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We propose a Bayesian approach to multiple testing in disease mapping. This study was motivated by
a real example regarding the mortality rate for lung cancer, males, in the Tuscan region (Italy). The
data are relative to the period 1995-1999 for 287 municipalities. We develop a tri-level hierarchical
Bayesian model to estimate for each area the posterior classification probability that is the posterior
probability that the municipality belongs to the set of non-divergent areas. We show also the con-
nections of our model with the false discovery rate approach. Posterior classification probabilities are
used to explore areas at divergent risk from the reference while controlling for multiple testing. We
consider both the Poisson-Gamma and the Besag, York and Molli¢ model to account for extra
Poisson variability in our Bayesian formulation. Posterior inference on classification probabilities is
highly dependent on the choice of the prior. We perform a sensitivity analysis and suggest how to rely
on subject-specific information to derive informative a priori distributions. Hierarchical Bayesian
models provide a sensible way to model classification probabilities in the context of disease mapping.
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1 Introduction

Generally speaking, epidemiological surveillance consists of continuously gathering and analyzing
data for changes in disease occurrence (Last, 2001). Surveillance may be based on time or space or a
combination of time-space, with an active or passive approach. Disease mapping, i.e. the study of
the variability of disease occurrence on space, is a cornerstone of epidemiologic surveillance.
Currently, the availability of data on a small scale makes it popular to scan for abnormal disease
rates potentially associated with widespread environmental exposures or to search for a localized
cluster of cases in proximity of putative sources of pollution (Elliott et al., 2000). In disease map-
ping, a moderate to large number of area-level relative risks are considered. However, the large
heterogeneity of population density among small areas leads to smaller p-values paradoxically
associated with relative risk estimates closer to the null. Such inconsistency justified the develop-
ment of shrinkage estimators (Clayton and Kaldor, 1987). Shrinkage estimators, as empirical Bayes
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or full Bayes, are now accepted as standard tools in spatial epidemiology, but they leave unresolved
the multiple comparison problem.

Control of Family Wise Error Rate (FWER) that is a global control of type I error is generally
pursued in the Surveillance framework (Frisén, 2003; Kulldorff, 2001). In his article of 2007, Rolka
discussed the cost in sensitivity of adopting a FWER control procedure and he mentioned control of
the False Discovery Rate (FDR). FDR is the rate of false positives among all rejected hypotheses
and was introduced with examples in the context of clinical trials by Benjamini and Hochberg
(1995). FDR has a Bayesian interpretation and it is connected to the g-value, a Bayesian alternative
to the p-value (Storey, 2003).

In the disease mapping literature, posterior probability for each area having a risk higher than a
predefined threshold after having specified an appropriate hierarchical Bayesian model, was sug-
gested as a way to screen areas at higher/lower risk (Bernardinelli and Montomoli, 1992;
Richardson et al., 2004). This is not sufficient to assure that the posterior inference adjusts for
multiple testing. To accomplish this task, the probability model needs to include a null prior and
related hyperparameters that define the prior probability mass for non-divergent areas (Scott and
Berger, 2006). In the following article, we consider a two-sided alternative hypothesis and use the
term divergent to denote areas at risk different from the null. This meaning of the word divergent
was used by Olhssen et al. (2007).

1.1  Aim of the study

This article aims to develop a hierarchical Bayesian modeling approach to multiple testing in the
context of disease mapping. The idea to use an FDR approach instead of an FWER control is based
upon the fact that the erroneous rejection of the null hypothesis for some municipalities does not
challenge the result of the whole descriptive analysis whose aim is to assess heterogeneity of risk in
the entire study region. Therefore, the FWER control is too strict for the application’s needs
(Benjamini, 2009).

In the following analysis a tri-level hierarchical Bayesian model is proposed to estimate for each
area the probability of belonging to the null, to be used to explore areas at divergent risk (higher or
lower then the reference disease rate) while controlling for multiple testing. We took advantage of
real data regarding the mortality rate due to lung cancer in males at the municipal level in the
Tuscan region (Italy) during the period 1995-1999.

In Section 2, we describe the mortality data. In Section 3, we briefly introduce the problem of
multiple comparisons; we then describe the proposed hierarchical Bayesian models for disease
mapping and how to estimate posterior classification probabilities. The results are presented in
Section 4. The conclusion and discussion follow in Section 5.

2 Motivating example

Lung cancer death certificates, for the period 1995-1999, were considered for male residents in the
287 municipalities of the Tuscan region (Italy). Data were made available by the Regional Mortality
Register. The expected number of cases for each municipality was computed under indirect stan-
dardization applying a set of age-specific (18 age classes, 0—4,..., 85 or more) reference rates
(Tuscany, 1971-1999) to the population of each area.

The task is to identify municipalities with a divergent risk from the reference (two-sided alter-
native). In fact for each i-th area out of 287, the standardized mortality ratio (observed/expected
number of cases) is an estimate of the relative risk (RR), i.e. the disease risk in each area compared
with the adopted standard. We have an implicit identical null hypothesis Hy: RR; =1 for each area,
because of the indirect standardization (Breslow and Day, 1987).
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3 Statistical modeling

3.1 Multiple comparisons: general aspects

Let m be the number of hypothesis tests. The commonly controlled quantity to account for multiple
testing is the FWER, and the most common method is the Bonferroni approach that is if we fix the
type I error probability to o and m hypothesis tests are performed, then each test is controlled at a
level of a/m (Bonferroni, 1936). This guarantees that the probability of at least one false positive is
at max equal to a.

As the m null hypotheses have different implications, it can be argued that the FWER approach is
too strict. Benjamini and Hochberg (1995) proposed a way to control the proportion of false
rejections among the total number of rejections and introduced the FDR.

In particular, let I; define an indicator for rejecting Hy for the i-th area, and R = I, as the total
number of rejections. Define also r;€{0,1} the indicator of the unknown true status, i.e. the indicator
that the i-th area is truly not divergent from the reference.

The False Discovery Proportion (FDP) > (r; x I;)/R is the fraction of false rejections over the
total number of rejections (Genovese and Wasserman, 2006). Benjamini and Hochberg (1995)
consider controlling the expected value of FDP, taking the expectation over repeated experiments.
Let V' define the number of false rejections over m hypothesis tests. The FDR is the expected value
E(V/R), which can be factored as E[(V/R)|R>0]Prob(R>0) (Benjamini and Hochberg, 1995).
Storey (2003) concentrated on E[(}V/R)|R>0], a piece of the FDR, which is known as the positive
FDR (pFDR).

The pFDR is defined only when at least one rejection occurred (one positive result). We cannot
control pFDR because if all null hypotheses are true, any rejection is false (Storey, 2003). The
pFDR can be interpreted as a posterior Bayesian probability and can be used to define the g-value,
Prob(Hy | Y> Yq1,), Y being a test statistic and Y, the observed value, for a generic i-th test. The
g-value is the minimum pFDR that can occur rejecting the null hypothesis on the basis of the
observed or more extreme values of the test statistic. The g-value is a measure that takes into
account multiple testing and represents how far we are from the null hypothesis on the basis of
observed data. The “frequentist” estimate of the g-value is reported in Storey (2003). It is based on
the ordered p-values and it uses information on the proportion of true null hypotheses. As a referee
pointed out, the frequentist estimate of the g-value reduces to the adaptive control of the Benja-
mini—-Hochberg procedure (Benjamini and Hochberg, 2000; Benjamini et al., 2006).

Efron (2005, 2007, http://www-stat.stanford.edu/~ckirby/brad/papers/2005LocalFDR.pdf) fo-
cused on Prob(Hy | Y=7Y; Y, &) =Prob(r;=1| Y=1Y; Y, &) the local FDR that is the posterior
probability of the null hypothesis conditional of observed vector Y and hyperparameter vector &.
Dealing with the local FDR differs from thresholding g-values. Generally speaking, the g-value
averages over the values of the test statistic equal to or greater than Y,. As we apply tail probabilities
the g-value will be less conservative than local FDR.

Efron’s approach is empirical Bayes and the local FDR is calculated at some empirical value of .
A full Bayes approach would provide Prob(Hy | Y= Y; Y) =Prob(r;=1| Y = Y;; Y), the marginal
posterior probabilities, having defined a density for & (Miiller ez al., 2007).

In Section 3.2, we will briefly describe the bi-level hierarchical Bayesian models commonly used in
the context of disease mapping to estimate area relative risks. In Section 3.3, we will extend these
models to a tri-level Bayesian formulation to obtain fully Bayesian estimates of Prob(r;=1|
=Y; Y), which we call posterior classification probabilities.

The reader should note that we use the term ““classification probabilities” to underline the con-
nection to the classification theory and clearly distinguish it from Prob(6;> 1Y), which are often
denoted as posterior probabilities. Barbieri and Berger (2004), referring to the problem of covariate
selection, called posterior inclusion probability Prob(r;=0 | Y=Y; Y)=1 - Prob(r;=1 | Y

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 52 (2010) 6 787

3.2 Hierarchical models for disease mapping

Disease mapping consists of a cartographical representation of the spatial distribution of a measure
of disease risk. Disease atlases in the recent years have been produced at fine spatial resolution. Risk
estimates from small areas suffer from substantial extra variability and several statistical approaches
have been proposed to overcome such difficulties and “‘stabilize” risk estimates. All these ap-
proaches rely on shrinkage estimators and among these Bayesian estimators appear to be the most
appealing (Lawson et al., 1999; Elliott et al., 2000; SMMR, 2005). In this section, we describe the
two most common Bayesian hierarchical models used to smooth risk estimates in disease mapping:
the Poisson-Gamma model (Clayton and Kaldor, 1987), and the Besag-York-Mollié (here after
known as BYM) model (Besag et al., 1991). These models will be used within our tri-level hier-
archical Bayesian model in the following section.

Let area counts of disease Y; (i=1, ..., 287) follow a Poisson distribution with mean E; x 0,
where E; is the expected number of cases under indirect standardization and 0, is the relative risk.
The maximum likelihood estimator of 0, is called the standardized mortality ratio
(SMRZQ,‘ = Y,/E,)

The precision of the SMR is proportional to E; since variance (SMR) = 1/E;. For each area out of
m, the p-value under the null hypothesis Hy:0 = 1, Prob(Y > Y,ps| Hp), can be easily obtained from
the exact Poisson distribution.

Bayesian inference requires the specification of appropriate prior distributions on model para-
meters.

Clayton and Kaldor (1987), assumed a Gamma(k,v) prior distribution for 6,. The hyperpara-
meters k and v are assumed to be exponentially distributed. In this model, Poisson random
variability is filtered out and relative risk estimates are shrunken toward the general mean.

Besag et al. (1991) specified a random effect log linear model for the relative risk log(0,) = u;+v,.
The heterogeneity random term wu; represents an unstructured spatial variability component as-
sumed a priori distributed as Normal (0, A,) where A, is the precision parameter modeled as
Gamma.

The clustering term v; represents the structured spatial variability component assumed to follow a
priori an intrinsic conditional autoregressive (ICAR) model. In other words, denoting S; as the
set of the areas adjacent to the i-th area, v;vjcs; is assumed distributed as Normal(v;, A, n;)
where v; is the mean of the terms of areas adjacent to the i-th one (Besag and Kooperberg, 1995) and
A, n; is the precision which is dependent on n;, the number of areas in S;. Through these two random
terms the BYM model shrinks the relative risk estimates both toward the local and the general
mean.

Apart from the specification of the hyperparameters, both specifications can be viewed as
bi-level hierarchical models with the likelihood specified at the first level (Poisson likelihood)
and the a priori distributions for the parameters of the relative risk function specified at the
second.

3.3 Hierarchical Bayesian mixture model

If the goal is not estimation, but detection of areas diverging from the reference, we need to
complicate the above models by introducing a third level into the hierarchy. This is equivalent to
assuming a mixture model for the unknown relative risks ;.

The first level of the mixture model is again the Poisson likelihood:

Y; ~ Poisson(E;9;)
The mixture is introduced at the second level:

log(0;) = ri po;+(1 — ;) py;
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where the logarithm of the relative risk 0, is modeled as the mixture of two components: L, the
value of the log relative risk under the null hypothesis, and p;; the corresponding value under the
alternative. The r; indicator denotes the group membership.

Under the null we assume that all the probability mass is concentrated at one point, i.e. py; = 0,
leaving only a Poisson random variability modeled at the first level. Under the alternative extra
Poisson variability, which reflects the heterogeneity of relative risk among areas, is modeled ac-
cording to the two possibilities described above. The first specification is the Poisson-Gamma one,
exp(uy;) ~ Gamma(k,v), the second the BYM model, p;; = u;+v;. Both the Poisson-Gamma and the
convolution (BYM) models require appropriate prior distributions for the hyperparameters, as
discussed in the previous section.

The third level of the hierarchy consists in the definition of the prior distribution for the indicator
of the unknown true status, r; that is assumed to be Bernoulli distributed with parameter mt;, which,
in turn, is modeled as Beta(c,d) distribution.

The quantity of interest for each i-th area is some appropriate summary measure over the
posterior distribution of m; — i.e. the posterior classification probability to belong to the set of the
null hypothesis (Scott and Berger, 2006).

The a priori distribution for 7, is assumed to be an exchangeable informative Beta(9.7,0.3) with
percentiles for w; (10% : 0.91; 25% : 0.97; 50% : 0.99) and an expected value (0.97) that are sensible
for a prior belief of a small percentage of divergent areas (around 3%).

3.4 Sensitivity analysis on hyperprior distribution

Posterior inference on the classification probabilities may be highly dependent on the choice of the
prior. We performed a sensitivity analysis changing the parameters of the Beta(c,d) distribution. We
set them to give an expected value of 0.50 (¢ = 1,d=1) or 0.90 (¢ =9, d = 1) for the prior belief on
the null hypothesis, leaving a reasonable amount of variation (Scott and Berger, 2006, p. 2147).

All the analyses were performed using the WinBugsl.4 software (Lunn ez al., 2000). For each
model, we ran two independent chains and the convergence of the algorithm was performed fol-
lowing Gelman and Rubin (1992). We discarded the first 100 000 iterations (burn-in) and stored for
estimation 50000 iterations.

4 Results

4.1 Thresholding g-values

The map of SMR for lung cancer among males (Tuscany, Italy) in the period 1995-1999 is shown in
Fig. 1(A). The map suggests the presence of high/low risk areas (SMRs range between 0 and 2.5).
The reader must remember that we are testing two-sided alternative hypothesis.

In Fig. 1(B), we report the funnel plot (Egger et al., 2001), which is a graph of the effect measure
(SMR) against precision (E; the inverse of SMR variance). This plot is based on the fact that the
precision in estimating the risk will increase as the dimension (population) of the area increases.
SMR from small areas will spread widely and the pattern will be narrow among larger areas. Under
the null, the plot will resemble a symmetrical funnel centered at the reference line at an ordinate
value of one. Intervals around the reference line are plotted as dashed lines corresponding to 95%
percentiles of the null distribution and intervals adjusted for multiple comparison, using g-values
thresholded at 5%, are plotted as solid lines. Divergent areas should lie outside the funnel lines
(Jones et al., 2008).

Figure 2(B) shows the empirical distribution of two-sided p-values for each i-th area obtained
from the exact Poisson distribution under the null Hy: RR;=1. If no areas were to diverge, the
p-value distribution would be uniform. There is an evidence of a departure from the null hypothesis.
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Figure 1 (A) Spatial distribution of SMRs. (B) Funnel plot of SMRs with thresholding lines

(dashed: p-value<0.05 ; solid: g-value<0.05) (see text). Lung cancer mortality, males. Tus-
cany, 1995-1999.
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Figure 2 (A) Histogram of empirical p-values. (B) Quantile—Quantile plot of complementary
log empirical p-values versus theoretical exponential (1). Lung cancer mortality, males. Tus-
cany, 1995-1999.

Figure 2(B) shows the quantile—quantile plot of the complementary log transformation of empirical
p-values against the theoretical exponential(1) distribution under the null. The plot highlights some
outlying observations.

Over the 287 municipalities 32 had p-values<0.05 (see the dashed funnel line in Fig. 1(B)).
Applying Bonferroni’s correction (with probability of type I error set at 5%) only one area is
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selected as divergent from the null value of one. Using Storey’s ¢-value 11, 6, and 4 areas are
selected thresholding at 20%; 10 and 5% respectively (see the solid funnel line in Fig. 1(B)). Storey’s
estimator of the proportion of true null gives &7 =97%.

4.2  Tri-level hierarchical Bayesian models

Figure 3 reports the maps of estimated Relative Risks by the proposed tri-level Poisson-Gamma
and BYM models. The shrinking effect of the Bayesian estimators is evident when comparing it to
the SMR map (Fig. 1(A)). BYM estimates are spatially smoothed and since high risk arcas are
clustered in the north-west part of the region, while the low risk areas are located in the south-east,
the degree of shrinkage toward the general mean is less prominent. Small areas with few expected
counts and extreme SMR are regressed to the mean. Since we used indirect standardization with
Tuscan reference rates, the observed mean (0.97) was close to the null RR of one. Generally
speaking, lung cancer risk among males showed a very strong spatial structure (see Biggeri et al.,
2009).

Figure 4 shows the posterior inclusion probabilities (i.e. the complement to the posterior clas-
sification probabilities) from the proposed tri-level hierarchical Bayesian models. Posterior inclu-
sion probabilities adjust for multiple comparisons. Thresholding at 90%, seven areas under the
Poisson-Gamma model and nineteen areas under the BYM model were detected as divergent.

4.3 Model-based inclusion probabilities versus g-values

We compared the results from the tri-level hierarchical Bayesian models with those obtained
thresholding ¢-values. In Table 1, we classified areas as divergent by cross-tabulating them with
posterior classification probabilities under the tri-level hierarchical Bayesian models and by g-value.
The cut-off level was set at 20%. The proportion of specific agreement p, (Fleiss et al., 2003) was
86% between tri-level Poisson-Gamma and ¢-value while only 43% between tri-level BYM and
g-value. Disagreement between tri-level Poisson-Gamma and ¢-value was small and symmetrical.
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Figure 3 Smoothed relative risk estimates from the tri-level Poisson-Gamma and tri-level
BYM models (see text). Lung cancer mortality, males. Tuscany, 1995-1999.

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 52 (2010) 6 791

L
PR
SR

TS
S g}.‘.ﬁ%&};x“,

. ‘E"»‘é?&‘ . ‘;;m‘.

S OFd T8
TFEt ’b& -
ST

° o
" g (&2
4
/> 090 N
M 0.80 - 0.90 ] 336900 %0
@070-080 o Q W 0.80 - 0.
©0.50 - 0.70 . @070-080 g Q
0020050 00.50 - 0.70 .
[0<0.20 [10.20-0.50
[0<0.20

Figure 4 Posterior inclusion probabilities Prob(r; =0 | Y = Y;; Y) under the tri-level Poisson-
Gamma and the tri-level BYM models (see text). Lung cancer mortality, males. Tuscany,
1995-1999.

Table 1 Number of municipalities identified at altered risk by the posterior classification probabilities
under the tri-level Poisson-Gamma and convolution BYM models versus g-value. The cut-off level is set
to 20%. Lung cancer mortality, males. Tuscany, 1995-1999.

Poisson-Gamma g-Value BYM posterior g-Value
posterior classification classification
probability probability
No Yes No Yes
(>0.20) (=<0.20) (>0.20) (=<0.20)
No (>0.20) 275 2 No (>0.20) 247 0
Yes (<0.20) 1 9 Yes (<0.20) 29 11

Instead, the spatially structured tri-level hierarchical Bayesian model “‘discovered” 29 divergent
areas that were not detected by the g-value. Figure 5 reports the quantile-quantile plots of ordered
g-values against ordered posterior classification probabilities. If the two criteria produce the same
ranking, the areas will lie on the bisector. Ordering on the tri-level Poisson-Gamma posterior
classification probabilities is slightly more conservative than using the g-value. The tri-level BYM
behaves very differently and the selected divergent areas are spatially contiguous (Fig. 4 on the
right).

4.4 Sensitivity analysis

Finally, we performed a sensitivity analysis changing the parameters of the Beta hyperprior dis-
tribution. First, we specified a Beta(1,1) for w, the probability of the null. This naif choice, centered
at 0.50, produced very unrealistic results. Indeed, as noted by Scott and Berger (2006), the
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Figure 5 Quantile-Quantile plot of g-values against posterior classification probabilities (left
PG: tri-level Poisson-Gamma model; right BYM: tri-level BYM model). Lung cancer mor-
tality, males. Tuscany, 1995-1999.

researcher often has strong information about © and the information is that =« is close to one. In our
analysis we specified a Beta distribution on m with mean value = 0.97. We alternatively specified a
Beta distribution in order to give an expected value of 0.90 for the prior belief on the null
hypothesis, leaving a reasonable amount of variation (first decile 0.77; first quartile 0.86; median
0.93; third quartile 0.97; last decile 0.99).

Figure 6 reports the results of the sensitivity analysis. On top, the quantile—quantile plot of
posterior classification probabilities under the Beta(9.7,0.3) hyperprior versus those obtained under
the uniform hyperprior and on the bottom versus those obtained under the more spread Beta(9,1)
hyperprior.

The uniform hyperprior is inappropriate, as expected. The choice of Beta(9.7,0.3) is robust to
moderate change in prior belief.

5 Conclusion and discussion

As of yet, no work has been done on FDR and disease mapping. Our work on this topic started in
2006 (Catelan et al. 2006) and was motivated by an environmental epidemiological investigation on
18 high-risk areas and more than 30 disease codes. It is not surprising that until now the problem of
multiple testing was not considered in disease mapping, because Bayesian approaches to smooth
relative risk estimates may be misinterpreted as a solution to the problem. Bayesian estimators are
superior to maximum likelihood ones when considering the whole set of estimates (earlier work was
empirical Bayesian, see Clayton and Kaldor, 1987; Efron and Morris, 1973). Other epidemiological
applications on long lists of relative risks appeared in Greenland and Robins (1991) and Carpenter
et al. (1997).

However, estimation is a different task from testing. Indeed the inferential goals may be different.
With regard to estimating relative risks, their distribution, their ranks, Sheen and Louis (1998)
showed that there is no one simple best procedure. Moreover, paraphrasing Miiller et al. (2007),
testing multiple hypotheses requires, first that the probability model include a positive prior
probability of the null for each observation, second that the model includes hyperparameters for the
null prior.
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Figure 6 Sensitivity Analysis. Quantile-Quantile plot of posterior classification probabilities
(left PG: tri-level Poisson-Gamma model; right BYM: tri-level BYM model) against posterior
classification probabilities obtained specifying a Beta(l,1) (upper) or a Beta(9,1) (lower)
hyperprior. Lung cancer mortality, males. Tuscany, 1995-1999.

A full Bayesian model that adjusts for multiple testing consists of a tri-level hierarchical Bayesian
model that allows one to estimate the posterior probability to belong to the set of the null or alternative
hypotheses. The advantage of using a model-based approach over a simpler frequentist one is twofold.
If the model is well specified, there is a gain in power. In our application, the tri-level spatially
structured hierarchical Bayesian model detected many more areas as divergent, leaving the impression
of a greater power for such specification. But the reader must remember that in the real application, we
have no way of telling if an area called divergent at a given threshold is in fact truly divergent. The
second advantage of the Bayesian approach is that it easily allows one to perform sensitivity analysis
on model assumptions (see for example Briggs et al., 2006) and, in the multiple testing framework, on
prior belief of the null (Westfall ef al., 1997). Bayesian modeling will also combine risk estimation and
multiple testing. Connection of posterior classification probabilities and p-values is discussed in the
Bayesian literature (Casella and Berger, 1987; Bayarri and Berger, 2000).

A related work to our hierarchical modeling is found in Jones et al. (2008) and Ohlssen et al. (2007).
Different from us, they considered one-sided tests to avoid confusion when flagging health-care
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providers as good or bad. Their approach is aimed to build prediction limits around the funnel plot
analogous to what is showed in Fig. 1(B). In Ohlssen et al. (2007), they developed a hierarchical
Bayesian model for the null hypothesis aiming to get cross-validation predictive p-values. Interest-
ingly, they distinguished between (i) estimating effects within a random effect model (ii) testing a
simple null model using p-values and (iii) estimating posterior probability of coming from the null
within a mixture model. This last point is what we addressed in the present article.

A further point regards the use of a transformation of observed/expected ratios (Grigg et al.,
2009). However, we developed a full probabilistic model that did not rely on asymptotics. Some of
these details can be found in a simulation study by Catelan and Biggeri (2010), where, in the usual
disease mapping framework and specifying a Poisson likelihood, the assumptions underlying the
Bayesian interpretation of the g-value were checked.

There is a strong sensitivity to hyperprior choice for . We rely on subject-specific information to
derive informative distributions for 7w, as shown in the sensitivity analysis. We conclude that the naif
choice of a uniform distribution for 7 is strongly expected to be in error (see Fig. 7).

Note that we adopted the strategy to let the data itself choose m, but we specified an appropriate
informative hyperprior. Storey (2003) and also Efron (2005) applied an empirical Bayesian ap-
proach to estimate n. Concerns were raised about such an approach in applications not related to
omics (Jones et al. 2008). These authors noted that the amount of information about 7 in the data
could be scant whenever the number of tests is not large enough (> one thousand). At least in the
disease-mapping context where the number of tests is between one hundred and one thousand, our
sensitivity analysis shows that eliciting appropriate informative hyperprior inference on 7 is im-
portant.

This point deserves further explanation. The Benjamini-Hochberg procedure is robust under a
variety of conditions. Storey’s g-value procedures have been shown to be anticonservative when the
number of tests is not high, there is lack of independence, and the proportion of true null ap-
proaches one (Benjamini et al., 2006; Dudoit et al., 2008). In our application both procedures gave
identical results (eleven areas thresholded at level 20%). When specifying a Beta(c,d) hyperprior
with expected value of 0.97 for the probability of the null, the tri-level Bayesian hierarchical
Poisson-Gamma model gave also almost equal results (ten areas threshold at level 20%). The
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Figure 7 Hyperpriors for n (long dashed: uniform; dashed: Beta 9,1 ; solid: Beta 9.7, 0.3).
Lung cancer mortality, males. Tuscany, 1995-1999.
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interpretation of such results is that the implied prior belief of the null in the frequentist procedure is
close to that modeled in the tri-level Bayesian hierarchical Poisson-Gamma model.

Bayesian approaches are based on model and prior assumptions. We applied two models
(Poisson-Gamma and BYM), with and without spatially structured random terms, which may help
the reader to appraise different data summaries with different etiological clues (see Elliott et al., 2000
and Lawson et al., 1999).

We show a Bayesian approach to multiple testing in the disease-mapping context. It cannot be
viewed as an antagonist to the classical Benjamini-Hochberg procedure or its extension. On the
contrary, given some prior information and assumptions, Bayesian analysis summarizes the em-
pirical information and uncertainty. If you believe in a spatially structured model, then you would
prefer the BYM assumptions. A discussion about how to run a simulation study for comparing
Bayesian models was in Lawson et al. (2000). This large simulation study documented the ro-
bustness of the Poisson-Gamma and BYM models. We provided examples in which the BYM
model may suffer from the same inaccuracies of other less flexible spatially structured models
(Biggeri et al., 2000; 2003). Further work is necessary to extend these results to inclusion prob-
abilities from the proposed tri-level models.

Dependency was modeled by specification of a CAR process in the alternative hypothesis by
specifying a BYM model. In our application, this led to identifying a larger number of divergent
areas. We should be prudent about interpreting this result. The BYM model may be closer to the
true data generating model than the alternative Poisson-Gamma model, but spatially structured
models may also be anticonservative even if the BYM has been proved to behave quite well in large
simulation studies (Lawson ef al., 2000). We do not want to stress this point, because the reader may
be led to be overconfident about a given model. We prefer to show the advantage of the Bayesian
approach in performing a sensitivity analysis on model assumptions and on prior belief of the null.
Future developments should address FDR-adjusted inference and decision analysis.

Inference on relative risks of selected areas after viewing the data is a natural complement to
investigations such as these discussed in our article. Benjamini and Yekutieli (2005) considered
simultaneous and selective inference. Yekutieli (2009) presents a Bayesian framework for providing
inference for selected parameters. Our model is an example of a random effect model, because the
relative risk for a given area is treated as a random quantity rather than fixed. The reason is that in
this particular application, area relative risk depends on the prevalence profile of risk factors and on
the composition of susceptible individuals of the area population. Prevalence and susceptibility do
vary and cannot be assumed as fixed because the population of a given area is a dynamic cohort. As
stated by Yekutieli (2009), under a random effect model, Bayesian inference is unaffected by
selection. However, simultaneous and selective inference in the disease-mapping context is an
interesting topic for future developments in our work.

“Finding posterior distributions of parameters is only part of the Bayesian solution. The
remainder involves decision analysis: ... (this) means considering the ramifications of various
decisions explicitly in terms of loss functions” (Berry and Hochberg, 1999). We did not pursue this
task in the present article (for a recent contribution see for example Guindani et al., 2009). Here, as
for the explorative purposes usually undertaken in disease mapping, we used posterior classification
probabilities without any explicit cut-off in the same spirit as Jones et al. (2008).

Hierarchical Bayesian models provide a sensible framework to model classification probabilities
in the context of disease mapping and broadly speaking, we recommend FDR-like procedures when
exploring divergent areas in disease mapping.
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