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Abstract

Wildlife corridors are typically designed for single species, yet holistic conservation

approaches require corridors suitable for multiple species. Modelling habitat linkages for

wildlife is based on several modelling steps (each involving multiple choices), and in the

case of multi-species corridors, an approach to optimize single species corridors to few or a

single functional corridor for multiple species. To model robust corridors for multiple species

and simultaneously evaluate the impact of methodological choices, we develop a multi-

method approach to delineate corridors that effectively capture movement of multiple wildlife

species, while limiting the area required. Using wildlife presence data collected along

ground-based line transects between Lake Manyara and Tarangire National Parks, Tanza-

nia, we assessed species-habitat association in both ensemble and stacked species distri-

bution frameworks and used these to estimate linearly and non-linearly scaled landscape

resistances for seven ungulate species. We evaluated habitat suitability and least-cost and

circuit theory-based connectivity models for each species individually and generated a

multi-species corridor. Our results revealed that species-habitat relationships and subse-

quent corridors differed across species, but the pattern of predicted landscape connectivity

across the study area was similar for all seven species regardless of method (circuit theory

or least-cost) and scaling of the habitat suitability-based cost surface (linear or non-linear).

Stacked species distribution models were highly correlated with the seven species for all

model outputs (r = 0.79 to 0.97), while having the greatest overlap with the individual species

least-cost corridors (linear model: 61.6%; non-linear model: 60.2%). Zebra was the best sin-

gle-species proxy for landscape connectivity. Overall, we show that multi-species corridors

based on stacked species distribution models achieve relatively low cumulative costs for
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savanna ungulates as compared to their respective single-species corridors. Given the chal-

lenges and costs involved in acquiring data and parameterizing corridor models for multiple

species, zebra may act as a suitable proxy species for ungulate corridor conservation in this

system.

Introduction

East Africa features an impressive network of protected areas to safeguard landscapes, wildlife

assemblages and associated ecosystem processes from human influences [1]. However, many

of the protected areas are small, isolated, and not always effective in addressing these goals [2–

5]. As a result, wildlife populations have been declining considerably across the region over the

past decades [6–9]. One of the major concerns regarding the conservation of large mammal

populations in Africa and elsewhere is the decline of functional connectivity within ecosystems

[10–15]. Since connectivity is fundamental for effective landscape-scale conservation of wild-

life populations [16], a key strategy to maintain or reverse the loss of functional connectivity is

to identify and subsequently protect or restore wildlife corridors—i.e., patches of land that

connect two or more protected areas or seasonal ranges of target species [11, 17, 18].

Most approaches to identify wildlife corridors in savanna ecosystems of Africa have focused

on single species such as elephants (Loxodonta africana) [19–25], leopards (Panthera pardus)
[26, 27], lions (Panthera leo) [28–30] or wildebeest (Connochaetes taurinus) [17, 31, 32]. Such

a single species-focused approach is certainly justifiable if the target species (1) is of high con-

servation concern, (2) can be considered a keystone species, and (3) would maintain keystone

processes in the ecosystem if protected [33–35]. However, if the aim is to protect multiple spe-

cies, or a suite of ecological processes in a landscape that can only be maintained if several spe-

cies can move across the landscape, conservation managers may be more inclined to identify

and subsequently protect corridors that can effectively be used by multiple species [36–43].

Identification and delineation of multi-species corridors require spatially-explicit presence,

genetic, or movement data for all target species, but such multi-species datasets are rarely avail-

able [44–46]. Beyond these logistical concerns, modelling multi-species corridors requires the

assessment of cross-taxon trade-offs, as it is likely that a corridor designed for one species does

not perfectly match corridor requirements for another species [38, 47, 48]. Failure to account

for these cross-taxon differences could compromise the effectiveness of corridors as well as

result in additional monetary costs if the primary focus were meant to preserve ideal corridors

for all species [38]. Therefore, methods to delineate efficient multi-species corridors that will

capture wildlife movement across a mammal community, while limiting the area required to

protect them, could provide cost-effective options for connectivity conservation [49–51].

In tandem with the understanding of the biological and conservation importance of wildlife

corridors, the theory and practice of corridor delineation has made substantial progress over

the last two decades [52, 53]. Typically, corridor modelling involves (1) the collection of spa-

tially-explicit animal distribution, genetic, or movement data, (2) assembling spatial variables

that are hypothesized to be associated with animal presence or movement, (3) fitting appropri-

ate habitat models which allow the prediction of how spatially explicit variables promote or

impede animal movement or presence in the landscape, and (4) estimating corridors based on

the spatial arrangement of the resistance surface [17, 54]. For all these steps, a variety of tech-

niques and data conversion options are available (S1 Fig in S1 File). Because the choices made

during each modelling step could have repercussions for the delineation of corridors,
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comparing the relative effects of different model choices is a crucial step to illustrate uncer-

tainty associated with corridor model parameterization [17, 45]. For example, to assess spe-

cies-habitat associations, a variety of approaches and algorithms are available [55, 56]. To

address this modelling uncertainty, we harnessed recent advances in species distribution

modelling and used ensemble and stacked species distribution models to quantify species-hab-

itat associations [57, 58]. Based on the species-habitat associations, scholars estimate resistance

surfaces either by the inverse of the habitat suitability (assuming linear relationships between

animal movement and landscape resistance) or based on non-linear transformation of the

inverse of the squared habitat suitability (assuming non-linear relationships between animal

movement and landscape resistance) [59]. As a final methodological choice, the use of either

least-cost modelling or circuit theory (the two main approaches in corridor design) may also

affect the design of corridors [60, 61]. The combined effects of these choices have rarely been

quantified [62].

In this paper, we develop a multi-method approach to design corridors for a multi-species

assemblage by combing habitat use data from seven ungulate species. Additionally, we assess

the value of representative proxy species [63] as a cost-effective method to secure landscape

permeability. By following a multi-method approach and quantifying the (relative) conse-

quences of methodological choices for corridor design, we provide an analysis to illustrate

uncertainty associated with our corridor modelling approach [45, 48]. We hypothesize that (1)

species-habitat relationships (and thus movement costs) differ across species, (2) species-spe-

cific corridors vary in their spatial configuration, (3) multi-species corridors increase the

movement costs for individual species but less so than other species-specific corridors, and (4)

choices in the statistical methods and in parameterization of resistance surfaces affect corridor

design.

Materials and methods

Study area

The study area is located centrally in the Tarangire-Manyara ecosystem, in a 1280 km2 multi-

use area between Lake Manyara (hereafter LMNP) and Tarangire (hereafter TNP) National

Parks (centered approximately at 3.5846˚ S, 36.0021˚ E: Fig 2). The selected study area is ideal

for testing multi-species corridor hypotheses because the landscape features a patchwork of

protected areas [64] with large mammal populations still occupying land outside fully pro-

tected areas [65]. During the wet season, multiple wildlife species leave the national parks (pri-

marily TNP; wildlife in LMNP do not exhibit regular, seasonal movements [2], but do

occasionally move in and out of park boundaries [14, 66]) and move to areas that are often not

formally protected [25, 66–70].

The study area is characterized by a semi-arid climate and the main vegetation type is Aca-
cia-Commiphora savanna [71]. Human population growth and changes in traditional lifestyles

have caused substantial expansion of human settlements and, consequently, conversion of nat-

ural vegetation to agriculture [72]. The western portion of the study area encompasses parts of

the Mto wa Mbu Game Controlled Area, where wildlife falls under the jurisdiction of the Tan-

zanian Wildlife Authority. Settlements, agriculture, and livestock keeping are technically not

permitted [73], yet enforcement is typically weak, and these land uses occur widely in the area

[65]. The area also includes Manyara Ranch (hereafter MR), a multiple-use area designated to

protect wildlife and support the pastoralist lifestyle of two adjacent villages (Esilalei and Oltu-

kai). MR employs rangers to prevent hunting and ensure that livestock grazing regulations are

followed. Livestock herds from adjacent villages are permitted to use the ranch during the dry

season whereas ranch livestock graze the area year-round [65]. Settlements, agriculture, and
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hunting are not permitted on the ranch. The small strip of land between MR and TNP is village

lands in the Babati district (MR and Mto wa Mbu Game Controlled Area are situated in the

Monduli district) and could not be sampled due to logistical constraints.

Wildlife transects

Wildlife presence data (elephant dung and sightings of Grant’s gazelle [Nanger granti], giraffe

[Giraffa camelopardalis], impala [Aepyceros melampus], Thomson’s gazelle [Eudorcas tomso-
nii] wildebeest, and zebra [Equus quagga]) were collected along 248 one-km transects between

LMNP and TNP (Fig 1). Each transect was surveyed once in April 2015, during the long rainy

season. We recorded elephant dung instead of direct sightings as elephants traverse the

human-dominated area but are rarely detected directly [74, 75]. The study area was divided

into a 1 km by 1 km grid; transects bisected each grid north-south, such that parallel transects

were separated by 1 km. Along each transect, we recorded sightings of all target species includ-

ing the GPS coordinates and perpendicular distance from transect using a rangefinder.

All research was carried out with permission from the Tanzanian Wildlife Research Insti-

tute (TAWIRI) and the Tanzanian Commission for Science and Technology (COSTECH),

permit #: 2014-324-ER-2013-191.

Habitat suitability models

To model large mammal species distributions, we created eight raster environmental pre-

dictor variables for the study area in ArcMap version 10.7.1 (ESRI, Redlands) (Fig 1). Vari-

ables were selected based on hypothesized, biological relationships to the presence of the

target species [17]. We calculated the Euclidean distance from bomas (pastoral households

and livestock enclosures), LMNP and TNP, and the Manyara River. The locations of bomas

were digitized from Google Earth imagery that was captured between 2005 to 2013 [76]. We

derived an Enhanced Vegetation Index (EVI) for the study area using the MODIS

MOD13Q1 V6 Terra Vegetation Indices 16-Day Global 250 m dataset. Using Google Earth

Engine, we took the median EVI value for each 250 m pixel in the study area for all six

Fig 1. Maps of the study area and environmental predictor variables. (A.) Map of the study area in northern

Tanzania (red box in inset map of Tanzania) showing the location of transects in relation to important landscape and

management features including human settlements (bomas) [76]. (B.) Environmental predictor variables used to

model large mammal habitat suitability. Distance variables are represented in meters.

https://doi.org/10.1371/journal.pone.0265136.g001
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images captured during the 2015 long rainy season (image dates from April 6th to May

25th). The final four predictor variables were derived from the approximately 1 km resolu-

tion FAO Global Land Cover-SHARE database [77]. We used the percentage of density cov-

erage layers for cropland, shrub covered area (shrubland) and tree covered area

(woodland). For percentage of density coverage of grassland, we combined the grassland,

herbaceous vegetation (aquatic or regularly flooded), and waterbodies layers. We masked

out Lake Manyara from the study area using the Global Surface Water Occurrence dataset

[78]. As the lake’s water level fluctuates over the course of the year, we chose a threshold of

26% water occurrence, which represents the maximum threshold that could be applied

without overlapping the transects walked in 2015. We projected all eight raster predictor

layers to the Africa Albers Equal Area Conic coordinate system with a 1 km by 1 km cell

size. None of the variables had a Pearson correlation coefficient greater than 0.7 (S2 Fig in

S1 File), so all were retained for this analysis [79].

To predict species-specific habitat suitability across the study area, we built ensemble

species distribution models for each species using the ‘SSDM‘ package [57] in R version

4.0.3 [80]. We sampled environmental data from the eight predictor layers for the GPS

locations of direct observations collected along the transects (i.e., presence points). Species

with a sufficient sample size (i.e., n > 13) of direct observations [81] included giraffe

(n = 34), Grant’s gazelle (n = 19), impala (n = 37), Thomson’s gazelle (n = 63), wildebeest

(n = 36), and zebra (n = 85) (S3 Fig in S1 File). As transects resulted in few direct observa-

tions of elephants, we instead used GPS locations of elephant dung piles (n = 803). We per-

formed geographic thinning to account for spatial biases [57], which reduced the number

of elephant (n = 696) and Thomson’s gazelle (n = 62) observations. Pseudo-absences were

generated within the extent of the study area, with number and strategy dependent upon

the type of model as recommended in [82]. Ensemble models were built from the highest

performing models (AUC � 0.90) of eight different algorithms (generalized linear model,

generalized additive model, multivariate adaptive regression splines, generalized boosted

regressions model, classification tree analysis, random forest, maximum entropy, artificial

neural network, and support vector machines). We evaluated the models using a 70% train-

ing/30% evaluation holdout method, with a total of 10 repetitions. To generate a stacked

multi-species habitat suitability model, we summed the probabilities of the resulting habitat

suitability maps.

Landscape connectivity models

To derive linearly scaled landscape resistance surfaces, we took the inverse of the species

habitat suitability predictions from the ensemble models, multiplied them by 100 and added

1 [17, 61, 83]. This assumes that the cost-weighted distance of travelling across a cell with a

predicted habitat suitability of 100% is 1 km (the distance to travel across the cell alone),

while the cost-weighted distance of travelling through a cell with a predicted habitat suit-

ability of 1% is equivalent to travelling 100 km through suitable habitat (or 100 times more

difficult to cross than a cell with a predicted habitat suitability of 100%). In addition, we

squared each of the resulting layers to generate non-linearly scaled cost surfaces [84] to

address uncertainty in the relationship between habitat suitability and landscape resistance

to movement. For each resulting cost surface layer (linear and non-linear), we modeled

landscape connectivity between TNP and LMNP with circuit theory [85] and least-cost

methods [86] using Linkage Mapper [87] in ArcMap version 10.7.1 (ESRI, Redlands). As a

single cell-wide least-cost path is unlikely to represent wildlife movement, we mapped 10%

least-cost corridors using the least-cost output [88, 89].
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Comparing models

To compare how effective single species are at predicting habitat use and landscape connectiv-

ity for the other six species of ungulates in this study, we calculated pairwise Pearson correla-

tions between the species-specific and stacked multi-species habitat suitability, circuit theory

and least cost models. We also calculated the percent overlap between each of the single-spe-

cies predicted least-cost corridor maps.

Results

Habitat suitability models

Ensemble model performance ranged from AUC = 0.91 (elephant) to AUC = 0.94 (Grant’s

gazelle) (S1 Table in S2 File). Predicted habitat suitability in the study area for all seven species

was highest within MR for both the linearly and non-linearly scaled layers (Fig 2 and S4 and

S5 Figs in S1 File). The northeastern corner of Lake Manyara was also predicted to be an area

of relatively high habitat suitability. The top three variables with the greatest contribution to

the models differed for each species (S6 Fig in S1 File and S2 Table in S2 File). Distance to the

Manyara River was the predictor variable with the greatest contribution to the habitat suitabil-

ity models for all species. Distance to bomas had the second highest overall contribution to the

SSDM and was one of the top three predictor variables for all species. Distance to a national

park had the third highest overall contribution to the SSDM.

Pairwise Pearson correlations between the species-specific and stacked multi-species habi-

tat suitability models indicate a strong positive relationship (>0.7) between the predicted habi-

tat suitability maps across the study area for all species except Thomson’s gazelle for both

Fig 2. Predicted habitat suitability and least-cost and circuit theory-based landscape connectivity maps for the stacked species

distribution model output in both linearly and non-linearly scaled layers. Bomas are shown to illustrate the influence of human

presence on predicted habitat suitability in the study area [76].

https://doi.org/10.1371/journal.pone.0265136.g002
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linearly and non-linearly scaled layers (Fig 3 and S4 Table in S2 File). The stacked multi-spe-

cies model had the highest average pairwise correlation, followed by the zebra model (S3

Table in S2 File).

Landscape connectivity models

The pattern of predicted landscape connectivity across the study area between LMNP and

TNP was similar for all seven species regardless of method (circuit theory or least-cost) and

scaling of the habitat suitability-based cost surface (linear or non-linear) (Fig 2 and S7-S10

Figs in S1 File). Areas with the lowest landscape resistance ran from the northern tip of TNP

across MR, before shifting northwest towards Lake Manyara.

Pairwise Pearson correlations between the species-specific and stacked multi-species land-

scape connectivity models indicated a strong positive relationship (>0.7) between the pre-

dicted circuit theory-derived connectivity maps across the study area for all species except

Thomson’s gazelle for non-linearly scaled layers (Fig 3 and S3 Table in S2 File). Similarly, the

pairwise Pearson correlations showed strong positive relationships between the least-cost-

derived connectivity maps, although the average correlation coefficient was>0.9 for all species

and the multi-species model. The stacked multi-species model had the highest average pairwise

correlation for both methods, followed by the zebra model (S3 Table in S2 File).

Fig 3. Average pairwise Pearson correlations between the species-specific and stacked multi-species linearly and non-linearly scaled landscape connectivity

models.

https://doi.org/10.1371/journal.pone.0265136.g003

PLOS ONE Wildlife corridors for ungulate species in East Africa

PLOS ONE | https://doi.org/10.1371/journal.pone.0265136 April 5, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0265136.g003
https://doi.org/10.1371/journal.pone.0265136


Least-cost corridor models

The landscape connectivity models predicted similar least-cost corridors for each of the seven

focal species and the stacked multi-species model (Fig 4 and S11 and S12 Figs in S1 File). Travel-

ling across the study area from Tarangire National Park in the south towards LMNP in the

northwest (or vice versa), each species was predicted to move roughly directly across the unpro-

tected lands between TNP and MR. Once in the ranch, each species was predicted to take slightly

different optimal movement paths based on the species-specific habitat preferences. Predicted

movement patterns appear to maximize the distance travelled through MR. Once exiting the

ranch, each of the predicted least-cost corridors roughly converge in the grasslands at the north-

eastern edge of Lake Manyara and ultimately border the lake before entering LMNP (S11 and

S12 Figs in S1 File). Similarly, the optimal multi-species least-cost corridor crosses directly from

TNP into MR, maximizes the distance crossed within the ranch, and then directly crosses the

Mto wa Mbu Game Controlled Area to reach the northeastern edge of Lake Manyara (Fig 4).

Average pairwise percent overlap between the least-cost corridor maps was generally high

(>50%) for all species except elephant, impala (non-linearly scaled only), and Thomson’s gazelle

Fig 4. Average pairwise percent overlap between the species-specific and stacked multi-species linearly and non-linearly scaled

10% least-cost corridor maps. The predicted 10% least-cost corridors across the study area for the stacked species distribution models

are shown on the right. Bomas are shown to illustrate the influence of human presence on predicted corridors [76].

https://doi.org/10.1371/journal.pone.0265136.g004
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(non-linearly scaled only) (Fig 4). The multi-species stacked model had the highest average per-

cent overlap for both the linearly and non-linearly scaled least-cost corridor maps (61.6% and

60.2% respectively), while zebra had the second highest average overlap for the linearly scaled

model (59.4%) and giraffe for the non-linearly scaled model (55.0%) (S4 Table in S2 File).

Discussion

Multi-species corridors

Long-distance movement of vertebrates is a fundamental yet severely threatened process in

terrestrial ecosystems across the world [90–92]. There is a growing recognition that wildlife

corridors should be planned, designed, and implemented for multiple species so that, ideally,

the full range of crucial ecosystem processes can be maintained across large spatial scales [36–

43]. Conservation planning also ideally allows for movement of a variety of species to facilitate

expected range shifts due to anticipated changes in climatic conditions [93–95]. Our results

suggest that optimizing wildlife corridors by using either a multi-species or a proxy species

approach can be a cost-effective method to secure landscape permeability for a large mammal

assemblage. Using habitat suitability as a proxy for landscape resistance to movement for

seven large mammal species suggests that a single multi-species wildlife corridor would best

represent single-species landscape connectivity across the Tarangire-Manyara Ecosystem.

However, gathering movement data for multiple species to derive an optimal multi-species

corridor might be both time- and cost-prohibitive. Therefore, the identification of a single

proxy species that most accurately captures landscape connectivity for an entire or a subset of

a species assemblage could reduce these costs, particularly in areas where rapid land conver-

sion is quickly threatening linkages between protected areas.

A previous study identified elephants as a proxy for other large mammal presence and move-

ment in Tanzania [44]. In contrast, we found that zebra might better capture large mammal hab-

itat use and movement in our study area. Differences in the ability of elephants and zebras to

predict landscape use of a large mammal community in a typical Miombo ecosystem [44] and an

Acacia-Commiphora dominated ecosystem (this study) may be related to actual or field method-

related differences in mammal community composition in each ecosystem [47]. Irrespective of

the underlying mechanism, the poor performance of elephants as a proxy for landscape connec-

tivity in this study emphasizes that conservation planning by proxy species needs a site-specific

evaluation to avoid suboptimal conservation outcomes [92]. Landscape connectivity models

using both circuit theory and least-cost methods and linearly and non-linearly scaled habitat suit-

ability surfaces for zebra had the highest correlation to connectivity models for the other six spe-

cies. Furthermore, the percent overlap of the predicted least-cost corridor for zebra compared to

the other six species was highest in the linearly scaled model and second highest for the non-line-

arly scaled model. These findings echo similar results that zebra presence is most closely associ-

ated with large mammal species richness in northern Tanzania, while elephants performed

poorly as a proxy [47]. The ability of zebra to predict suitable corridors for a range of other herbi-

vore species (including those that differ in feeding strategies) suggest that conservation efforts

targeting the protection of corridors for zebra could help conserve landscape connectivity for

large mammal assemblages in savanna Africa. Conceptually, space use of habitat generalists may

best represent movement of a range of other species. Indeed, space use of zebra usually shows lit-

tle response to spatial variables, which is indicative of a habitat generalist [96].

Considerations for corridor models

A key assumption in this study is that habitat suitability is analogous to, or at least a reasonable

proxy for, landscape resistance. However, species distribution is not necessarily equivalent to
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movement [54, 97]. The relationship between habitat suitability and movement has not been

well studied in large mammal species in Africa, but in a recent case study, the distribution of

wildebeest was found to be a suitable proxy for their movement [17]. Similarly, the distribution

of elephants appears to be highly indicative of their movements as well [23]. However, land-

scape resistance may differ between day and nighttime [98, 99]. As the walking transects were

conducted during daylight hours, our study does not capture the potential for differential

nighttime habitat use when species might be moving across the landscape to avoid direct

encounters with humans and livestock (although this caveat my not apply to elephant space

use as the distribution of signs likely captures their actual distribution). Similarly, this study

captures large mammal presence during one season of a single year. While the survey was con-

ducted during the rainy season, when dispersal across this landscape generally occurs [66, 69,

100], spatio-temporal variation in resource availability (e.g., grass, non-alkaline surface water)

and the level and extent of the alkaline Lake Manyara might alter landscape resistance. There-

fore, optimal wildlife corridors in one year may offer suboptimal paths of movement in follow-

ing years. However, this study does not primarily aim to offer guidance on where exactly to

designate wildlife corridors in the Tarangire-Manyara ecosystem, and so the results from a sin-

gle season and year are likely valid for testing how best to optimize wildlife corridors for multi-

ple species. However, the consistent importance of distance from nearest boma as a predictor

of wildlife presence (S6 Fig) indicates strong spatial avoidance of human settlements by all

wildlife species in our study and highlights that human settlements add substantial movement

costs to wildlife species [17].

Ideally, landscape resistance and corridor models can be cross-validated with movement

data from the seven study species [23, 101]. Unfortunately, the only available movement data

in the region is for wildebeest [100]. However, none of those five collared individuals entered

LMNP, which prevents quantitative comparisons to our modeling efforts. Ideally, and given

the importance of landscape connectivity for wildlife species in the fragmented Tarangire-

Manyara ecosystem [67, 69, 70, 100, 102], additional efforts should be made to capture move-

ment data for a greater number of species to inform corridor conservation in the region.

As we employed a suite of statistical methods and different parameterizations of the resis-

tance surface, we were able to conduct an uncertainty analysis of our modelling choices. While

often recommended, such analyses are rarely conducted [48]. Our approach to address uncer-

tainty first considered species distribution model-derived habitat suitability maps as a proxy

for landscape resistance. Many methods have been developed to model habitat suitability and

rather than pick a single algorithm we chose instead to use an ensemble model in acknowledg-

ment that while all models are flawed, each has their predictive strengths [103]. We then con-

sidered uncertainty in the relationship between habitat suitability and landscape resistance to

movement. Using both linearly and non-linearly scaled resistance layers, we found that the

resulting maps of connectivity were similar when comparing between species with the same

species being more (e.g., zebra) or less (e.g., Thomson’s gazelle) correlated to others regardless

of the shape of transformation. Finally, we considered the impact of connectivity modeling

method (least-cost versus circuit theory) on our multi-species comparisons. Similarly, we

found that modeling method did not result in major differences in which species better pre-

dicted movement for the entire ungulate community.

Conclusions and conservation implications

To model robust corridors for multiple species and evaluate the impact of methodological

choices, we developed a multi-method approach and parameterized corridor models for multi-

ple species. Species-habitat relationships and subsequent corridors differed across species, but

PLOS ONE Wildlife corridors for ungulate species in East Africa

PLOS ONE | https://doi.org/10.1371/journal.pone.0265136 April 5, 2022 10 / 17

https://doi.org/10.1371/journal.pone.0265136


the pattern of predicted landscape connectivity was similar for all seven species regardless of

methodological choices. Stacked species distribution models were correlated with the seven

species for all model outputs, while having the greatest overlap with the individual species

least-cost corridors.

Connectivity in the fragmented Tarangire-Manyara ecosystem is rapidly declining [17, 67,

70]. To maintain functional connectivity and current wildlife population sizes (which are

already likely below their historic baselines [2, 100]) and associated ecosystem services [104]

conservation authorities need to implement effective and realistic wildlife corridors. Our field-

and model-based results suggest that either a multi-species corridor or single species (zebra)

corridor may effectively facilitate movement of the most abundant herbivore species in this

ecosystem while minimizing the land that needs to be set aside for conservation. More gener-

ally, this approach highlights the potential feasibility of multi-species corridors for ensuring

functional connectivity in savanna ecosystems and emphasizes the need for local evaluation of

conservation by proxy approaches.
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