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ABSTRACT: Reducing production costs is one of the main
objectives of process intensification; in this work, production costs
of the distillation process are reduced by reducing equipment size
and utility consumption from the perspective of process
optimization to achieve the purpose of process intensification.
The application of intelligent optimization algorithms in the
optimization process of distillation is vital to achieving high
efficiency and low costs. Combining the harmony search algorithm
with the characteristics of distillation optimization, a new
distillation harmony search algorithm (DHSA) was proposed,
which includes the self-adaptive adjustment of parameters, roulette
selection strategy, and ratio optimization strategy. Benefiting from
the DHSA, the optimal total annual cost and calculation times were remarkably reduced when compared with reported algorithms in
the optimization of four distillation cases including the two-column model, three-column model, reactive distillation column model,
and dividing-wall extractive distillation column model. In addition, the highest coefficient of variation of DHSA in 10 parallel
calculations is 1.25%. These results indicate that DHSA has the advantages of a higher-quality solution, less computing time, and
higher stability, which not only improves the optimization efficiency and quality but also inspires the optimization strategies for other
algorithms.

1. INTRODUCTION
With the intensification of competition in the chemical
industry and the improvement of design levels, higher
requirements are put forward for process design and
optimization. Distillation is a commonly used separation
method for material separation1 which utilizes the difference
in boiling points of different substances. The mathematical
modeling of distillation can be based on the principles of
material balance, energy balance, phase equilibrium, and
concentration normalization
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In the above equation, F represents the feed, D represents
the distillate, and W represents the bottom product. i
represents the i-th component. QF and QR denote the heat
input from the feed and reboiler, respectively. QC, QD, and QW
represent the heat removal through the condenser, distillate,
and bottom product, respectively. x represents the liquid-phase
composition, and y represents the vapor-phase composition. By
using the above equations, usually combined with inequality

constraints specified for the product, a distillation process can
be designed. These tasks can be easily performed in simulation
software such as Aspen Plus. The strict design and
optimization of the distillation process are of great significance
for reducing energy consumption, saving costs, and reducing
environmental pollution.2 The distillation process involves
multiple decision variables, such as the total stage (N), feed
stage (NF), reflux ratio (R), distillate flow rate (D), pressure
(P), and so forth, in which the reflux ratio and pressure are
continuous variables and the rest are discrete variables. In
addition, product purity (Xp), recovery (RP), and so forth are
often used as constraints and the total annual cost (TAC) is an
evaluation index. Therefore, this type of distillation optimiza-
tion problem can be formulated as a mixed integer nonlinear
programming problem (MINP),3 and it can be described
mathematically as follows4
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The sequential iteration method (SIM) is the earliest and
most widely used method to optimize the distillation process.
For instance, Hosgor et al.5 optimized a methanol/chloroform
system by using the SIM, and Geng et al.6 optimized a methyl
acetate hydrolysis reaction in a dividing-wall column by
utilizing the strategy of the SIM. The SIM searches for the
minimum value of TAC by gradually changing variables one by
one, but the optimization of one variable is limited by other
fixed variables. Although the SIM can achieve the purpose of
optimization, it usually provides poor quality results even after
costing a long calculation time.
To make distillation process optimization more efficient,

some intelligent optimization algorithms have been applied to
the optimization process. The simulated annealing algorithm7

was originally motivated by the process of physical annealing in
metalwork and successfully applied in distillation optimiza-
tion.8−11 The genetic algorithm (GA)12 is an intelligent
optimization algorithm to search for the global optimal
solution by simulating the natural evolution process; research
shows that if the GA can be used correctly, it will solve the
optimization problem more efficiently.2,13−15 The particle
swarm optimization algorithm (PSOA)16 is an evolutionary
algorithm developed by simulating the foraging behavior of
gregarious organisms, and it has been used to complete
optimization tasks.16−18

The successful application of these algorithms shows the
feasibility of intelligent optimization algorithms in chemical
process optimization; thus, using different algorithms in
chemical process optimization has gradually been a research
highlight. With the rapid development of intelligent
optimization algorithms, different algorithms have been
developed to improve efficiency. The harmony search
algorithm (HSA)19 has been developed by simulating the
performance behavior of musicians by repeatedly adjusting the
size of different tones in the harmony. It has several advantages
such as all solutions having a chance to influence the
generation of new solutions, the value of each dimension of
the new solution being generated independently, and a
noncontinuous variable being permitted. The difference
between the HSA and other intelligent optimization algorithms
is shown in Figure 1 (the darker dot is closer to the optimal
solution); the difference is mainly reflected in the update

population; stage HSA updates only one solution in the
population in each iteration process, while the GA and PSOA
require computing each solution in the population to form a
new population. Due to the HSA’s characteristics, it can
improve the optimization efficiency by avoiding unreasonable
updates in the calculation process and transferring the optimal
value to the next iteration. Therefore, the HSA is widely
concerned in various optimization problems for its excellent
scalability and fast solution speed, such as mathematical
problems,20 assembly variations,21 special truss structures,22

object detection,23 economic dispatch,24 vehicle routing,25

buffer allocation problem,26 and tool indexing.27 However, the
HSA will fall into the trap of local optimal solution inevitably
according to the small amount of calculation. Thus, it is of
great significance to optimize the HSA to enhance the
optimization efficiency by improving the global search ability
and giving play to its advantage of less calculation time.
Based on the classical HSA, this work combined the

characteristics of distillation process optimization and
developed a universal distillation process optimization
algorithm (DHSA) by using Python and Aspen Plus. The
application of the SIM, GA, PSOA, and DHSA in four
distillation process optimization models was discussed. In
addition, the difference of the DHSA in 10 parallel
optimization results was analyzed. The calculation results
showed that the improved DHSA has excellent optimization
ability and stability, which is suitable for the optimization of
the distillation process.

2. IMPROVEMENTS OF THE HSA
Assume that f(x) is the objective function and the HSA is used
to search the minimum value in the range [L, U], where L and
U represent the lower and upper bounds of the search domain,
respectively. The steps of the HSA are as follows, and the
flowchart is shown in Figure 2 (without the red part):
(1) Initialize the parameters. The classical HSA has four

main control parameters,19 including harmony memory
size (HMS), harmony memory considering rate
(HMCR), pitch adjusting rate (PAR), and bandwidth
(BW).

(2) Initialize the HM. As shown in Formula 1, HMS
harmonies are generated to form HM randomly.

= + ×L U LHM ( ) rand( 1,1)i j j j j,

where xi,j is the j-th dimension of the i-th harmony.
(3) Improvisation. Generate a new harmony according to

HM’s strategy. The pseudocode is shown below.

(4) Go to step (2) until the stopping criteria are met.
To improve the performance of HSA and better match the

distillation optimization work, we proposed some improve-
ment measures for this algorithm.Figure 1. Process of intelligent optimization algorithms.
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2.1. Self-Adaptive HMCR and PAR. It is clearly explained
by the developers of the HSA for the role of these parameters
that the HMCR supports the large-scale exploration and PAR
helps in further exploiting.19 Thus, reasonable HMCR and
PAR are crucial and responsible for controlling the HSA to
achieve better results. The fixed parameter set in classical HSA
limits its optimization ability; Kumar et al.28 have modified the
search strategy of the HSA by introducing Formulas 1−4
owing to HMCR and PAR; they can keep linearly and
nonlinearly changing during the search process.

= + t THMCR HMCR ( / )(HMCR

HMCR )
t
linear min max max

min (1)

=
i
k
jjjjj

i
k
jjjj

y
{
zzzz

y
{
zzzzztHMCR HMCR exp /T ln
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HMCRt

non linear min max
min
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= + tPAR PAR /T (PAR PAR )t
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max

(4)

where t indicates the current iteration and Tmax is the
maximum number of iterations. HMCRmin and HMCRmax are
the minimum and maximum values of HMCR, respectively,
which can also be defined as starting and ending values. PARmin

and PARmax have the same meaning as HMCRmin and
HMCRmax. In addition to the above improvement measures,
there are some researchers who have tried to reveal how the
HMCR and PAR affect the ability of the has;29−31 these works
have proved that during the optimization process, a smaller
HMCR and PAR at the initial phase and a larger HMCR and
PAR at the final phase are conducive to increase the efficiency
of the HSA. To make the HMCR and PAR play a better role in
regulating the algorithm capability, this work proposes the self-
adaptive control strategies as Formulas 5 and 6.

Figure 2. Flowchart of the HSA and DHSA.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02785
ACS Omega 2023, 8, 28487−28498

28489

https://pubs.acs.org/doi/10.1021/acsomega.3c02785?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02785?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02785?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02785?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02785?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= +

+ + ×
i
k
jjjj

y
{
zzzz

HMCR HMCR (HMCR HMCR )

1
1 e

t

t

min max min

7 15 /Tmax
(5)

= +

+ + ×
i
k
jjjj

y
{
zzzz

PAR PAR (PAR PAR )

1
1 e

t

t

min max min

7 15 /Tmax
(6)

Here, HMCRt and PARt are the values of the t-th iteration,
and they gradually increase as the iteration progresses. The
change trend corresponding to the formula is shown in Figure
3. The HMCR and PAR can hold smaller values at the initial

phase and larger values at the final phase compared with other
strategies; therefore, they can play a better role in regulating
the algorithm.
2.2. Harmony Selection Strategy. In the classical HSA,

the i-th component of HMnew (HMi
new) will be selected

randomly from HM; it will lead to slow convergence due to the
aimless optimization. Therefore, it is necessary to propose an
effective selection strategy; Jaberipour and Khorram32 select
the HMi

new from the worst harmony (HMi
worst) in the current

HM; Guo et al.33 select the HMi
new from the best harmony

HMi
best in the current HM; these methods show good

performance in respective problems. In the process of
distillation optimization, designers consider that the current
optimal solution is closer to the global optimal solution than
other solutions in most cases; thus, optimizing the current
optimal solution will help designers find the global optimal
solution quickly. However, due to the characteristics of the
MINP problem, the poorer solutions also can converge to the
global solution to a certain degree. Based on the above analysis,
this work proposes a roulette selection strategy; when selecting
an HMi

new, the current optimal solution with a large probability
is selected and it is ensured that there also is a certain
probability to choose other solutions. Figure 4 shows the
roulette selection strategy; the values of A to F are 30, 20, 20,
15, 10, and 5, respectively, with the maximum value being the
optimization goal; the fitness of A can be calculated as 0.3 [30/
(30 + 20 + 20 + 15 + 15 + 5)]; thus, A is selected with a
probability of 30%.
In the optimization of the distillation process, the lower

TAC is desirable, so the TAC cannot be directly regarded as
fitness; it will bring the opposite result. For this reason, the
relationship between the TAC and fitness should be

established. TACj is the calculated result of the solution HMj
in HM, and TACmax is the calculated result of the worst
solution HMworst. The fitness of different solution FITj is
calculated by Formulas 7 and 8

=FIT TAC TACj j max (7)

=
=

P
FIT

FIT
j

j

i i1
HSM

(8)

where Pj is the selection probability of HMj; from this strategy,
the HMj corresponding to the lower TAC has a greater
selection probability.
2.3. Self-Adaptive BW. BW is set during initialization in

HSA; it influences the fine-tuning of new harmony through
Formula 9

= + ×HM HM rand( 1,1) BWi i
new new

(9)

At the beginning of the calculation, the larger BW can
increase the diversity of HM; with the calculation going on, the
solutions in HM are closer, and the larger BW will cause
HMnew to skip the optimal solution. Therefore, dynamic
adjustment of the BW is also an important way to optimize
HSA. Chakraborty et al.34 have adopted a mutation method,
which is applied in the DE algorithm; the new harmony is fine-
tuned by Formula 10

= + ×HM HM rand( 1,1) (HM HM )i i i i
new new rand1 rand2

(10)

where HMi
rand1 and HMi

rand2 are the i-th components of the
randomly selected and different harmonies from the current
HM. Although this tactic can increase exploration ability, it will
bring about a standstill and long-time oscillation. Jaberipour
and Khorram32 have utilized the global best and worst
harmony to improve the ability of the HSA through Formulas
10 and 11

= + ×HM HM rand( 1,1) (HM HM )i i i i
new new R worst

(11)

=HM (2HM HM )i i i
R best worst

(12)

In the MINP problem, the discrete variable, such as the total
stage, will have the same value in different harmonies, even the
worst harmony and the best harmony; it causes the BW to be
zero by using the above strategies, resulting in a loss of
regulatory effects. For this reason, it is necessary to propose a
strategy that can solve the influence of discrete variables.
Considering that the maximum and minimum values of the i-th

Figure 3. Trend of different strategies.

Figure 4. Schematic diagram of the roulette selection strategy.
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component in HM are always different; this work adopted
Formula 13 to update BW in each iteration

= + ×HM HM rand( 1,1) (HM HM )i i i i
new new max min

(13)

As optimization proceeds, the difference between HMi
max

and HMi
min gets smaller; it realizes the self-adaptive adjustment

of the BW.
2.4. Decision Variable. In general, the feed stage and the

stage of the section in the distillation column are decision
variables; they are often optimized individually. However,
according to the design experience that both of them are
related to the total stage, for example, the feed stage generally
increases with the increase of the total stage. To take this
relationship into account in the optimization, the ratio of the
feed stage and the stage of the section in the distillation
column to the total stage was used as a decision variable in this
work. The fraction form was utilized for data analysis and
valuation in the algorithm, and the integer form was utilized for
calculating it in process simulation, so it realized the
connection between fractions and integers.
The DHSA is proposed by all the above improvement

measures, and the optimized flowchart is shown in Figure 2
(with the red part).

3. METHODS OF DISTILLATION OPTIMIZATION
The realization of distillation process optimization is shown in
Figure 5; codes of algorithms were written based on Python

(V3.9) (the main code is listed in the first part of the
Supporting Information). Aspen Plus (V9.0) was used to
simulate the distillation process, and Python was used to call
the Aspen Plus (V9.0) interface to implement data input,
operation, extraction, and other operations. Data processing
and process optimization using different algorithms were
carried out in Python.
The workflow is as follows:
(1) Establishing a distillation process in Aspen Plus which

should be completed without errors on selected initial
parameters;

(2) Determining the decision variables and using the
“Design-spec/Vary” (DV) function of Aspen Plus to
satisfy the constraints by automatically adjusting specific

variables so that it can reduce the number of variables.
The rough search space can be determined by analyzing
the relationship between results and variables using the
“Sensitivity Analysis” (SA) function of Aspen Plus;

(3) Establishing evaluation function and fitness function. For
the distillation process, TAC is used as the objective
function which is composed of the total capital cost
(TCC) and total operating cost (TOC). The calculation
formula is shown as follows:

= +TAC TCC/payback period TOC (14)

= × × + ×

+ ×

D L A

A

TCC 17640 7296

7296

1.066 0.802
C
0.65

R
0.65 (15)

= × × × + × ×

×

Q C Q

C

TCC 8000 3600 8000 3600R R C

C (16)

where the payback period was equal to 3, D and L represent
the diameter and height of the distillation column, AC and AR
represent the heat transfer area of the condenser and reboiler,
and CC and CR represent the unit cost cooling water and steam,
respectively; all the above were referred from a book.35

The fitness function is described in Section 2.2;
(4) The SIM, GA, PSOA, and DHSA (GA, PSOA, and

DHSA are intelligent algorithms) were, respectively,
used to optimize different distillation process models.
Whether the number of optimization calculations
reaches the set value or the obtained optimal TAC is
steady is judged to stop the optimization. According to
the work of Wang et al.,36 PSOA’s population size was
equal to 20, the maximum iteration was equal to 20, the
inertia weight was equal to 1, and the individual and
global learning coefficients were equal to 2. GA’s
population size was equal to 20, the maximum iteration
was equal to 20, the DNA size was equal to 24, the
crossover rate was equal to 0.8, and the mutation rate

was equal to 0.005 according to Sulgan et al.37 The
initial parameters of the DHSA are shown in Table 1.

It should be noted that the main purpose of this work was to
propose a more efficient algorithm; therefore, the four reported
distillation process models were adopted and used the same
process conditions and design regulations. To compare the
optimization results of different algorithms more convincingly,
each algorithm was optimized 10 times and the best one was
selected (all results are shown in the Supporting Information).
The coefficient of variation (CV) was used to evaluate the
stability of the optimization algorithm, which is the ratio of the
standard deviation to the average value. The size of data

Figure 5. Distillation process optimization by using Python and
Aspen Plus.

Table 1. Initial Parameters of the DHSA

parameter value

HMS 20
Tmax 200
HMCRmin 0.5
HMCRmax 0.95
PARmin 0.5
PARmax 0.95
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dispersion can be evaluated while eliminating the impact of the
original data scale by CV.

4. RESULTS AND DISCUSSION
In this paper, representative process flows including two-
column, three-column, reactive distillation, and dividing-wall

extractive distillation were selected based on common
distillation process configurations. To ensure better reprodu-
cibility of the simulation results and facilitate comparison with
the literature, the composition, flow rate, temperature, and
other process parameters for each different process flow were
kept consistent with the reference literature.
4.1. Case 1: Acetone/Methanol Separation (Two-

Column Model). Methanol (MeOH) and acetone (AC)
will form an azeotropic system. Luyben et al.38 have developed
a steady-state flowsheet for separating the acetone/methanol
mixture using the UNIQUAC thermodynamic method. As

shown in Figure 6, this flowsheet includes a lower-pressure
column (T1, 0.1 MPa) and a higher-pressure column (T2, 1
MPa). Feed composition and design regulations are shown in
Table 2.
The DV was used to guarantee product specifications by

changing the product flow rate at the bottom of T1 and T2;
then, the decision variables of the process were the total stage
of T1 (NT1), the feed stage (NF1), the recycle stream stage
(NREC) of T1, the reflux ratio of T1 (R1), the total stage (NT2)
of T2, the feed stage of T2 (NF2), and the reflux ratio of T2
(R2), and in the DHSA, the ratio of NF1 and NREC to NT1 and
the ratio of NF2 to NT2 were the decision variables. All design
variables are marked in Figure 6. Table 3 shows the range of
design variables by using the SA.
The optimization results are shown in Table 3. The optimal

TAC obtained by DHSA is 5,590,265 $/y, which is 0.5, 0.9,
and 0.6% lower than that of SIM, GA, and PSOA, respectively.
In terms of calculation times, DHSA calculated 220 times, and
GA and PSOA reached the calculation termination conditions
by using 340 and 320 times, respectively. Figure 7a shows the
TOC and TCC in different algorithms; it appears that the
TOC and TCC did not undergo significant changes, while
TOC maintains a relatively high proportion in the TAC. Figure
7b shows 10 optimized results; the optimal TAC is 5,601,787
$/y on average, and the CV is 0.17%. Figure 7c shows the
optimization process corresponding to the optimal solution
obtained by DHSA in Table 3. The optimal TAC decreases
continuously as the calculation proceeds until it reaches the
maximum number of calculations.
4.2. Case 2: Silicon Tetrachloride/trichlorosilane/

dichlorosilane Separation (Three-Column Model). Tri-
chlorosilane (TCS) purification from the silicon tetrachloride
(STC)-TCS-dichlorosilane (DCS) system is an important part
of the polysilicon manufacturing process. The TCS distillation
steady-state process was simulated using the NRTL thermody-
namic method according to Yin et al.,39 including light-
removing column T1, heavy-removing column T2, and
product-column T3 (Figure 8). Feed composition and design
regulations are shown in Table 4.
Since the product purity is specified, it is worth fixing the

product flow rate of T1, T2, and T3 to ensure the recovery rate
for less blindness optimization.39 The DV was used to
guarantee product specifications by changing the reflux ratios
of T1, T2, and T3. Then, the same decision variables were
determined as per a referenced work: the total stage of T1, T2,
and T3 (NT1, NT2, and NT3), the feed stage (NF1, NF2, and
NF3), and the recycle stream stage (NREC). The ratio of NF1
and NREC to NT1, the ratio of NF2 to NT2, and the ratio of NF3

Figure 6. Flow sheet and design variables of case 1.

Table 2. Feed Composition and Design Regulations of Case
1

item value

feed flow rate (kmol/h) 540
mole fraction of MeOH 0.5
mole fraction of AC 0.5

Design Regulations (mol %)
MeOH 99.6
AC 99.4

Table 3. Variable Range and Optimization Results of Case 1

item range SIM GA PSOA DHSA

NT1 [20, 70] 55 69 54 51
NT2 [20, 70] 61 55 67 58
NF1 [2, NT1] 35 48 36 34(0.661)b

NREC [2, NT1] 44 61 47 38(0.750)b

NF2 [2, NT2] 36 33 37 39(0.673)b

R1 [1, 5] 1.96 1.92 1.85 1.97
R2 [1, 5] 3.055569 3.10 2.94 3.00
TAC ($/y) 5,619,943 5,643,184 5,622,595 5,590,265
NACa 700 340 320 220

aNumber of algorithm calculations. bThe result is a ratio converted to an integer.
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to NT3 were decision variables in DHSA. All design variables
are marked in Figure 8. Table 5 shows the range of design
variables by using SA.
The optimization results are shown in Table 5. The optimal

TAC obtained by the DHSA is 2,764,088 $/y, which is 4.2, 3.0,
and 1.3% lower than that of the SIM, GA, and POSA
respectively. In terms of calculation times, the DHSA reaches
the max calculation times, and GA and PSOA stop
optimization in advance by 380 and 400. As shown in Figure
9a, the TOC is significantly larger than TCC and the reduction
in TAC mainly stems from the decrease in TOC. However, it
is important to note that DHSA achieves the lowest TAC, but

Figure 7. Results of optimization of case 1. TOC and TCC in different algorithms (a); 10 optimization results (b); optimization process (c).

Figure 8. Flow sheet and design variables of case 2.

Table 4. Feed Composition and Design Regulations of Case
2

item value

feed flow rate (kg/h) 40,000
mass fraction of STC 0.04
mass fraction of TCS 0.92
mass fraction of DCS 0.02

Design Regulations (wt %)
STC 99.9
TCS 99.99
DCS 99.8

Table 5. Variable Range and Optimization Results of Case 2

item range SIM GA PSOA DHSA

NT1 [30, 80] 58 56 55 53
NT2 [30, 80] 48 60 58 64
NT3 [30, 80] 61 58 60 62
NREC [2, NT1] 16 15 12 11(0.211)
NF1 [2, NT1] 25 27 25 28(0.525)
NF2 [2, NT2] 32 43 43 44(0.694)
NF3 [2, NT3] 12 11 10 11(0.182)
TAC ($/y) 2,886,623 2,850,984 2,799,495 2,764,088
NAC 700 380 400 220
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it is associated with a certain degree of increase in TCC. As
shown in Figure 9b, the optimal TAC obtained by repeating
the DHSA 10 times is 2,770,241 $/y on average, and the CV is
0.19%, close to case 1. Figure 9c shows the optimization
process corresponding to the optimal solution obtained by
DHSA in Table 5. The optimal TAC decreases continuously as
the calculation proceeds until it reaches the maximum number
of calculations.

4.3. Case 3: Methyl Acetate Separation (Reactive
Distillation Model). Separation of methyl acetate (MeAc) is
a typical reactive distillation; the esterification of acetic acid
(HAc) with methanol (MeOH) forms MeAc

+ +HAc MeOH MeAc H O2 (17)

with reference to the work of Huang et al.,40 the process was
established as Figure 10 using the UNIQUAC thermodynamic
method. The net reaction rate is expressed by the
pseudohomogeneous activity-kinetic model as follows

= M k kRate ( )f HAc MeOH b MeAc H O2 (18)

= ×k RT2.914 10 exp( 49.19/ )f
4 (19)

= ×k RT1.348 10 exp( 69.23/ )f
6 (20)

Feed composition and design regulations are shown in Table
6.
The DV was used to guarantee product specifications by

changing the reflux ratio and extraction of the column top.
Then, the decision variables were determined as follows: the
total stage (NT), the feed stage of MeOH and HAc (NMeOH
and NHac, respectively), the start and end stage of the reaction
section (NR1 and NR2, respectively), and the liquid holdup
(M). The ratios of NMeOH, NHAc, NR1, and NR2 to NT were
decision variables in the DHSA. All design variables are
marked in Figure 10. Table 7 shows the range of design
variables by using SA.
The optimization results are shown in Table 7. The optimal

TAC obtained by the DHSA is 199,559 $/y, which is 13.1, 7.6,
and 5.8% lower than that of the SIM, GA, and POSA
respectively. In terms of calculation times, the DHSA stops
optimization in advance and less than other algorithms
significantly. From Figure 11a, the proportions of the TOC
and TCC are similar, and the reduction in the TAC primarily
stems from the decrease in the TCC. As shown in Figure 11b,

Figure 9. Results of optimization of case 2 TOC and TCC in different algorithms (a); 10 optimization results (b); optimization process (c).

Figure 10. Flow sheet and design variables of case 3.

Table 6. Feed Composition and Design Regulations of Case
3

item value

feed flow rate (kmol/h) 100
mole fraction of HAc 0.5
mole fraction of MeOH 0.5

Design Regulations (mol %)
MeAc 98.0
H2O 98.0

Table 7. Variable Range and Optimization Results of Case 3

item range SIM GA PSOA DHSA

NT [20, 70] 39 34 30 26
NMeOH [2, NT] 28 18 16 15(0.577)
NHAc [2, NT] 7 8 5 6(0.231)
NR1 [2, NT] 3 11 4 2(0.077)
NR2 [2, NT] 36 30 21 19(0.731)
M [0.05, 0.20] 0.18 0.123 0.096 0.187
TAC ($/y) 229,664 216,082 211,828 199,559
NAC 600 420 420 180
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the optimal TAC obtained by repeating the DHSA 10 times is
200,914 $/y on average, and the CV is 1.25%. Figure 11c

shows the optimization process corresponding to the optimal
solution obtained by DHSA in Table 7. During the
optimization process, the optimal value and average value of
the HM keep decreasing. When the number of calculations
reaches 180, the optimization stops.
4.4. Case 4: Acetonitrile/N-Propanol Separation

(Dividing-Wall Extractive Distillation Model). Acetonitrile
(MeCN)/N-propanol (N-Pro) is an azeotropic system. Tian41

has designed a dividing-wall extractive distillation process by
using N-methyl pyrrolidone (NMP) as an extractant and
employing the Wilson-RK thermodynamic method. There are
two columns shown in Figure 12; one is the main column (T1)
and the other is the auxiliary column (T2). Feed composition
and design regulations are shown in Table 8.
The DV was used to guarantee product specifications by

changing the reflux ratios of T1 and extraction of T2. To meet
the NMP purity requirement, Python was used to judge
whether the purity meets the requirement for each calculation,
and if not, the calculation was repeated. Therefore, the design
variables included the total stage of T1 and T2 (NT and NT2,
respectively), the feed stage and recycle stream stage (NF and
Ns, respectively), the side take-off stage (NO), and the flow rate
of side take-off (V). The ratios of NT2, NF, Ns, NO, to NT were
design variables in the DHSA. All design variables are marked
in Figure 12. Table 8 shows the range of design variables using
the SA.
The optimization results are shown in Table 9. The optimal

TAC obtained by DHSA is 807,072 $/y, which is 13.0, 1.3, and
4.1% lower than that of the SIM, GA, and POSA, respectively.
In terms of calculation times, although the GA, PSOA, and
DHSA both stop optimization in advance, the DHSA is still
less than the others. From Figure 13a, it can be observed that
the TOC takes a dominant position and influences the
decrease in the TAC, despite a certain degree of increase in the
TCC. As shown in Figure 13b, the optimal TAC obtained by

Figure 11. Results of optimization of case 3 TOC and TCC in different algorithms (a); 10 optimization results (b); optimization process (c).

Figure 12. Flow sheet and design variables of case 4.

Table 8. Feed Composition and Design Regulations of Case
4

item value

feed flow rate (kg/h) 4000
mass fraction of MECN 0.5
mass fraction of N-pro 0.5

Design Regulations (wt %)
MECN 99.6
N-pro 99.6
NMP 99.97

Table 9. Variable Range and Optimization Results of Case 4

item range SIM GA PSOA DHSA

NT [15, 55] 37 47 52 48
NF [2, NT] 17 27 31 28(0.602)
NS [2, NT] 4 4 5 4(0.082)
NT2 [2, NT] 12 8 18 11(0.229)
NO [NT2, NT] 31 39 43 41(0.868)
V (kg/h) [1,800, 3000] 2600 2424 2571 2403
TAC ($/y) 927,343 818,108 841,308 807,072
NAC 700 340 320 183
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repeating the DHSA 10 times is 808,336 $/y on average, and
the CV is 0.19%. Figure 13c shows the optimization process
corresponding to the optimal solution obtained by DHSA in
Table 9. During the optimization process, the optimal value
and average value of the HM keep decreasing until the number
of calculations reaches 183.
4.5. Discussion. The calculation times and optimal TAC of

different algorithms in four distillation optimizations are shown
in Figure 14. In case 1, the optimal TACs are close due to the
simple characteristics of the two-column model, but calculation
times are significantly reduced by using intelligent optimization
algorithms, especially the DHSA. In addition, the study of one
model has shown that the optimization performance of the
DHSA is not as good as the SIM (case 5 in the Supporting
Information). Therefore, it is not recommended to use the
DHSA for relatively simple processes but rather to obtain the
optimal results within an acceptable timeframe through
exhaustive search. In other cases, the calculation times and

optimal TAC of intelligent optimization algorithms are better
than those of the SIM, indicating the advantages of intelligent
optimization algorithms in distillation process optimization
tasks. Furthermore, among three intelligent optimization
algorithms, the DHSA performs the best in terms of optimal
TAC and calculation times.
From Figures 7a, 9a, 11a, and 13a, it can be observed that

the proportions of TOC and TCC are not consistent. The
variation in impact on results can be attributed to the varying
degrees of influence exhibited by different variables. As
depicted in Figures S2−S5, variables with lower CV exert a
more pronounced effect on the results. There are instances
where a simultaneous reduction of both factors is possible,
while in other cases, achieving optimal results necessitates
sacrificing one factor with minimal influence. The conflicting
relationship between them makes the distillation process
optimization extremely challenging. As the complexity of the
process increases, this phenomenon intensifies. In the above

Figure 13. Results of optimization of case 4 TOC and TCC in different algorithms (a); 10 optimization results (b); optimization process (c).

Figure 14. Calculation times and optimal TAC of different algorithms. (a) Case 1, (b) case 2, (c) case 3, and (d) case 4.
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example, the DHSA can obtain satisfactory results, indicating
its wide applicability without being affected by variables. Ten
parallel optimizations were used to evaluate the stability of the
algorithm. Almost all optimal TACs are within a standard
deviation as shown in the orange region of Figures 7b, 9b, 11b,
and 13b, which indicates that the DHSA can obtain the stable
optimal solution all the time and the solution is the global
optimal solution in the large probability. The CV of the DHSA
in four cases is at a low level and similar (0.17, 0.19, 1.25, and
0.19%, respectively) which not only implies that the results are
stable in the same model but also indicates that the error in
DHSA is not affected by different models. Tables S1, S2, S4,
S5, S7, S8, S10, and S11 show the CV of GA and PSOA in
different models, in which the CV is about 10 times that of the
DHSA. Therefore, the DHSA has outstanding stability which
can search the global optimal TAC in most cases without being
affected by the initial population (HM) and the complexity of
the model. Figures 7c, 9c, 11c, and 13c show the optimization
process of the DHSA in different cases. Both of them exhibit a
similar trend, which involves a decrease in the average value
(represented by the red line) during the initial stages of
optimization, while the optimal value remains unchanged. This
is attributed to the strong global search capability brought by
the smaller HMCR. As the optimization progresses, the values
of HMCR and PAR gradually increase, indicating a shift
toward more focused exploration in the vicinity of the optimal
value. Consequently, the optimal value starts to decrease
significantly (represented by the black line). The optimization
process demonstrates the feasibility of dynamically changing
HMCR and PAR values in distillation optimization.

5. CONCLUSIONS
A DHSA based on an HSA was first proposed and applied in
distillation process optimization in this paper. The improve-
ments of the DHSA include the self-adaptive adjustment of the
HMCR, PAR, and BW, the roulette wheel selection strategy
based on a mapping between the TAC and fitness, and the
replacement of the feed stage and the stage of the section in
the distillation column by the ratio to the total stage.
For the practical issues of the distillation process, the DHSA,

SIM, GA, and PSOA were applied to optimize four cases: the
two-column model, three-column model, reactive distillation
column model, and dividing-wall extractive distillation column
model. The results demonstrate that the DHSA is capable of
achieving superior results in a shorter time frame. Furthermore,
as the complexity of the model increases, this advantage
becomes even more pronounced. Moreover, the lower
coefficient variation in 10 parallel optimization shows that
the DHSA has excellent stability in optimizing the distillation
process. Therefore, the development of the DHSA is successful
for its advantages of high efficiency and strong stability.
This work enriches the application scope of the HSA

through its improvement and serves as a practical auxiliary tool
for distillation optimization. It can enhance the efficiency of
distillation design and result in more competitive design
outcomes. Furthermore, it can support future research on the
integration of AI in automated distillation design.
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