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ABSTRACT
Light limitation is a major driver of succession and an important determinant of the
performance of shade-intolerant tree seedlings. Shade intolerance may result from a
resource allocation strategy characterized by rapid growth and high metabolic costs,
which may make shade-intolerant species particularly sensitive to nutrient limitation
and pathogen pressure. In this study, we evaluated the degree to which nitrogen
availability and fungal pathogen pressure interact to influence plant performance across
different light environments. To test this, we manipulated nitrogen availability (high,
low) and access by foliar fungal pathogens (sprayed with fungicide, unsprayed) to
seedlings of the shade-intolerant tree, Liquidambar styraciflua, growing at low and high
light availability, from forest understory to adjacent old field. Foliar fungal damage
varied with light and nitrogen availability; in low light, increasing nitrogen availability
tripled foliar damage, suggesting that increased nutrient availability in low light makes
plants more susceptible to disease. Despite higher foliar damage under low light,
spraying fungicide to exclude pathogens promoted 14% greater plant height only under
high light conditions. Thus, although nitrogen availability and pathogen pressure each
influenced aspects of plant performance, these effects were context dependent and
overwhelmed by light limitation. This suggests that failure of shade-intolerant species
to invade closed-canopy forest can be explained by light limitation alone.

Subjects Ecology, Mycology, Plant Science
Keywords American sweetgum, Foliar fungal pathogens, Old field succession, Pseudocercospora
liquidambaricola, Shade tolerance, Top-down, Bottom-up

INTRODUCTION
Shade-intolerant species are, by definition, unable to persist in low-light environments.
This may occur because shade-intolerant species tend to allocate resources toward rapid
growth and limited defense (Walters & Reich, 1999; Myers & Kitajima, 2007; Valladares &
Niinemets, 2008). Because this shade-intolerant strategy prioritizes growth of new tissue
over defense against consumers, the performance and survival of shade-intolerant plants
may decline in environments where growth is slowed by nutrient or light limitation.
Importantly, in these resource-limited environments, performance and survival can be
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further reduced by high consumer pressure (Coley, Bryant & Chapin, 1985; Fine, Mesones
& Coley , 2004; Hahn & Maron, 2016). In this way, consumer pressure may interact with
light and nutrient availability to drive succession from high-light, early-successional fields
to low-light, later-successional forests (Augspurger, 1984b; Coley, Bryant & Chapin, 1985;
Myers & Kitajima, 2007; Pasquini, Wright & Santiago, 2015; Griffin et al., 2016).

The impacts of consumers on shade-intolerant speciesmay increase as light and nutrients
decline. This is because the fast-growing, poorly defended strategy is only advantageous
when resources are ample enough to support high growth rates. Otherwise, these plants
cannot maintain their high metabolic rates. By consuming plant tissue, pathogens and
herbivores further reduce the ability of these plants to acquire the resources (e.g., light,
nutrients, water) necessary for the growth and maintenance of their metabolically
costly tissue, potentially driving precipitous declines in performance. Thus, in low-light
conditions, shade-intolerant species may be especially susceptible to disease for several
reasons. First, shade-intolerant species often exhibit low constitutive defenses (Stamp,
2003). Second, limitation by nutrients and light may prevent plants from constructing
some defense compounds (Hanssen et al., 2020; Huang, et al, 2020). Third, light limitation
may lead to the down-regulation of both the salicylic and jasmonic acid pathways (De Wit
et al., 2013), which are key to responding to attack by pathogens and herbivores (Thaler,
Humphrey & Whiteman, 2012; De Wit et al., 2013; Ballaré & Pierik, 2017). Moreover,
nutrient limitation may be especially detrimental for shade-intolerant species (e.g., Ward,
2020), because it can drastically reduce their ability to build photosynthetic machinery and
some defensive compounds (Coley, Bryant & Chapin, 1985; Stamp, 2003; Hanssen et al.,
2020). Thus, susceptibility to pathogens among shade-intolerant speciesmay be particularly
high when light and nutrients are limiting (Kitajima & Poorter, 2010; Griffin et al., 2016;
Griffin et al., 2017).

Regardless of resource availability, pathogens are critical drivers of dynamics in plant
communities (Mordecai, 2011). Throughout forest and grassland systems, pathogens can
limit seedling survival (Hersh, Vilgalys & Clark, 2012), ecosystem productivity (Mitchell,
2003;Maron et al., 2011), species’ ranges (Spear, Coley & Kursar, 2015; Bruns, Antonovics &
Hood, 2019), and can promote diversity (Bever, Mangan & Alexander, 2015; LaManna et al.,
2017). Pathogens can alter community composition through negative density-dependent
seedling mortality (Comita et al., 2014; Bayandala, Masaka & Seiwa, 2017; Uricchio et al.,
2019; Jia et al, 2020), benefiting more resistant species (Welsh, Cronin & Mitchell, 2016;
Cappelli et al., 2020), and those that have escaped their specialist herbivores and pathogens
(Heckman, Wright & Mitchell, 2016; Heckman et al., 2017). Because pathogen impacts can
also change with light and nutrient availability (e.g., Dordas, 2009; Veresoglou et al., 2013;
Heckman, Wright & Mitchell, 2016; Ballaré & Pierik, 2017; Liu et al., 2017; Agrawal, 2020),
shade-intolerant species may experience large differences in pathogen impacts across the
range of habitats they occupy (Augspurger, 1984a). Thus, pathogens may reinforce shade-
tolerance differences among species, promoting niche differentiation (McCarthy-Neumann
& Kobe, 2008; Krishnadas & Comita, 2018).

In this study, we assessed the role of light and nitrogen supply in seedling susceptibility to
pathogens and how pathogen impacts on seedling performance are mediated by light and
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nitrogen.We did this using an important pioneer species of old fields and early-successional
forests, Liquidambar styraciflua (Oosting, 1942; Wright & Fridley, 2010; Fridley & Wright,
2018). In these early-successional environments, L. styraciflua can experience severe
foliar disease (McElrone et al., 2010) and varied nutrient and light conditions. Thus, the
interaction between pathogens and resource supply may be important for understanding
successional dynamics. To date, this interaction has been addressed in only a few studies
in natural systems (e.g., Griffin et al., 2016; Griffin et al., 2017; Ward, 2020). We predicted
that:
1. Foliar fungal pathogen damage will be highest when light and nitrogen are both

limiting.
2. Pathogen impacts on seedling height, a proxy for plant performance, will be highest

when light and nitrogen are both limiting.

METHODS
Study system
Liquidambar styraciflua is a shade-intolerant deciduous tree that is common throughout
the southeastern US. L. styraciflua is a key transitional species during succession—it
competes well in early successional systems, but becomes less common as seedlings become
increasingly shaded during succession (Clark, LaDeau & Ibanez, 2004; Wright & Fridley,
2010; Hersh, Vilgalys & Clark, 2012; Addington et al., 2015; Brown et al., 2020).

Seedling propagation
We purchased L. styraciflua seeds from Sheffield’s Seed Co. (Locke, NY). In the greenhouse
at the University of North Carolina at Chapel Hill, we sowed seeds into flats. Ten days
after germinating, each seedling was transplanted into a 2.84 L pot filled with 3:1 mix of
potting mix (Fafard 3B; Sun Gro) and sterilized sand. To ensure that other soil nutrients
would not limit seedling growth, the potting medium included 10 g P m−2 as triple
super phosphate, 10 g K m−2 as potassium sulfate, and 100 g m−2 micronutrients (Scotts
Micromax, Marysville, OH), corresponding to 1 g triple super phosphate plant−1, 0.45
g potash plant−1, and 2 g micronutrients plant−1 (Borer et al., 2014). On July 17, 2014,
seedlings were moved to the field.

Site description
We performed this experiment in an old field and adjacent forest in the Duke Forest
Teaching and Research Laboratory, (Orange Co., NC). The old field has been maintained
since 1996 through annual mowing. In the old field, L. styraciflua occurs as seedlings and
small saplings. The adjacent forest is ∼40 years old and dominated by early successional
trees such as Pinus taeda, Liriodendron tulipifera and L. styraciflua. Later successional
species like Acer rubrum and Quercus spp. also occur throughout the forest.

We conducted this field experiment between July 17 and October 3, 2014 (11 weeks)
using a split-plot design. At the whole plot level, we manipulated light availability; at the
subplot level, we manipulated nitrogen availability and foliar fungal pressure. Each subplot
was a single sweetgum seedling grown in its own pot; each whole plot was a cluster of four
pots surrounded with a wire cage to exclude deer.
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Light availability
At the whole plot level, we assigned seedlings to levels of light availability using a replicated
regression approach (Cottingham, Lennon & Brown, 2005). This entailed high replication
(10×) at the two extremes—closed canopy (low light) and open field (high light)—and
lower replication (4×) at three points along a transect from low to high light—at the forest
edge, ∼5 m from the forest edge, and ∼10 m from the forest edge. Replicates were spaced
∼5 m apart.

To assess light differences among treatments, we usedOnsetHOBOpendant light loggers
(Onset Computer Corporation, Bourne, MA, USA). Loggers recorded light availability
every 5 min for 10 days in early October. Because overstory trees had not yet begun to
noticeably senesce and no disturbances (e.g., tree falls) had occurred, light availability in
October should reflect relative light availability throughout the experiment.

Nitrogen supply
Seedlings received five applications of aqueous ammonium nitrate (NH4

+NO3
−) over

ten weeks (July 24–September 18). Seedlings under high nitrogen received 2 g N m−2

application−1 (in total, 10 g N m−2 or 460 mg NH4
+NO3

− plant−1); seedlings under low
nitrogen received 0.2 g N m −2 application−1 (in total, 1 g N m−2 or 46 mg NH4

+NO3
−

plant−1). In previous studies, the high nitrogen application rate increased soil nitrogen
(Stevens et al., 2015) and alleviated nitrogen limitation at this site (Fay et al., 2015).

Fungal pathogen pressure
Seedlings were either sprayed biweekly with a foliar fungicide or left unsprayed. This
fungicide, Mancozeb (Dithane DF, Dow AgroSciences, Indianapolis, IN), was applied in
late morning until it began to run off leaves. Mancozeb is a broad-spectrum non-systemic
fungicide that has no known direct effects on photosynthesis, leaf longevity, shoot growth,
or root growth (Lorenz & Cothren, 1989; Kope & Trotter, 1998; Parker & Gilbert, 2007), nor
does it affect mycorrhizal fungi when applied at recommended rates (Parker & Gilbert,
2007). In a separate greenhouse study, fungicide reduced total biomass by ∼10%, but this
effect was only marginally significant (P = 0.084; Table S1A; Fig. S1A, Supplementary
Methods 1).

In total, this experiment comprised 32 whole plots (10 high light, 10 low light, 4 at each
of 3 points along a light transect; Fig. S3). Within each whole plot, there were 4 seedlings
(2 nitrogen ×2 fungicide treatments), each growing in a separate pot, for a total of 128
seedlings.

Measurements
In this study, we measured two responses—foliar damage and plant height—to determine
whether light and nitrogen availability alter pathogen impacts on seedlings. Foliar pathogen
damage was quantified visually by referring to digitized images of known damage severity
(James, 1971; Mitchell, Tilman & Groth, 2002; Mitchell et al., 2003). We measured foliar
damage as the percent of leaf area visibly damaged on October 3, 2014 (after 11 weeks
in the field) on up to five leaves per plant, including the youngest and oldest leaves as
well as three leaves evenly spaced in age. We measured damage as 0%, 0.1%, 0.5%, by
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1% increments between 1 and 15% damage, then by 5% increments above this. Surveying
leaves of different ages should best describe themean level of damage across the entire plant,
because damage typically increases with leaf age (Hatcher, Ayres & Paul, 1995; Halliday,
Umbanhowar & Mitchell, 2017; Heckman, Halliday & Mitchell, 2019). Plant height was
measured biweekly from July 25 until October 3, 2014 (6 observations over 73 days). Each
time, we measured seedling height from the base through the end of the petiole of the
highest leaf, which reflects the highest point at which seedlings can photosynthesize.

Data analysis
We analyzed these data with linear mixed models in the nlme package (Pinheiro et al, 2016)
in R version 3.5.3 (R Core Team. 2019). In all models, light was a categorical whole plot
effect. Because both maximal and total daily light availability were similar for transect and
high light seedlings (P = 0.18; Fig. S2), we combined these light treatments for all analyses.
Thus, 88 seedlings from 22 whole plots were treated as high light and 40 seedlings from 10
whole plots were treated as low light. Nitrogen and spraying treatments were categorical
subplot effects.

We quantified seedling height as the area under the curve of biweekly height
measurements using the ‘auc’ function in the MESS package (Ekstrøm, 2016). To meet the
normality assumption for linear models, foliar fungal damage was cubed-root transformed.
This transformation best met the normality assumption because it is more strongly
normalizing than the square root transformation, but less so than the log transformation.
To reduce heteroscedasticity of height residuals, we used the varIdent function in ‘lme’ to
allow variances to differ between light treatments (Zuur et al , 2009; Pinheiro et al, 2016).
Post-hoc Tukey HSD tests were performed using the ‘emmeans’ function (Lenth, 2018).

RESULTS
Impacts of light and nitrogen on fungicide efficacy
Averaged across all light and nitrogen treatments, fungicide reduced fungal damage by
83% (Spraying, P < 0.001; Fig. 1A). Light and nitrogen availability jointly altered the effect
of fungicide on visible foliar fungal damage (Light × Nitrogen × Fungicide; P = 0.03;
Table S2): in high light, spraying did not alter fungal damage in either nitrogen level
(Tukey HSD: High nitrogen, P = 0.99; Low nitrogen, P = 0.83); in low light, spraying
reduced fungal damage to near zero at both nitrogen levels (Tukey HSD: High nitrogen,
P < 0.001; Low nitrogen, P = 0.001).

Impacts of light and nitrogen on foliar fungal damage
Among unsprayed seedlings, there were no significant main effects of nitrogen or light
on foliar fungal damage (Nitrogen: P = 0.5; Light, P = 0.11; Table S3). Instead, light
availability altered the effect of nitrogen on foliar fungal damage (Nitrogen × Light,
P = 0.01; Table S3 ; Fig. 1B): in high light, fungal damage did not differ between nitrogen
treatments (Tukey HSD: P = 0.078); in low light, fungal damage was over 3× higher on
high nitrogen than low nitrogen seedlings (Tukey HSD: P = 0.039). This is contrary to our
prediction that damage would be highest under low light and low nitrogen.
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Figure 1 Effects of nitrogen and light availability onmean foliar fungal damage. (A) Effects of fungi-
cide spraying on mean foliar fungal damage (N = 128 seedlings), (B) effects of nitrogen and light avail-
ability on mean foliar fungal damage for seedlings not sprayed with fungicide (N = 64 seedlings: 20 in low
light, 44 in high light); dashed lines represent plants growing in low light and solid lines represent plants
growing in high light. Means and 95% confidence intervals were calculated using linear mixed models and
back transformed from a cubed root transformation.

Full-size DOI: 10.7717/peerj.11587/fig-1

Impacts of light, nitrogen, and fungicide on seedling height
Although light and nitrogen each had significant main effects on seeding height (Light,
P < 0.001; Nitrogen, P = 0.022; Table S4), these two factors interacted to influence seedling
height (Nitrogen × Light, P = 0.004; Table S4). In high light, seedlings grew 17% taller
in the high nitrogen treatment than the low nitrogen treatment (Tukey HSD: P < 0.001).
Height did not differ among nitrogen treatments in low light (Tukey HSD: P = 0.62).

Fungicide did not have a significant main effect on seedling height (P = 0.14). Instead,
light availability altered the effect of fungicide on seedling height (Fungicide × Light,
P = 0.002; Table S4 ; Fig. 2): in high light, sprayed seedlings grew 14% taller than unsprayed
seedlings, but did not differ in low light (Tukey HSD: High light, P = 0.002; Low light,
P = 0.22). Thus, although fungicide did not reduce visible damage, fungicide appears to
have alleviated the negative impacts of fungal disease on seedling performance. Contrary to
expectation, light and nitrogen did not interact with fungicide to influence seedling height
(Nitrogen × Fungicide × Light: P = 0.72; Table S4).

DISCUSSION
In this study, light, nitrogen, and pathogens additively and interactively influenced seedling
performance. Contrary to our expectation, nitrogen and light availability interacted to alter
foliar fungal damage: damage increasedwith increasing nitrogen availability, but only in low
light. This suggests that increased nitrogen availability under low light makes plants more
susceptible to enemies (Dordas, 2009; Zhou et al, 2015; Ballaré & Pierik, 2017). Although
foliar damage was lower under high light, seedling height showed a different pattern:
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Figure 2 Effects of nitrogen and light availability, and damage treatment on height accumulation in
the field. Effects of nitrogen and light availability, and fungicide spraying on seedling height (N = 128
seedlings: 40 in low light, 88 in high light). Dashed lines represent plants growing in low light and solid
lines represent plants growing in high light. Means and 95% confidence intervals were calculated using
linear mixed models.

Full-size DOI: 10.7717/peerj.11587/fig-2

pathogens impacted seedling height more strongly under high light than low light. This
is contrary to other studies showing either greater impacts of pathogens and herbivores
in low light or no difference in impacts between light environments (e.g., Augspurger,
1983; Myers & Kitajima, 2007; Bayandala, Masaka & Seiwa, 2017). Together, these results
demonstrate the importance of light and nitrogen for modulating pathogen impacts on
seedling performance.

Nitrogen and light availability interacted to influence pathogen damage in this study.
Specifically, pathogen damage increased with nitrogen availability in the shade, but not in
the sun. Because there was not a strong main effect of light, it is unlikely that differences
in pathogen inoculum between high and low light environments were entirely responsible
for this. Instead, low light may have reduced the ability of seedlings to synthesize defense
compounds, either because they lacked the carbon to do so or because the jasmonic and
salicylic acid pathways were down-regulated (Stamp, 2003; De Wit et al., 2013; Zhou et
al, 2015; Ballaré & Pierik, 2017; Huang, et al, 2020). Either of these mechanisms would
reduce the ability of seedlings to resist pathogens, leaving their nitrogen-rich leaves more
susceptible to pathogen infection. Together, these possible explanations for the interactive
effect of light and nitrogen on pathogen damage have important implications for succession
(Griffin et al., 2016; Griffin et al., 2017): high nitrogen supply may reinforce the dominance
of shade-intolerant species in early stages of succession (i.e., high-light environments)
by contributing to growth without increasing damage, but may hinder performance of
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shade-intolerant species in later successional stages by increasing damagewithout increasing
growth (Reinhart et al., 2010).

Nitrogen and light availability also interacted to influence seedling height, a key proxy
for seedling performance. Here, seedling height increased with nitrogen availability in
high light, but not in low light. This indicates that light was more limiting than nitrogen
to growth in the forest understory, but that nitrogen was more limiting than light in the
old field. Despite this, nitrogen and light did not simultaneously interact with fungicide
application to influence seedling height. Instead, spraying increased seedling height only
in high light, which was contrary to our prediction that pathogen impacts on seedling
performance would be larger under low light (Augspurger, 1983; Stamp, 2003; Myers &
Kitajima, 2007). This indicates that fungal pathogens were negatively impacting seedling
performance in high light, even without visible differences in fungal damage. Additionally,
fungal pathogens may not have impacted seedling height in low light because seedling
growth was severely light limited regardless of damage.

Although this study demonstrates important impacts of light, nutrients, and pathogens
on L. styraciflua performance, there are several limitations. First, this study was short.While
this short duration highlights a critical life stage—survival and growth of establishing tree
seedlings (De Steven, 1991; Fridley & Wright, 2018)—we cannot account for differences
in overwinter survival or impacts of light, nutrients, and pathogens beyond this window.
Moreover, we cannot account for differences in shade tolerance across life stages (Valladares
& Niinemets, 2008; Falster, Duursma & FitzJohn, 2018). Second, by growing seedlings
alone in pots, we eliminated interspecific competition and may have reduced rain splash
dispersal of pathogens. Reduced competitionmayhave beenmore important in herbaceous-
dominated old fields (Flory & Clay, 2010; Fridley & Wright, 2012) than in the more sparsely
vegetated forest understory. Thus, growing seedlings in pots versus directly in the ground
may have had a larger impact on plant growth in the herbaceous-dominated old field
than in the forest understory. Third, we did not compare L. styraciflua to any other
shade-intolerant or shade-tolerant species (e.g., Chou, Hedin & Pacala, 2018).

These results suggest that pathogens, nitrogen, and light can be important drivers
of succession from old fields to forests (Wright & Fridley, 2010; Fridley & Wright, 2012;
Meiners et al., 2015). Under high light, foliar disease reduced the performance of L.
styraciflua. This high pathogen impact may ultimately slow the growth and spread of
L. styraciflua in old fields, potentially slowing the conversion of herbaceous-dominated old
fields to early-successional forests (Gill & Marks, 1991). In closed-canopy forests, pathogens
may also be important determinants of species occurrence patterns (LaManna et al., 2017).
For instance, seedlings of shade-intolerant species, like L. styraciflua, do not aggregate
as often in forest understories as shade-tolerant species, indicating conspecific negative
density dependence (Clark, LaDeau & Ibanez, 2004), which may result from foliar (Hersh,
Vilgalys & Clark, 2012) or belowground disease. This may prevent shade-intolerant species
from maintaining large enough seedling and sapling populations to exploit infrequent tree
falls and could result in their exclusion from forest understories (O’Hanlon-Manners &
Kotanen, 2004; Wulantuya et al., 2020). Moreover, pathogen impacts on shade-intolerant
species can increase in shaded habitats, potentially increasing niche differentiation between
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shade-tolerant and -intolerant species (McCarthy-Neumann & Kobe, 2008). As in other
studies, pathogens in this study were important in low light, where foliar disease increased
with increasing nitrogen availability. But increased disease had a limited impact on seedling
performance. Instead, light limitation was too severe, even when pathogen pressure and
nitrogen limitation were alleviated, to allow rapid seedling growth.

CONCLUSIONS
In conclusion, we found that nitrogen and light interact to impact fungal damage, with the
highest levels of damage at high nitrogen and low light. Despite this, spraying fungicide
impacted seedling height more under high light than low light, indicating that pathogen
pressure was higher when light was abundant and that fungal pathogens exerted negative
impacts on seedling performance beyond what was visible on leaves. Overall, though,
light limitation had the largest influence on seedling performance, overwhelming both
nitrogen limitation and pathogen pressure (Ward, 2020). Given this, it appears that the
shade-intolerant species L. styraciflua can be excluded from later-successional habitats
solely by reducing light availability—high pathogen pressure and nitrogen limitation may
further promote this, but are not required.
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