data collec-
tion: (1) moving at least 3 mm across all scan sessions and
(2) reporting suspicion (during debriefing) that their decisions
could actually affect the payment of other participants. One
participant was excluded due to criterion 1 (>5 mm motion in
each scan session), and four participants were excluded due to
criterion 2.

Procedure
Public goods game

Participants received instructions on how to play a PGG, includ-
ing four practice trials and a thorough comprehension quiz. In
each round, participants were given $8.00, which they could
either keep for themselves or contribute to benefit the group.
Players interacted in groups of four and contributions were
doubled and split equally by all group members. On each trial,
participants were given 4 s to make a decision and received
no payment on trials where no response was recorded. After
each choice, participants were shown feedback about the other
players’ decisions and resulting payouts. An intertrial interval
(ITI) signaled the beginning of each round and a fixation cross
interstimulus interval (ISI) separated the decision and feedback
stages (Figure 1B). ITIs and ISIs were jittered 1–8 s using a Poisson
distribution and randomized between participants. Participants
were instructed they would never encounter the same player
more than once such that each trial resembled a one-shot PGG.

Before beginning the game, we informed participants that
the other players’ decisions were based on previous responses
from students attending two universities whose identities we
had concealed (labeled University X and University Y; Figure 1A).
Participants were further instructed that students from one
university were more likely to give their money (prosocial school)
whereas students from the other university were more likely to
keep their money (antisocial school). We did not specify which
university was prosocial and antisocial. Participants alternated
between playing with students from the prosocial and antisocial
schools across four blocks for a total of 100 trials. The identity of
the universities and the order they were encountered were coun-
terbalanced across participants. In reality, we adjusted the base
rates such that players from each university gave 70% (prosocial)
or 30% (antisocial) of the time. Of the 50 trials playing with
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the prosocial university, for instance, participants encountered
105 ‘givers’ (out of 150 students) with the following feedback
distribution: 0 givers (2 trials), 1 giver (10 trials), 2 givers (20 trials)
and 3 givers (18 trials).

Earnings across all trials were averaged and paid to partic-
ipants after the study. Prosocial tendencies were computed for
each participant by computing their mean level of cooperation
(i.e. the proportion of trials they decided to give). Two survey
measures were collected and analyzed for exploratory analyses
reported in the supplement: emotional ratings for each PGG
outcome (see Supplementary Sec. S1) and group identification
with each university (Van Bavel and Cunningham, 2012) (see
Supplementary Sec. S2). Additional survey measures were col-
lected at the end of the study but are not included in the present
analyses1.

Dictator game

As an independent measure of prosociality, participants played
two dictator games upon exiting the scanner: one with a student
from the prosocial school and one with a student from the anti-
social school. Participants could allocate anywhere from $0.00—
$1.00 to each student using a slider bar. The amount given to
both groups was averaged into an overall measure of prosociality.
At the end of the study, participants were informed that no
students were actually going to be paid and they were paid the
full $2.00 they were originally endowed with (regardless of their
actual allotment).

Explicit estimation

We next assessed the extent to which students’ explicitly
learned the social norms. Using a slider bar, participants
estimated the percentage of students that cooperated from each
school. We took the difference between these scores for each
participant to compute a measure of norm detection (i.e. the
extent to which students from the prosocial school cooperated
more often than the antisocial school). Positive scores indicate
students who (correctly) remembered the prosocial school giving
more often whereas negative scores indicate students who
(incorrectly) remembered the antisocial school giving more
often.

Behavioral analyses

Analyses of cooperative behavior were conducted using gener-
alized estimating equations (Liang and Zeger, 1986) (GEE) with
an exchangeable correlation structure clustered on each partic-
ipant2. These procedures account for repeated measures in a
regression framework and were implemented using the geepack
package (Halekoh et al., 2006) in R (R Core Team, 2016). We used
logistic regression with cooperation operationalized as a binary
outcome for each trial (0 = Keep, 1 = Give). Parametric tests were
only conducted on measures where we observed insufficient
evidence for non-normality (α = 0.05; Shapiro–Wilk test). Other-
wise, bootstrap confidence intervals were computed with 10 000
simulations.

1 These include the Levenson Self-Report Psychopathy Scale (Levenson
et al., 1995), Groupiness Scale (Dunham & Van Bavel, unpublished),
Social Value Orientation (Van Lange, 1999), and additional demographic
information (e.g. political ideology, socioeconomic status, etc.)

2 Unlike traditional OLS regression, GEE parameter estimates are typi-
cally evaluated using a Wald χ2 distribution with 1 degree of freedom.

fMRI data acquisition

Functional imaging was conducted using a Siemens (Erlangen,
Germany) 3.0 Tesla Allegra head-only MRI scanner. Functional
images were acquired using a customized multi-echo EPI
sequence developed by the NYU Center for Brain Imaging
to mitigate the effects of susceptibility artifacts in medial
temporal and ventromedial regions (TR = 2000 ms; TE = 15 ms;
Flip Angle = 82◦; 34 3 mm slices with a 0.45 mm gap for whole-
brain coverage, Matrix = 64 × 80; FOV = 192 × 240 mm; Acquisition
voxel size = 3 × 3 × 3.45 mm). This sequence has been described
in detail in prior work (Hackel et al., 2015).

Each volume comprised 34 axial slices collected in an
interleaved-ascending manner and parallel to the AC-PC line.
Data were collected in four sessions, 225 volumes each (7 min
and 30 sec). Six scans were acquired at the start of each run and
dropped from analysis to allow magnet equilibration. During
this time, participants were told which university they would
be playing with. Finally, whole-brain high-resolution structural
scans (T1-weighted, MPRAGE, 1 × 1 × 1 mm resolution) were
acquired from all participants, coregistered with their mean EPI
images and averaged together to permit anatomical localization
of the functional activations at the group level.

fMRI data pre-processing

Image analysis was performed using SPM12. Images were cor-
rected for slice-time acquisition and realigned to correct for par-
ticipant motion, coregistered to structural images, transformed
to conform to the default T1 Montreal Neurological Institute
(MNI) brain interpolated to 3 × 3 × 3 mm, smoothed using a
Gaussian kernel with a full-width-at-half-maximum of 6-mm,
corrected for artifacts using the ArtRepair toolbox (Mazaika et al.,
2007) and detrended using the LMGS toolbox (Macey et al., 2004).
The blood-oxygenation-level-dependent (BOLD) signal was mod-
eled using a canonical hemodynamic response function.

A general linear model (GLM) included (1) onset of give deci-
sions, (2) onset of keep decisions, (3) onset of feedback after give
decisions and (4) onset of feedback after keep decisions. Reaction
times were entered for decision epoch durations, such that each
trial was modeled as having a duration of the participant’s
reaction time (Grinband et al., 2008). Further regressors of no
interest included (5) onsets of choice epochs for missed trials
(i.e. non-responses), (6) feedback epochs for missed trials, as
well as six movement parameters from the realignment stage.
A high-pass filter with cutoff period of 128 s was used. To
analyze the impact of prosocial tendencies, first-level contrasts
for Give > Keep were generated and entered into a second-
level random effects analysis along with each participant’s mean
cooperation (i.e. proportion of give decisions) as an interaction
term. To analyze the impact of descriptive norms, first-level con-
trasts for Give > Keep were generated separately for each of the
four scanner sessions. Norm-level contrasts were computed for
each participant by averaging session contrasts corresponding
to each norm and then subtracting the antisocial contrast from
the prosocial contrast. These contrasts were then entered into
second-level random effects analyses. For a psychophysiologi-
cal interaction (PPI) analysis of overall choice, vmPFC activity
served as a physiological variable, choice type (free-riding vs
giving) served as a psychological variable, and the interaction of
these variables was examined; individual differences in proso-
ciality served as a moderator in a second-level analysis. For
a PPI analysis of norm congruence, vmPFC activity served as
a physiological variable, choice type (congruent with norm vs
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deviant from norm) served as a psychological variable, and the
interaction of these variables was examined; individual differ-
ences in norm detection served as a moderator in a second-level
analysis.

Based on past work, our hypotheses targeted specific regions
of interest (ROIs): the vmPFC and the dlPFC. To constrain our
analysis to these regions, we used existing ROI masks for vmPFC
and dlPFC based on prior work (Wills et al., 2018). These ROIs
were constructed with the MarsBar toolbox by combining corre-
sponding structures from the Harvard–Oxford Maximum Proba-
bility Atlases (Fischl et al., 2004) (see Supplementary Figure S6).
The vmPFC ROI consisted of the frontal pole, frontal medial
cortex, paracingulate gyrus, subcallosal cortex, constrained by
rectangular prism X = [−14, 14], Y = [10, 80], Z = [−35, 0]. The
dlPFC ROI consisted of the frontal pole, inferior frontal gyrus
and middle frontal gyrus, constrained by bilateral rectangular
prism X = [−60, −30 (L); 30, 60 (R)], Y = [20, 70], Z = [5, 55]. Small-
volume corrections were conducted using these ROI masks.
Unless otherwise noted, all analyses were corrected for multiple
comparisons using a voxel-wise height threshold of P < 0.001
combined with an appropriate cluster extent to maintain
a family-wise error (FWE) rate of P < 0.05, using Gaussian
random field theory as implemented in SPM (Friston et al.,
1994).

ROI effect size estimation

Given the difficulty of drawing conclusions from null results,
we conducted the following procedure to estimate effect sizes
for non-significant contrasts. Using Marsbar, we first extracted
each subject’s average betas (i.e. predicted amplitude) for each
contrast within each ROI mask. We then computed the mean
amplitude across 10 000 bootstrapped simulations and report
the 95% confidence interval of the resulting distribution of
means.

Computational model

We fit a computational model that estimated participants’ trial-
by-trial expectations about the number of expected givers on
each round. This model assumed participants chose to give or
keep based on (1) a constant term and (2) the number of expected
givers on a given round:

pGt = 1
1 + e(−c+−β×G)

(1)

where pGt is the probability of giving on trial t, c is a con-
stant term, β is a weight on the expected number of givers
for that trial and G is the expected number of givers. Separate
estimates of G were held for each university. On each trial, G
was updated for the relevant university using a delta-learning
rule:

Gt = Gt−1 + αδ (2)

where α is a learning rate parameter and δ is a prediction error
related to the expected number of givers:

δ = Number of Givers − G (3)

The number of givers was rescaled to range from −1 to 1,
so that the constant term would be interpretable at the mean
number of givers. Finally, given that the proportion of givers in

each group did not change over time, participants could learn
the contingencies relatively early on. We therefore allowed the
learning rate to decay over time with a decay parameter d
between 0 and 1 (Niv et al., 2012):

αt = αt−1 × d (4)

This model was fit using maximum likelihood estimation. We
applied parameters derived from the model to each participant’s
data to compute trial-by-trial estimates for the expected
number of givers for each participant (see Supplementary
Sec. S5 for more details on the modeling approach and
Supplementary Table S2 for parameter estimates). This time
series was entered as a parametric modulator of choice,
using the same first-level fMRI GLM described in the primary
analysis. This analysis was whole-brain corrected for multiple
comparisons.

Data availability

All relevant and deidentified, pre-processed data and materials
have been made publicly available at the following OSF link:
(https://osf.io/hfngs/).

Results
Behavioral Results

Prosocial tendencies. On average, participants cooperated on
33.57% of the trials (SD = 28.40%). Nonetheless, there were large
individual differences between participants, ranging from one
participant who always cooperated to seven free-riders who
chose to keep on all 100 trials (see Supplementary Figure S1).
Reaction times did not vary between giving and keeping
or between norm condition. However, RTs did depend on
individual differences in prosocial tendencies, such that
cooperation tended to be faster among prosocial participants
(see Supplementary Sec. S3).

Descriptive norms. To ensure participants encoded the
descriptive norm manipulation, we conducted a paired t-
test to assess whether participants estimated different rates
of cooperation between the schools (i.e. norm detection).
Participants noticed that students from the prosocial school
cooperated more often (M = 54.71%, SD = 23.37%) than students
from the antisocial school (M = 32.10%, SD = 21.30%), suggesting
they learned that group norms differed, t(41) = 4.34, d = 0.67,
P < .001 (see Supplementary Figure S3).

In turn, descriptive norms impacted cooperation. Participants
were more likely to cooperate with students from the prosocial
school (M = 40.42%, SD = 49.08%) than the antisocial school
(M = 24.08%, SD = 42.77%; Odds ratio = 2.15, Wald χ2(1) = 26.4,
P < 0.001; see Supplementary Sec. S3 for reaction time analysis).
Moreover, norm compliance (i.e. preferential cooperation with
the prosocial vs antisocial school) was associated with norm
detection (M = 22.62%, SD = 33.77%; r(40) = 0.36, bootstrapped
95% CI: [0.12, 0.55]): participants who correctly recalled greater
cooperation from the prosocial school were more cooperative
towards the prosocial school.

Neuroimaging results

Overall cooperation. We first tested whether cooperation and
defection overall were associated with neural activation in

https://osf.io/hfngs/


376 Social Cognitive and Affective Neuroscience, 2020, Vol. 15, No. 4

vmPFC and dlPFC. Such findings could be consistent with models
asserting that intuition drives cooperation and deliberation
promotes self-interest (prosocial intuition; Rand et al., 2012,
2014) or that humans are impulsively selfish and require self-
control to cooperate (prosocial restraint; Stevens and Hauser,
2004; Kocher et al., 2017). We tested the first prosocial restraint
hypothesis by examining whether the mean signal within
vmPFC (defined through an anatomical region of interest;
see Methods) was higher during free-riding as opposed to
cooperation (i.e. Give > Keep). Therefore, seven participants
with invariant decisions (i.e. cooperating or free-riding on
every trial) were excluded from this analysis, leaving 35
participants. No significant vmPFC activation was observed
in this contrast at thresholds with small volume corrections
(pvoxel < 0.001; pcluster < 0.05). We then examined whether dlPFC
activity increased during cooperation vs free-riding (i.e. Keep >

Give), but observed no significant difference.
We reversed these contrasts to test the two prosocial intu-

ition hypotheses: vmPFC is more active when cooperating (i.e.
Keep > Give) and dlPFC activity increases during free-riding (i.e.
Give > Keep). However, we did not observe significant differences
for these contrasts. Bootstrapped 95% confidence intervals of
the signal change for cooperative (relative to selfish) choices
indicated that mean vmPFC signal may increase up to 0.387% or
decrease up to 0.474% whereas mean dlPFC signal may increase
up to 0.224% or decrease up to 0.173%. Thus, we found insuf-
ficient evidence that these regions were differentially recruited
for cooperation or free-riding. These results were not consistent
with simplified prosocial restraint or prosocial intuition models
of cooperation. Thus, we examined whether activation in these
regions depends on cooperative tendencies and social norms.

Prosocial tendencies. According to the value-based approaches,
vmPFC should be more responsive during choices aligned with
one’s prosocial tendencies: selfish participants should display
greater vmPFC responses when free-riding and prosocial par-
ticipants should display greater vmPFC responses when coop-
erating (see VBH1). This is because vmPFC has been found to
represent the difference in value between chosen vs unchosen
options (Boorman et al., 2009; Nicolle et al., 2012; Hackel et al.,
2015). As a result, vmPFC activity should be higher for a prosocial
participant when giving (i.e. when relative value is higher) than
when keeping (i.e. when relative value is lower). For a free-riding
participant, the reverse should be true.

To test this hypothesis, we entered each participant’s
mean cooperation into a second-level GLM as an estimate
of prosociality, and then tested the interaction between
prosociality and decision type (i.e. cooperate vs free-ride)3. We
observed a cluster of vmPFC for the interaction of Prosociality
x Decision, t(33) = 4.99, k = 53, pcluster < 0.001 (Figure 2A and B;
see Supplementary Table S1)4. Consistent with value-based
approach, decisions that aligned with one’s prosociality elicited
greater vmPFC activity: free-riders had more vmPFC activity
when free-riding, whereas cooperators had greater vmPFC
activity when cooperating.

We examined whether prosociality moderated dlPFC activ-
ity during choices that conflicted with prosociality (i.e. selfish
participants cooperating or cooperative participants free-riding).
For this prosociality × decision interaction, we observed two

3 See Krajbich et al., (2015) for or a similar analytic strategy with behav-
ioral data.

4 The t statistic reported for this contrast (as well as all subsequent
contrasts) refers to the peak voxel within the cluster.

clusters within right dlPFC (both with equal cluster sizes, k = 13,
pcluster = 0.050). More prosocial participants showed greater right
dlPFC activity when free-riding whereas participants with self-
ish tendencies showed greater activity when cooperating (see
Figure 2C). Moreover, we obtained the same findings when using
a self-report measure of cooperative preferences that was not
derived from behavior and was not specific to either norm
context. Specifically, after the main task, participants reported
how positively and negatively they felt upon giving and keeping;
when using relative positive affect during giving vs keeping as
an alternative measure of individual cooperative preference, we
observed the same patterns of activation in vmPFC and dlPFC
described above (see Supplemental Figure S5, and Supplemen-
tary Sec. S1).

Some value-based models also assert that dlPFC and vmPFC
become temporally correlated when making more difficult, goal-
directed choices (see VBH2). To test this prediction, we exam-
ined whether functional connectivity between dlPFC-vmPFC was
moderated by prosociality. We conducted a psychophysiolog-
ical interaction (PPI) analysis with the right dlPFC cluster for
non-dominant choices (Figure 2C) and the vmPFC cluster for
dominant choices as a seed region (Figure 2A). We examined
connectivity as a function of cooperative vs free-riding decisions,
with prosociality serving as an individual difference. Coopera-
tive participants showed greater right dlPFC-vmPFC connectivity
when free-riding, whereas selfish participants showed greater
connectivity when cooperating, r(33) = −0.23, bootstrapped 95%
CI: [−0.56, −0.04], tR = −2.00 (Figure 2D)5. In other words, partic-
ipants showed greater dlPFC-vmPFC connectivity when making
choices that ran counter to their prosociality, consistent with the
value-based approach.

Social norms. If norms amplify the value of conformity (Nook
and Zaki, 2015), then a value-based approach would predict
greater dlPFC-vmPFC connectivity when choosing to deviate
from norms (i.e. cooperating in antisocial groups or free-riding in
prosocial groups; see VBH3). We tested this prediction by conduct-
ing another PPI analysis with the dominant choice vmPFC cluster
(Figure 2A) as the seed region and the non-dominant choice
dlPFC cluster (Figure 2C). We contrasted deviant vs compliant
decisions (i.e. cooperating with the prosocial group and free-
riding with the antisocial group vs free-riding with the prosocial
group and cooperating with the antisocial group)6. We did not
observe any significant connectivity changes across decision
type: bootstrapped confidence intervals for deviant (vs compli-
ant) choices indicated mean dlPFC connectivity may increase up
to 0.172% or decrease up to 0.189%.

Our measure of norm detection indicated that not all par-
ticipants learned the group norms. Since this norm-detection
measure was positively associated with behavioral norm com-
pliance, it seemed possible that norms modulated dlPFC-vmPFC
connectivity in a manner dependent on how participants per-
ceived the norms. To test this possibility, we conducted an
exploratory analysis similar to our individual difference analysis
above: we entered individual differences in norm detection as
a predictor in the second-level GLM. We observed a positive

5 We use the tR notation to indicate t statistics calculated using the robust
linear regression procedure with an M estimator available in the MASS
package (Venables and Ripley, 2002) for R (R Core Team, 2016).

6 One additional participant was excluded from this analysis because
they never cooperated when playing with the antisocial students.
This left thirty four valid participants in all fMRI analyses involving
descriptive norms.
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Fig. 2. vmPFC activity and dlPFC-vmPFC connectivity is moderated by prosocial tendencies. Average cooperation moderates (a) BOLD response in vmPFC and (c) right

dlPFC activity during Give (vs Keep) decisions. Color indicates magnitude of t statistic. As an alternate visualization, (b) vmPFC cluster betas (y-axis) for each participant

(n = 35) are plotted against the proportion of cooperative trials (x-axis). (d) Right dlPFC-vmPFC PPI cluster betas (y-axis) are plotted against the proportion of cooperative

trials (x-axis). Robust linear regression fits are displayed with blue lines and surrounding 95% confidence interval band.

correlation between norm detection and dlPFC-vmPFC connec-
tivity: participants who correctly perceived the norms elicited
greater right dlPFC-vmPFC connectivity when deviating from
the group, r(33) = 0.50, bootstrapped 95% CI: [0.22, 0.69], tR = 2.90
(Figure 3). This suggests that vmPFC and dlPFC are more func-
tionally correlated when (a) participants who correctly perceived
norms deviated from actual group norms and (b) participants
who incorrectly perceived norms complied with group norms,
thus deviating from their perceived norms. That is, participants
who incorrectly perceived norms showed greater vmPFC-dlPFC
connectivity when deviating from their subjectively perceived
norms, much as participants who correctly perceived norms
showed greater vmPFC-dlPFC connectivity when deviating from
the objective norms.

We examined whether this connectivity predicted norm
compliance (i.e. preferential cooperation with the prosocial
vs antisocial school). We observed an interaction whereby
participants with greater right dlPFC-vmPFC connectivity
during deviant decisions engaged in greater norm-compliant

cooperation, OR = 1.97, 95% CI = [1.26, 3.10], Wald χ2(1) =8.72,
P = 0.003. This suggests that vmPFC and dlPFC are more
functionally correlated when (a) norm-compliant participants
deviate from norms and (b) non-compliant participants comply
with norms; the latter finding may reflect the fact that non-
compliance was correlated with incorrect perceptions of norms,
as reported above. We did not observe a relationship between
group norms and vmPFC activity (see Supplementary Sec. S6).

Evolving expectations. Adapting to norms requires people to
update and deploy expectations about how others will cooper-
ate. We therefore tested whether neural activity during choice
reflected expectations about others’ cooperation. We fit partici-
pant choices to a computational model of learning and choice,
which assumed that people updated an estimate of average
cooperation for each group following feedback on each trial. Esti-
mates were updated with a prediction error, or the discrepancy
between the actual and expected number of cooperators on each
trial. This model allowed us to estimate, in a trial-by-trial man-
ner, the number of givers participants expected while making
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Fig. 3. Norm detection moderates dlPFC-vmPFC connectivity when deviating

from the norm. Norm detection moderates right dlPFC-vmPFC connectivity for

deviant decisions (e.g. free-riding in the prosocial norm or cooperating in the

antisocial norm). Participants (n = 34) who perceived relatively more cooperation

from the prosocial school vs antisocial school (x-axis) elicited heightened right

dlPFC-vmPFC connectivity when deviating from (vs complying with) the group

norm (y-axis). To mitigate influential points, a robust linear regression fit is

displayed with blue line and surrounding 95% confidence interval band.

Fig. 4. rTPJ activity reflects the expected number of givers during decision-

making. The number of givers anticipated during choice on a given trial—as

estimated through a computational model of learning and choice—correlates

with activation in rTPJ. Color indicates magnitude of t statistic.

decisions and analyze whether any neural regions tracked this
quantity during choice.

Increased expectation of givers during choice was associ-
ated with activation near the right temporoparietal junction
(Figure 4). Given this region’s purported role in theory of mind
tasks (Frith and Frith, 2006), this may reflect increased social
cognitive processing during choices where others were expected
to cooperate. If so, internalizing social norms may play a key
role in future cooperation—a form of social prediction. It also
suggests participants dynamically tracked expectations related
to norms during decision-making.

Discussion
Value-based models contend that psychological processes sup-
porting cooperation may hinge on idiosyncratic preferences as
well as contextual factors that shift these preferences (Krajbich
et al., 2015a; Pärnamets et al., in press). Consistent with this
approach, we find that vmPFC and dlPFC activity during coop-
eration depends upon individual differences in prosociality and
sensitivity to social norms. Specifically, prosocial participants
elicited greater vmPFC activity when cooperating as well as
heightened right dlPFC activity and dlPFC-vmPFC connectivity
when free-riding. Self-serving participants showed the reverse
pattern. Thus, neither the vmPFC nor the dlPFC exhibited a con-
sistent role in cooperation, but instead showed greater activation
when people acted consistently or inconsistently with their
prosocial tendencies, respectively. These findings are consistent
with the idea that vmPFC activity reflects a decision value that
can be modulated by dlPFC (Rangel and Hare, 2010).

In contrast, prominent models rooted in dual-process frame-
works argue that cooperation is either reflexive (prosocial intuition
models) or primarily stems from deliberate self-control (prosocial
restraint models). Past neuroimaging work rooted in dual-process
tradition associated vmPFC with intuitive processing and dlPFC
with deliberative processing. Thus, the prosocial restraint model
implied free-riding would be associated with vmPFC activity
and cooperation would be associated with dlPFC activity. In
contrast, the prosocial intuition model implied cooperation would
be associated with greater vmPFC activity and free-riding would
be associated with greater dlPFC activity. When adopting this
interpretation of vmPFC and dlPFC, our data still suggest that
prosocial participants are intuitive cooperators, which conflicts
with prosocial restraint models, and that selfish participants are
deliberative cooperators, which conflicts with prosocial intuition
models. Thus, our findings support a value-based interpretation
of vmPFC and dlPFC activity or require a more flexible dual-
process model that can account for the moderating roles of
prosociality and norms.

The current research further indicates that norms shape
cooperation. Participants who were most attentive to norms
aligned their behavior with norms and showed greater right
dlPFC-vmPFC connectivity when deviating from norms, whereas
the least attentive participants showed the reverse pattern. Curi-
ously, we found no clear evidence that decisions to conform
were more valued than decisions to deviate. This conflicts with
work suggesting social norms boost the value of norm com-
pliance (Nook and Zaki, 2015). Instead, our findings suggest
that norm compliance can also stem from increased functional
connectivity between vmPFC and dlPFC.

Our findings raise questions about how people model the
dynamic shifts in norms that vary over time and between groups.
We fit a computational model of learning to understand how
people represent the cooperation expected from each group.
Expectation of givers during decision-making was associated
with activation in a region near the right temporoparietal junc-
tion—a region related to theory of mind (Frith and Frith, 2006).
This finding comports well with recent work (Park et al., 2019)
and suggests that social cognitive systems may interface with
the construction of value to guide decisions.

The present research highlights two important factors that
modulate the neuro-cognitive processes guiding cooperation:
prosociality and social norms. Rather than neural activity in
vmPFC always reflecting either prosocial or selfish behavior, the
value of cooperation may be lower among selfish individuals or
in selfish environments. The notion that cooperation necessarily
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stems from reflexive intuitions ignores the possibility that some
individuals value the outcomes of others. This idea coheres
with evidence that selfish participants more often cooperate by
mistake, whereas prosocial participants accidentally prioritize
their self-interest (Hutcherson et al., 2015). Thus, intuition may
trigger cooperative mistakes from selfish participants but deter
prosocial participants from second guessing their cooperation.

Conclusion
In conclusion, more flexible models are needed to specify when,
and for whom, cooperation is intuitive or deliberative. This study
highlights the advantage of social neuroscience methods for
disambiguating the decision-making processes that guide proso-
cial behavior. The present findings are largely inconsistent with
models that assume one mental process always supports coop-
eration but are consistent with a value-based approach to under-
standing cooperation. Although our focus on dlPFC and vmPFC
helped constrain our hypotheses, cooperation is complex and
draws on a widely distributed network of neural systems impli-
cated in prosocial behavior (Lamm et al., 2011; Fareri et al.,
2015; FeldmanHall et al., 2015; Hutcherson et al., 2015; Fermin
et al., 2016). For instance, other reward-related regions, such
as caudate, are involved in prosocial choices (Lemmers-Jansen
et al., 2018) and may show differential patterns of activation
across individuals with strong vs weak prosocial preferences.
Similarly, as evidence accumulates that moral decisions rely
on more dynamic, distributed and multi-faceted neurocognitive
processing (Van Bavel et al., 2015), more flexible models of value-
based decision-making appear to offer a fruitful account for
prosociality.

Supplementary data
Supplementary data are available at SOCAFN online.
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