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Abstract

Alagille syndrome is an autosomal dominant disease with a known molecular etiology
of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1
(JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of
function, however disease has also been attributed to lesser understood missense
variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of
these variants have been described. In addition, there is a small group of patients with a
clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our
single-center study, which includes 401 probands and 111 affected family members
amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and
NOTCH2 as well as functional validation of nine missense variants. Combining our
cohort of 86 novel JAG1 and three novel NOTCHZ2 variants with previously published
data (totaling 713 variants), we present the most comprehensive pathogenic variant
overview for Alagille syndrome. Using this data set, we developed new guidance to help
with the classification of JAG1 missense variants. Finally, we report clinically consistent
cases for which a molecular etiology has not been identified and discuss the potential

for next generation sequencing methodologies in novel variant discovery.

KEYWORDS
Alagille syndrome, JAG1, liver, NOTCH2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2019 The Authors. Human Mutation published by Wiley Periodicals, Inc.

Human Mutation. 2019;40:2197-2220.

wileyonlinelibrary.com/journal/humu 2197


http://orcid.org/0000-0001-8109-3648
mailto:spinner@mail.med.upenn.edu

2% | \WiLEY-

GILBERT ET AL

1 | BACKGROUND

Alagille syndrome (ALGS; MIM# 118450) is an autosomal dominant
disorder with an incidence of 1:30,000 to 1:50,000 live births, that
was first described in the early 1970s based on the clinical
observation of characteristic liver, cardiac, eye, vertebral, and facial
phenotypes (Alagille, Odievre, Gautier, & Dommergues, 1975;
Crosnier, Lykavieris, Meunier-Rotival, & Hadchouel, 2000; Emerick
et al., 1999; Saleh, Kamath, & Chitayat, 2016; Spinner et al., 2001,
Watson & Miller, 1973). Fine mapping chromosome 20p12 in several
patients with ALGS led to the identification of pathogenic variants in
the Notch signaling ligand, JAGGED1 (JAG1) as disease-causing
(Byrne, Harrod, Friedman, & Howard-Peebles, 1986; Krantz et al.,
1997; Li et al.,, 1997; Oda et al,, 1997; Pollet et al., 1997; Spinner
et al, 1994). Since then, the molecular etiology of the disease
has been defined by Notch signaling dysfunction, and pathogenic
variants in the Notch signaling receptor NOTCH2 have also been
identified, although they are found less frequently than those in JAG1
(Kamath et al., 2012; McCright, Lozier, & Gridley, 2002; McDaniell
et al., 2006).

JAG1 and NOTCHZ2 are both single-pass transmembrane proteins,
consisting of 26 and 34 exons, respectively. Direct communication
between the two proteins is accomplished through interaction of the
extracellular domain of JAG1 (ligand) with NOTCH2 (receptor).
Numerous functional motifs are required for this interaction, including
the delta-serate-lag2 (DSL) domain, the C2-like domain, and the
epidermal growth factor-like (EGF-like) repeats on JAG1 and extra-
cellular EGF-like repeats located on NOTCH2 (Chillakuri et al., 2013;
Kopan & llagan, 2009; Lindsell, Shawber, Boulter, & Weinmaster,
1995). NOTCH2 also contains a series of Ankyrin (ANK) repeats,
which are required for signal propagation and allow for the interaction
of the intracellular region of NOTCH2 with transcription factors
(Tamura et al., 1995). There have been many recent reviews on ALGS,
JAG1, and NOTCH2 that we recommend for additional reference (Bray,
2016; Gilbert & Spinner, 2017; Grochowski, Loomes, & Spinner, 2016;
Saleh et al., 2016).

Pathogenic variants in JAG1 are most commonly protein-
truncating, including frameshift, nonsense, exon level deletions,
and splice site, though missense variants and whole gene deletions
have also been reported (Crosnier et al., 1999; Warthen et al,,
2006). The predominance of these protein-truncating variants
along with the observation that both whole gene deletions and
intragenic pathogenic variants cause similar phenotypes, supports
a haploinsufficient disease mechanism (Oda et al.,, 1997; Saleh
et al., 2016; Spinner et al., 2001). Early studies aimed to determine
whether the location of pathogenic variants is able to predict the
clinical manifestation of the disease do not support a genotype-
phenotype correlation (Crosnier et al., 1999; Spinner et al., 2001).
Conversely, a high degree of variable expressivity has been
observed, and often significant phenotypic variability is reported
in families harboring the same pathogenic variant (Dhorne-Pollet,
Deleuze, Hadchouel, & Bonaiti-Pellie, 1994; Elmslie et al., 1995;
Emerick et al., 1999; lzumi et al., 2016; Kamath, Bason, Piccoli,

Krantz, & Spinner, 2003; Kamath, Krantz, Spinner, Heubi, & Piccoli,
2002; Krantz et al., 1998; Shulman, Hyams, Gunta, Greenstein, &
Cassidy, 1984). These observations have led to the hypothesis that
a second gene could act as a modifier, and studies have been
carried out to test this theory. It has been proposed that defects in
glycosylation of the mature JAG1 and NOTCH2 proteins will result
in mutant proteins that are improperly trafficked and not
effectively expressed at the cell membrane. Lunatic Fringe, Radical
Fringe, Manic Fringe, and POGLUT1 are all known glycosyltrans-
ferases that have been studied in this capacity, and data is
supportive of a role for these proteins in modifying the effects of
pathogenic JAG1 variants (Ryan et al., 2008; Thakurdas et al.,
2016). A second candidate genetic modifier, THROMBOSPONDIN2
(THBS2), was identified from a Genome Wide Association Study
(GWAS) that stratified ALGS patients with pathogenic variants in
JAG1 by whether they had mild or severe liver disease (Tsai et al.,
2016). THBS2 encodes an extracellular matrix protein that is
expressed in murine bile ducts and can interact with Notch
signaling. Data from the GWAS study suggested that individuals
with a pathogenic JAG1 variant and increased THBS2 expression
could be at risk for developing more severe liver disease (Tsai
et al., 2016).

The pathogenic mechanism of NOTCHZ2 variants has been far less
clear than with JAG1. Fewer pathogenic NOTCH2 variants have been
identified, and unlike with JAG1, these variants are predominantly
missense (Kamath et al., 2012). It is possible that NOTCH2 is less
tolerant than JAG1 to missense variants, resulting in functional
haploinsufficiency, however other mechanisms of pathogenesis may
be in effect. The higher frequency of missense variants in NOTCH2
may also indicate that NOTCH2 is intolerant of more severe, loss of
function variants. As with pathogenic JAG1 variants, genotype-phe-
notype correlations have not been noted with NOTCH2 variants,
though very few patients with NOTCHZ2 variants have been described
to date. However, it has been reported on a preliminary basis that the
clinical presentation of individuals with pathogenic NOTCH2 variants
is different from those with pathogenic JAG1 variants, with a lower
prevalence of cardiac involvement, vertebral anomalies, and facial
features (Kamath et al.,, 2012).

In 1997, before the discovery that pathogenic variants in JAG1
cause ALGS, our lab initiated a clinical study to identify the causal
gene for ALGS. Because that time, we had enrolled 401 probands
who are clinically-consistent with ALGS, as well as numerous affected
and unaffected relatives to test for inheritance. We and others have
previously described 608 JAG1 variants and 16 NOTCH2 variants
that are thought to cause disease (Fokkema et al., 2011; Landrum
et al.,, 2018; Stenson et al., 2017). Here, we report an additional 86
novel JAG1 and three novel NOTCH2 pathogenic variants, and
provide functional validation for nine previously uncharacterized
JAG1 missense variants. Through this mutation update, we aim to
combine our data of 27 years with previously published data of
known pathogenic and likely pathogenic variants to provide up-to-
date statistics on the frequency and type of JAG1 and NOTCH2
variants in ALGS. In addition, we will discuss mutation trends that we
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and others have observed in both the JAG1 and NOTCHZ2 genes as a
resource for missense variant interpretation and classification.
Finally, we will end with our thoughts on how best to understand
the small population of patients with clinically defined ALGS who do
not have a pathogenic variant in JAG1 or NOTCH2 and are currently
molecularly uncharacterized.

2 | MATERIALS AND METHODS

2.1 | Patient cohort

We studied 401 probands whose phenotypic features met the
clinical definition of ALGS based on the presence of three out of five
characteristic liver, heart, eye, vertebral, and/or facial phenotypes
as previously described (Alagille et al., 1987; Emerick et al., 1999;
Kamath et al., 2003). The majority of these probands were
ascertained from the Liver Clinic at the Children’s Hospital of
Philadelphia (CHOP), therefore, enriching our patient population
for liver disease and potentially for JAG1 pathogenic variants
associated with cholestasis. We also include data from 111 affected
family members.

Some of the patients in our cohort have been previously reported
and are included here to provide a comprehensive summary of our
clinical study, with prior reports referenced in all corresponding
tables (Bauer et al., 2010; Colliton et al., 2001; Heritage et al., 2000;
lzumi et al., 2016; Kamath et al., 2003; Kamath et al., 2009; Kamath
et al.,, 2012; Krantz et al., 1998; Laufer-Cahana et al., 2002; Li et al.,
1997; Lin et al., 2012; McDaniell et al., 2006; Morrissette, Colliton, &
Spinner, 2001; Oda et al., 1997; Warthen et al., 2006). Our cohort
contains both probands and affected family members. All patients
were enrolled into our study using a consent protocol approved by
the Institutional Review Board at CHOP. All JAG1 variants described
in our study can be retrieved from an already existing Locus Specific
Database (LSDB) using the following link: https://databases.lovd.nl/
shared/genes/JAG1.

2.2 | Literature search

The majority of reported JAG1 and NOTCH2 variants are found in
The Human Gene Mutation Database (HGMD® Professional 2019.1,
last queried on May 3, 2019; Stenson et al., 2017). Variants were
filtered to include only those that were reported to be disease-
causing (“DM”) and were associated with ALGS. Variants were
also identified from ClinVar (last queried on May 3, 2019), and were
filtered to include only those that were reported as “pathogenic” or
“likely pathogenic” and listed “Alagille syndrome” as the associated
condition (Landrum et al., 2018). A literature search was also
performed on PubMed, with a last check on May 3, 2019. Finally,
Leiden Open Variation Database (LOVD V3.0) was last queried
on May 3, 2019 for JAG1, and variants were filtered to include
only those reported as “pathogenic” or “likely pathogenic” (Fokkema
et al,, 2011).

2.3 | Mutation identification

Genomic DNA extracted from whole blood was screened first by
polymerase chain reaction (PCR) and Sanger sequencing of all 26
exons of the JAG1 gene. Samples in which no pathogenic or likely
pathogenic variant was identified were further screened by MLPA
or single nucleotide polymorphism (SNP) array analysis of the JAG1
gene to identify copy number variants. If a sample was not found to
have a pathogenic or likely pathogenic variant in JAG1 by both PCR
and MLPA analysis, the sample was screened for pathogenic variants
in the NOTCH2 gene by PCR and Sanger sequencing. Patients who
were diagnosed as clinically consistent with ALGS, but in whom no
pathogenic or likely pathogenic variant was identified by this three-
tiered approach were classified as mutation-negative. PCR-free
whole genome sequencing (150 bp paired-end reads) at an average
depth of 30x was performed using HiSeq X at the Center for Applied
Genomics at the Children’s Hospital of Philadelphia.

2.4 | Mutant JAG1 constructs

Human JAG1 cDNA has previously been cloned into the pBABE-
puro retroviral expression vector (Morrissette et al., 2001). Point
mutations were introduced using the QuikChange Site-Directed
Mutagenesis Kit (Stratagene, San Diego, CA) and resultant clones
were sequenced for mutation verification. Stable cell lines were
generated by infecting NIH-3T3 cells with these mutant retroviral
vectors as previously described (Morrissette et al., 2001).

2.5 | Enzymatic assays

Trypsin: Cells were treated with 2ml of 0.25% trypsin in EDTA
(Gibco, Gaithersburg, MD) at 37°C for 10 min before inactivation
and protein extraction using NP40 lysis buffer (1% NP40, 150 mM
NaCl, 50 mM Tris-HClI, final pH 8.0) plus 1M DTT, 25 uM PMSF,
and 0.1 pg/ml aprotinin and leupeptin.

Endo H: 50 micrograms of protein obtained from NP40 lysis
were treated with 1,500 units of Endo H (New England Biolabs,
Ipswitch, MA) at 37°C for 1 hr.

2.6 | Western blot analysis

Western blot analysis was performed according to standard
protocols. JAG1 was detected using an antibody recognizing the
C-terminal region (H-114, Santa Cruz Biotechnology, Inc., Dallas,
TX) and a HRP-goat anti-rabbit secondary antibody (Amersham, Inc.
Buckinghamshire, United Kingdom).

2.7 | Immunofluorescence

Stable cell lines were plated on culture slides and treated as
previously described (Bauer et al., 2010). A JAG1 antibody (H-114;
Santa Cruz Biotechnology, Inc.) was used at a 1:40 dilution for

immunodetection.
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2.8 | Luciferase assays

Luciferase assays were performed as previously described
(Bauer et al., 2010). Briefly, cells transfected with 199 ng of
4xCBF-Luc reporter construct (Hsieh et al.,, 1996) and 1 ng of an
internal control SV40 Renilla construct (Promega, Madison, WI)
were cocultured with stable cell lines expressing mutant JAG1.
Firefly luciferase was normalized to Renilla luciferase and reported
as fold change over pBABE alone. All experiments were performed
in triplicate.

3 | VARIANTS IN JAG1

3.1 | Frequency and types of JAG1 pathogenic
variants

We identified 297 unique JAG1 pathogenic or likely pathogenic
variants in 378 of 401 (94.3%) probands in our cohort (Tables 1,2;
Figure S1). These variants encompass frameshift (nucleotide-level
deletions, duplications, insertions, and insertion-deletions), non-
sense (substitutions, start loss, stop gain), missense, splice site, in-
frame deletions, large gene deletions (single exon, multi-exon, or
full-gene deletions), partial gene duplications (multi-exon duplica-
tions), and complex rearrangements. Our list includes 86 novel
pathogenic variants that have not previously been reported
(Figure 1a). All 297 variants described in our study were submitted
to the existing LSDB on JAG1 (https://databases.lovd.nl/shared/
genes/JAG1).

Our data show that the most common mutation types are
frameshift (37%), followed by nonsense (22%), large gene deletions
(13%), missense (13%), splice site (12%), in-frame deletions (1%),
partial gene duplications (<1%), translocations (<1%), inversions
(<1%), and start loss variants (<1%; Figure S2).

Frameshift variants are predominantly caused by deletions
(51%) and duplications (40%), but are also caused by insertions-
deletions (indels, 8%), and rarely by insertions (1%). Seventy-
eight percent of nonsense variants are caused by single
nucleotide substitutions. Stop gain variants account for 20% of
nonsense variants, and occur through deletions (77%), indels
(15%), and duplications (8%). A single start loss variant accounts
for the remaining 2% of nonsense variants. The overwhelming
majority of splice site variants are due to single nucleotide
substitutions (83%), with the remaining 17% caused by
deletions, duplications, or indels at or near the splice site. The
incidence of each mutation type is relatively unchanged when
our data set is combined with all reported pathogenic and likely
pathogenic variants (totaling 694 unique variants), and has
also remained relatively stable in the 27 years because
pathogenic variants in JAG1 were first identified as the cause
of ALGS, suggesting that these frequencies are an accurate
indication of mutation-type prevalence in JAG1 for ALGS
(Crosnier et al., 1999; Stenson et al.,, 2017; Warthen et al.,
2006; Figure 2a).

3.2 | Large gene deletions

Large gene deletions differ in both length and in the location of their
breakpoints, two findings that have previously been used to suggest
that there is no specific genomic hotspot for rearrangement. It has
been recognized that patients with 20p deletions can have other
abnormalities, including developmental delay, hearing loss, and
autism, among others, and work by Kamath et al. defined
a 5.4 Mb region, including 12 genes, within which deletions led to
ALGS-specific disease phenotypes (Kamath et al., 2009). They further
showed that individuals with deletion variants extending distally or
proximally from this region all presented with additional phenotypes.
Of the 44 deletions that we report here, we provide mapped
breakpoints for 23 (52%) of them, of which 3 have not previously
been described. These three deletions include two that fall within the
5.4 Mb ALGS-specific region (257 and 861 Kb) and one that is larger
(10.57 Mb). Clinical data from the two patients with the smaller
deletions does not include phenotypes outside of ALGS; however, we
only have records from infancy and we cannot speculate whether
additional conditions arose with age. Clinical data from the patient
with the 10.57 Mb deletion includes obesity and significant develop-

mental delay.

3.3 | JAG1 missense variants

Missense variants were found throughout the entire extracellular
region of the gene, with a statistically significant overrepresentation
(p =.0002; unpaired, two-tailed t test) of missense variants clustering
within the first 6 exons of the gene, an observation that has
previously been reported (Masek & Andersson, 2017; Spinner et al.,
2001; Figure S3). The statistical significance increases (p <.0001;
unpaired, two-tailed t test) when reported pathogenic or likely
pathogenic missense variants that are not present in our cohort are
added to our data set (Figure 3). Overall, 15% of all JAG1 pathogenic
or likely pathogenic variants (our cohort and previously reported
variants, n=104 of 694) are missense. Almost a quarter of these
JAG1 missense variants involve the gain or loss of a cysteine within
the EGF-like domain (n =22 of 104, 21% of total reported and novel
variants). The importance of cysteine in the proper folding of the
EGF-like domain in both ALGS as well as other syndromes, including
cerebral autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy (CADASIL) and Marfan syndrome, has
previously been described, and it is accepted that variants of this
kind in this region are very likely disease-causing (Bauer et al., 2010;
Haritunians et al., 2005; Le Caignec et al., 2002; Schrijver, Liu, Brenn,
Furthmayr, & Francke, 1999; Whiteman et al., 2007). To further
understand cysteine changes in relation to disease, we plotted the
frequency and distribution of cysteine changes observed in gnomAD
compared to all cysteine changes reported in ALGS (including our
cohort), and found that cysteine loss was more prevalent in the
disease population whereas cysteine gain was overrepresented in the
control population derived from gnomAD, suggesting a greater

tolerance for cysteine gain in healthy individuals (Figure 4). We also
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FIGURE 1 Schematic of JAG1 and NOTCH2 proteins with all reported and novel pathogenic variants. (a) JAG1 and (b) NOTCH2 proteins
are depicted with all reported pathogenic variants shown below the schematic and all novel pathogenic variants reported here shown above the
schematic. Dashed lines within the protein indicate exon boundaries and numbers indicate amino acid coordinates. Protein domains include
(JAG1): signal peptide (lavender), DSL domain (salmon), EGF-like repeats (blue), cysteine-rich domain (yellow), and transmembrane domain
(purple) and (NOTCH2): EGF-like repeats (blue), LNR domain (yellow), transmembrane domain (purple), and ANK repeats (green). RefSeq
NM_000214.2 (JAG1) and NM_024408.3 (NOTCH?2). Images were prepared using ProteinPaint software from Saint Jude Children’s Research

Hospital-Pediatric Cancer Data Portal (Zhou et al., 2016)

observed an inverse correlation in clusters of reported pathogenic or
likely pathogenic variants found in the disease population compared
to clusters of variants reported in gnomAD, highlighting possible
hotspots for pathogenic cysteine variant occurrence as well as
genomic regions that appear more tolerant to cysteine changes.
Given the propensity for cysteine-loss in the disease population,
we studied the functional effect of nine cysteine-loss missense
variants by assaying for cellular localization, glycosylation, and Notch
signaling ability. Wild type JAG1 is normally expressed on the cell
surface, where it can interact with Notch receptors and activate
Notch signaling. Immunofluorescence of stable cell lines showed
perinuclear retention of six different JAG1 variants (p.Cys78Ser,
p.Cys92Tyr, p.Cys229Tyr, p.Cys438Phe, p.Cys902Ser, and p.Cy-
s911Tyr), indicating that these mutant JAG1 proteins are not
properly localized (Figure 5). The remaining three variants (p.Cy-
s271Arg, p.Cys693Tyr, and p.Cys714Tyr) showed weak expression of
JAG1 on the cell membrane as well as perinuclear retention,
indicating a partial defect in protein localization. To complement
these data, we treated cells expressing each JAG1 missense variant
with trypsin, which degrades proteins present on the cell surface, but
will not degrade proteins that are trapped intracellularly. Again, the
same six missense variants found to show complete perinuclear

retention (p.Cys78Ser, p.Cys92Tyr, p.Cys229Tyr, p.Cys438Phe,

p.Cys902Ser, and p.Cys911Tyr) were similarly protected from
proteolysis by trypsin, indicating that they were not present on the
cell surface, whereas the three missense variants with weak cell
surface expression (p.Cys271Arg, p.Cys693Tyr, and p.Cys714Tyr)
were likewise partially susceptible to proteolysis (Figure 6).

Wild-type JAG1 harbors complex-type N-glycans that are
unaffected by endoglycosidase H (Endo H), an enzyme that cleaves
high-mannose and hybrid-type N-glycans, but not complex-type N-
glycans (Bauer et al,, 2010; Freeze & Kranz, 2010; Morrissette et al.,
2001). Sensitivity of glycoproteins to Endo H that are normally
resistant, like JAG1, typically indicates that the protein is trapped in
the secretory pathway, likely sequestered in either the endoplasmic
reticulum or the cis Golgi (Freeze & Kranz, 2010). Western blots from
all nine missense variants indicate the presence of a smaller
molecular weight protein after treatment with Endo H, whereas
the molecular weight of the wild-type JAG1 is unaltered, indicating
improper posttranslational glycosylation of all nine missense variants
(Figure 6). As with the trypsin assay, three of the missense variants
(p.Cys271Arg, p.Cys693Tyr, and p.Cys714Tyr) displayed partial
cleavage, indicating that these JAG1 proteins are partially trapped
in the secretory pathway.

Using a luciferase assay, we further tested the ability of each

mutant protein to activate Notch signaling by exposure to a reporter
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FIGURE 2 Incidence of all reported and novel JAG1 and NOTCH2
mutation types. (a) JAG1 protein-truncating pathogenic variants are
shown in blue color tones and include: frameshift (n = 303), nonsense
(n=113), splice site (n=89), and gross deletion (n = 70). JAG1 non-
protein-truncating pathogenic variants are shown in pink color tones
and include: missense (n = 104), in-frame deletion (n =9), gross
duplication (n = 3), translocation (n = 2), and inversion (n = 1). (b)
NOTCH2 protein-truncating pathogenic variants are shown in blue
color tones and include: frameshift (n = 2), nonsense (n=3), and
splice site (n =1). NOTCH2 non-protein-truncating pathogenic
variants are shown in pink color tones and include: missense (n = 13)

construct containing four tandem Notch-responsive CBF binding
sites in the promoter region of the luciferase gene (Hsieh et al.,
1996). Here, we found that seven of the nine mutants were unable to
increase luciferase activity (p.Cys78Ser, p.Cys92Tyr, p.Cys229Tyr,
C271R, p.Cys438Phe, p.Cys902Ser, and p.Cys911Tyr) whereas two
retained Notch signaling function (p.C693Y and p.C714Y; Figure 7).

The majority of the variants we tested are defective in all three
categories (trafficking, glycosylation, and Notch signaling ability), and
are truly null alleles. Enzymatic data from three variants suggests
that they are partially trapped within the secretory pathway in
agreement with immunofluorescence staining showing defective
trafficking (p.Cys271Arg, p.Cys693Tyr, and p.Cys714Tyr). Of those
variants, p.C271R is unable to activate Notch signaling, and therefore
cannot propagate a signal. The other two variants, p.C693Y and
p.C714Y, are able to activate Notch signaling to a similar degree as

wild type JAG1, and therefore impaired signaling is not the molecular
basis for the ALGS phenotypes seen in individuals with these
mutations. Our other assays do show a partial defect in cellular
localization, although some protein is still expressed on the cell
surface where it could theoretically participate in Notch signaling.
Both probands with the p.C693Y and p.C714Y variants in our cohort,
however, do not have features that would distinguish them from
other individuals with ALGS, and their overlapping symptoms include
bile duct paucity, peripheral pulmonic stenosis, and facies, with
cholestasis, liver transplant, heart murmur, and posterior embry-
otoxon also present in the individual with the c.C714Y variant.
Variants have previously been described to be “leaky,” meaning that
proteins retain partial, albeit reduced, wild type function, and indeed
we included the known pathogenic variant p.G274D as a positive
control, which has been shown to have impaired signaling ability but
only a partial loss in cellular localization/trafficking (Bauer et al.,
2010; Lu, Morrissette, & Spinner, 2003; Morrissette et al., 2001).
Efforts to identify whether variants that retain some partial protein
function lead to milder or cardiac-specific clinical features have
proven inconclusive, but suggest that there may be a threshold for
JAG1 haploinsufficiency (Bauer, 2010). It is also possible that there
are innate cellular differences between the in vitro signaling assay
and the in vivo environment of the developing liver. Vascular smooth
muscle cells, which express NOTCH3 (Baeten & Lilly, 2017), are also
likely to be a major source of JAG1 during biliary development, and it
is possible that these mutations (p.C693Y and p.C714Y) enhance
binding of JAG1 and NOTCH3, thus, reducing JAG1 function through
NOTCH2 in vivo. A functional understanding of how these two
variants result in ALGS phenotypes that are indiscriminate from
those caused by other mutations suggests that biological relevance
may be a possible limitation of the in vitro signaling assay. These data
highlight a heterogeneity in the functional consequences of patho-
genic ALGS variants.

4 | VARIANTS IN NOTCH2

We identified nine unique NOTCH2 variants in 10 of 401 (2.5%)
probands in our cohort. These variants are predominantly missense,
but also include splice site and nonsense variants (Table 3; Figure S4).
Three of these pathogenic NOTCH2 variants have not previously
been described, which brings the total number of known pathogenic
NOTCH2 variants to 19, and we describe the clinical features of the
individuals with these novel variants in Table S1. All three of the
reported nonsense variants cluster within the intracellular domain,
with two occurring within the ANK repeats. Pathogenic variants have
not been identified in every exon, and it is unknown whether this, or
the intracellular localization of nonsense variants, is due to mutation
hotspots in the gene or the small sample size of affected people with
confirmed pathogenic NOTCH2 variants.

When combined with reported data, missense variants remain
the most common mutation type for NOTCH2 (n = 13 out of 19, 68%;
Figure 1b and Figure 2b; Kamath et al., 2012; Liu, Wang, Dong, Feng,
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FIGURE 3 JAG1 missense variants cluster in the N-terminus. (a) Schematic showing all reported (lower) and novel (upper) missense
mutations in JAG1. Dashed lines within the protein indicate exon boundaries and numbers indicate amino acid coordinates. (b) Distance in
nucleotides between missense mutations within exons 1-6 and exons 7-26. Statistical significance (p <.0001) was calculated using an unpaired,
two-tailed t test. RefSeq NM_000214.2. Protein schematic was prepared using ProteinPaint software from Saint Jude Children’s Research
Hospital-Pediatric Cancer Data Portal (Zhou et al., 2016)

& Huang, 2018; McDaniell et al., 2006). A majority of missense 6
variants are found in exons 7 and 8 (n=7 of 13; 54%) and an

additional four missense variants occur in exons 31 and 32 (31%), 6.1 |

| CLINICAL RELEVANCE

Classification of JAG1 missense variants

indicating that screening of these 4 exons alone captures 85% of

. . . . JAG1 variants that result in a truncated or absent protein comprise
reported pathogenic or likely pathogenic variants.

the largest group of reported disease-causing variants (83%). Given
the proposed haploinsufficient nature of the disease, these variants
5 | MUTATION NEGATIVE PROBANDS are very likely to be disease-causing. There is more of a need,

however, to confirm the pathogenicity of missense variants, both in

Combined sequencing of JAG1 and NOTCH2 along with copy number JAG1 (n =104 of 694; 15%) and in NOTCH2 (n =13 of 19; 68%). We

variant analysis of JAG1 by MLPA did not result in pathogenic variant
identification in 13 out of 401 (3.2%) probands in our cohort, despite
this group of people meeting the diagnostic criteria for ALGS

have shown here that JAG1 missense variants involving the gain of a
cysteine appear to be more tolerated, as they are overrepresented in
the general population, whereas those involving the loss of a cysteine

(Table S2). are more commonly associated with disease. Ultimately, we hope
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FIGURE 4 Gain of cysteine missense variants are more tolerated in JAG1. Schematic showing all missense variants involving gain (blue) or
loss (red) of a cysteine in JAG1 from control samples present in gnomAD (lower) and in patients with ALGS (upper). The disease population
includes combined data from HGMD, ClinVar, LOVD, and novel mutations reported here. Numbers within the circle indicate the number of
alleles seen for each variant in gnomAD. Circle size and height is proportional to the number of probands with that variant in the disease
population. The concentric circle in the ALGS cohort indicates multiple variants at the same amino acid position (p.C78Y, p.C78G, p.C78R, and
p.C78S). RefSeq NM_000214.2. Protein schematic was prepared using ProteinPaint software from Saint Jude Children’s Research
Hospital-Pediatric Cancer Data Portal (Zhou et al., 2016)
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FIGURE 5 Cysteine-loss missense variants are defective in protein localization. Confocal microscopy of stably-transfected NIH-3T3 cells
expressing the following controls: (a) wild type JAG1 and two positive controls with known nuclear retention and perinuclear localization (b)
p.G274D and (c) p.L37S (Lu et al., 2003; Morrissette et al., 2001). (d-I) Cysteine-loss missense variants all show protein clustering near the

nuclei

that these observations are able to better guide missense variant
interpretation in ALGS.

Functional characterization is necessary to conclusively classify
missense variants, and our group and others have shown that many
pathogenic missense variants result in improper protein folding,
incorrect cellular localization, and/or a defect in Notch signaling
activation (Bauer et al., 2010; Guarnaccia, Dhir, Pintar, & Pongor,
2009; Lu et al., 2003; Morrissette et al., 2001; Tada, Itoh, Ishii-
Watabe, Suzuki, & Kawasaki, 2012). However, these studies have
also categorized variants that were thought to be disease-causing as
benign, which highlights the need for functionally validating
individual variants (Bauer et al., 2010; Morrissette et al., 2001; Tada
et al, 2012). Interestingly, while we and others had previously
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FIGURE 6 Cysteine-loss missense variants are differentially
sensitive to enzymatic proteolysis. Western blot of protein lysates
from stably transfected NIH-3T3 cells treated with Endo H or
Trypsin. Controls include wild type JAG1 (not sensitive), p.L37S
(sensitive), and p.G274D (partially sensitive)
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FIGURE 7 Luciferase assay of cysteine-loss missense variants

showing reduced JAG1 signaling. Luciferase assay of NIH-3T3 cells
transfected with 4XCBF-luciferase reporter construct and
cocultured with wild type or mutant JAG1-expressing cells. RLU
signals were normalized to internal Renilla controls. p.L37S and
p.G274D are included as negative controls. All variants showed a
statistically significant decrease in luciferase activity (unpaired, two-
tailed t test) when compared to wild type, with the exception of
p.C693Y, which was statistically unchanged from wild type, and
p.C714Y, which showed a statistically significant increase in
luciferase activity from wild type. Red bars indicate variants that are
not expressed on the cell membrane and blue bars indicate variants
that have some partial expression on the cell membrane (based on
results from Figures 5 and 6)
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TABLE 3 NOTCH2 pathogenic variants reported in our study

Novel Frequency in gnomAD References

Affected family members

Probands

Protein domain

EGF9

Coding effect

Protein change
p.Cys373Arg

p.Pro383Ser

DNA variant
c.1117T>C
c.1147 C>T
c1331G>A
c.1418 A>G
c.1418 A>T
c.4967 A>G
c.5857C>T

Exon

Kamath et al. (2012)

Not present

Missense

Kamath et al. (2012)

Not present

No

EGF10
EGF11
EGF12
EGF12

Missense

McDaniell et al. (2006)

Not present

Missense

p.Cys444Tyr
p.Asp473Gly

Not present

Yes

Missense

Not present

Yes

Missense

p.Asp473Val

16/251474 Alleles

Yes

Missense

p.GIn1656Arg

27
32

Kamath et al. (2012)

Not present

Missense ANK4

p.Arg1953Cys

Not present McDaniell et al. (2006)
Kamath et al. (2012)

No

Splice site

c.5930-1G>A
c.6007 C>T

Intron 32

33
Note: RefSeq NM_024408.3.

Not present

No

ANK6

Nonsense

p.Arg2003*
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proposed that JAG1 variants that are not wholly defective in both
Notch signaling ability and proper cellular localization might confer a
milder, non-ALGS phenotype, we show here for the first time that
these variants are present in patients with full features of ALGS.

The majority of JAG1 missense variants do not result in the gain
or loss of a cysteine and/or are not found within one of the EGF-like
domains (82 out of 104, 78% of reported and novel variants). Many
of these variants are found within the first six exons of the JAG1
gene, which we show contains a statistically significant greater
number of missense variants than exons 7-26 (Masek & Andersson,
2017; Spinner et al., 2001). These first six exons encode the signal
peptide, the DSL domain, and the first two EGF-like domains of the
JAG1 protein. The DSL domain is required for effective binding to
NOTCH2, whereas the signal peptide is necessary for proper
trafficking of the mature protein to the cell membrane (Kopan &
llagan, 2009; Lindsell et al., 1995). The finding that these regions
contain a hotspot for pathogenic missense variants suggests that
these functional motifs are particularly susceptible to single nucleo-
tide changes. However, a recent study in mice aimed to analyze the
missense variant H268Q, which occurs in the homologous hotspot
region in mice, surprisingly showed that the mature Jag1 protein was
able to interact and signal through Notch2 although still resulting in
eye, heart, and liver defects similar to ALGS (Andersson et al., 2018;
Hansson et al., 2010). These results offer insight into how pathogenic
missense variants in this region may affect JAG1 protein function and
ultimately result in ALGS and highlight the importance of functionally
validating individual variants to confirm whether the same type of
physiological consequence is observed.

We have combined our data with sequence classification
criteria outlined by the American College of Medical Genetics
(ACMG) to categorize all nine missense variants for which we
provide functional data in this report, as pathogenic or likely
pathogenic (Richards et al., 2015; Table S3). Along with these nine
cysteine missense variants, we have additionally reviewed the
remaining 29 missense variants that we report in our cohort and
have classified 32 as pathogenic or likely pathogenic and six as
variants of uncertain significances (VUSs) (Table S3). The majority
of these variants have been previously reported, many with
functional data, which supports their pathogenicity. However, 6
of 38 variants (16%) have limited evidence to support disease
causality. In most instances, the identification of more individuals
with ALGS who have these variants or functional validation will be
enough to elevate their classification to likely pathogenic. One
variant reported here is present at a frequency of 17/282830
alleles (p.Arg889GIn), and we classified this as a VUS.

6.2 | Classification of NOTCH2 missense variants

Unlike JAG1, pathogenic variants in NOTCH2 are predominantly
missense (13 of 19, 68% reported and novel variants). We observed
two hubs for increased pathogenic missense variant frequency in the
NOTCH2 gene, which together account for 85% of reported missense
variants. The first hub occurs in exons 7 and 8, which alone harbor
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54% of reported pathogenic missense variants, of which we see five
in our cohort. These two exons encode EGF-like domains (EGF
repeats 9-12) of NOTCH2. The second hub occurs in exons 31 and
32, which accounts for 31% of reported pathogenic missense
variants, of which we see four in our cohort. These two exons code
for the Ankyrin (ANK) repeat domain of NOTCH2. A few of these
missense variants have been studied to determine their functional
consequence by assaying their ability to be activated by JAG1 using
luciferase reporters, which confirmed pathogenicity in five out of six
tested variants (Kamath et al., 2012). Little else has been done to
specifically interrogate NOTCH2 missense variants in the context of
ALGS, however a study in fruit flies found that a specific missense
variant, V361M, located within an EGF-like domain was able to
discriminate between ligands, such that it effectively abrogated the
ability of Serrate (Jagged homolog) ligands to signal through NOTCH,
whereas Delta (Delta-like homolog) ligands were able to signal
normally, thus defining a domain that specifically affects Serrate-
binding (Yamamoto et al., 2012). Additional work in NOTCH1 has
identified a minimal region of EGF repeats (EGF repeats 6-15) that
are sufficient to fully activate signaling in an in vitro reporter assay
(Andrawes et al., 2013), and this combined with work by Yamamoto
et al. (2012) supports a growing hypothesis that missense variants
within this region are less tolerated and more likely to confer a
functional consequence. It will be interesting to see if some of the

identified missense variants in ALGS act similarly.

7 | DIAGNOSTIC RELEVANCE AND
FUTURE PROSPECTS

Results from our comprehensive 27-year, single-center study
provides updated statistics regarding the incidence of JAG1 (94.3%;
n=2377 out of 401), NOTCH2 (2.5%; n= 10 of 401), and mutation
negative cases (3.2%; n= 13 of 401) of ALGS. In addition, we report
86 novel JAG1 pathogenic variants and three novel NOTCH2
pathogenic variants. When combined with previously published data,
we provide the most up-to-date data on the frequency of mutation-
type seen in patients with JAG1 or NOTCH2 pathogenic variants.
Successful screening of patients necessitates both sequencing
and copy number analysis, which can be carried out by Sanger
sequencing and MLPA, or next generation sequencing (NGS) with
copy number variation analysis across the gene (Gilbert, 2018;
Spinner, Leonard, & Krantz, 2013). The current standard is to
sequence all exons in JAG1, which should identify approximately 85%
of ALGS pathogenic variants. If CNV analysis is not carried out
simultaneously with sequencing, second tier diagnostics involves
large deletion/duplication analysis through either multiplex ligation-
dependent probe amplification (MLPA), chromosomal microarray
(CMA), or fluorescence in situ hybridization (FISH), which should
identify an additional 9% of pathogenic variants. Samples without an
identified JAG1 pathogenic variant would then undergo Sanger
sequencing for NOTCH2, which should uncover an additional 2-3% of

pathogenic variants.

A notable finding from our study is the percentage (3.2%) of
mutation negative individuals that we describe. These individuals have
all met the standards for clinical classification of ALGS, but do not have
a pathogenic variant in JAG1 or NOTCH2. We hypothesize that these
include patients with JAG1 variants not previously identified by
conventional testing (Sanger sequencing and MLPA), as well as a
subset of patients that will be found to have a different diagnosis with
overlapping features of Alagille syndrome. The best approach towards
a molecular understanding of this population is to perform more
comprehensive sequencing methodologies, including whole exome
sequencing (ES), whole genome sequencing (GS), and/or RNA sequen-
cing (RNAseq). Using ES, we have previously identified compound
heterozygous pathogenic variants in the gene ATP8B1, a gene involved
in progressive familial intrahepatic cholestasis type | (PFIC1) in a
patient with overlapping features of ALGS and PFIC1 (Grochowski
et al,, 2015). Individuals with ABCB4 deficiency, which results in a
variety of hepatic phenotypes including PFIC Type 3, have also been
misdiagnosed as having ALGS (Schatz et al., 2018). Similarly, siblings
with an initial diagnosis of ALGS were found to have a pathogenic
variant in the NEK8 gene, which is commonly mutated in renal-hepatic-
pancreatic-dysplasia 2 (RHPD2) and in nephronophthisis (NPHP9), and
resulted in a reclassification of the disease to encompass a spectrum of
disorders that involve NEK8 pathogenic variants rather than ALGS
(Rajagopalan et al., 2016). These studies suggest that full evaluation of
our 13 mutation negative individuals, which has not yet been
performed, may lead to disease reclassification.

Given the obvious molecular etiology of ALGS as a disease of
Notch signaling dysfunction, we anticipate that regulatory regions
within JAG1 or NOTCH?2, or regions within those two genes that are
missed by more traditional sequencing technologies, including ES, are
the most likely candidates for novel molecular discovery. The
advanced technology provided by GS is able to identify more
complicated structural variants in JAG1, and indeed we describe
here a partial gene deletion and an inversion detected by GS
(Rajagopalan et al., in preparation). We are confident that a larger
subset of mutation negative individuals with a clear clinical indication
of ALGS will be definitively diagnosed as we screen this cohort.

8 | CONCLUSIONS

Overall, our decades-long study on ALGS has allowed us to
accumulate comprehensive information on the types and frequencies
of mutations in ALGS. We report an additional 86 JAG1 pathogenic
variants and three NOTCH2 pathogenic variants, bringing the total
number of described variants to 694 and 19, respectively (Stenson
et al, 2017). We find that 94.3% of individuals with clinically
diagnosed ALGS have a pathogenic variant in the JAG1 gene, 2.5%
have a pathogenic variant in the NOTCH2 gene, and 3.2% are
molecularly uncharacterized. We caution other researchers and
clinicians on the functional relevance of missense variants, both in
JAG1 and particularly in NOTCH2, where they predominate. Finally,

we suggest that NGS strategies may best interrogate the small
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population of molecularly undiagnosed patients, and that these
approaches should prioritize screening of JAG1, NOTCHZ2, and of
other Notch signaling genes and regulatory regions.
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