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Abstract
Antenatal treatment with synthetic glucocorticoids is commonly used in pregnant women at

risk of preterm delivery to accelerate tissue maturation. Exposure to glucocorticoids during

development has been hypothesized to underlie different functional gastrointestinal (GI)

and motility disorders. Herein, we investigated the impact of in utero exposure to synthetic

glucocorticoids (iuGC) on GI function of adult rats. Wistar male rats, born from pregnant

dams treated with dexamethasone (DEX), were studied at different ages. Length, histologic

analysis, proliferation and apoptosis assays, GI transit, permeability and serotonin (5-HT)

content of GI tract were measured. iuGC treatment decreased small intestine size and

decreased gut transit. However, iuGC had no impact on intestinal permeability. iuGC
differentially impacts the structure and function of the GI tract, which leads to long-lasting

alterations in the small intestine that may predispose subjects prone to disorders of the GI

tract.

Introduction
The intrauterine environment is crucial for normal structural and functional development.
Exposure to prenatal adverse events cause persistent alterations over the lifespan [1]. Glucocor-
ticoids (GC) are prescribed in obstetric and paediatric pathologies, in particular to pregnant
women at risk of preterm delivery. Approximately 7% of pregnant women in Europe and
North America are treated with dexamethasone (DEX) or betamethasone to promote lung
maturation in foetuses [2]. GC are secreted in the adrenal cortex, under the control of the
hypothalamic-pituitary-adrenal (HPA) axis. A balanced HPA axis activity is required for nor-
mal foetuses development, since endogenous corticosteroids are essential for normal growth
and organogenesis during gestation [3]. The impact of in utero exposure to synthetic
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glucocorticoids (iuGC), on the brain, has been studied extensively in the past few decades.
Changes in behaviour, impairment in working memory and attention deficits have been
described in children born from mothers treated with synthetic GC during pregnancy [4–6]. In
animal studies, iuGC has been shown to induce anxiety in the offspring and predispose them to
depressive-like behaviour [7]. Importantly, the period of injection of DEX has been shown to
be critical for the long-lasting effects on behaviour in adulthood [8,9].

It is noteworthy that iuGC has been shown to disrupt the HPA axis [7–10]. Importantly, the
dysregulation of the HPA axis has been associated with different functional gastrointestinal
(GI) and motility disorders, such as Irritable Bowel Syndrome (IBS) [11–12]. IBS is character-
ized by chronic abdominal pain and altered bowel habits, associated with stress-related psychi-
atric disorders. It is the most common functional GI disorder, affecting 7–10% of the general
population [13]. Early adverse life events (EALs) have also been linked to IBS development in
adulthood [14, 15]. Accordingly, neonatal maternal separation (MS) in rodents induces IBS-
like features, such as visceral hyperalgesia, anxiety and gut dysmotility [16–23]. These features
are more evident after exposure to chronic stress, suggesting maladaptation to stress, as is seen
in IBS patients [16–20]. It is clear that EALs are associated with the development of psychiatric
disorders and functional GI alterations, but the impact of adverse events during gestation on
GI function remains unclear.

Using the iuGC animal model, which mimics the therapy given in pregnant women at risk
of preterm delivery, we intend to explore the impact of prenatal administration of DEX in GI
function.

Materials and Methods

Animals and prenatal treatments
All animal experiments were performed in accordance with National and European Commis-
sion guidelines for the care and handling of laboratory animals (European Union Directive
2010/63/EU) and were approved by the National Veterinary Directorate (DGV-023432) and
by the local Animal Ethical Committee (Subcomissão de ética em ciências da Vida e Saúde of
the Minho University Ethics committee). Female Wistar rats (~150–200 g) were obtained from
Charles River Laboratories (Barcelona, Spain). All animals were housed in an animal facility at
22°C, relative humidity of 55%, in a 12 h light and 12 h dark cycle, with food and water avail-
able ad libitum (diet 4RF21, Mucedola, Settimo Milanese, Italy). 2 or 3 females were housed
with a male and, in the day sperm was seen in a vaginal smear, was designated as day 1 of preg-
nancy. Pregnant females were housed individually and randomly assigned to the treatment
group iuGC or Control. Dams were injected with DEX (1 mg/kg/day in 4% ethanol/sesame oil,
1 mg/mL; Sigma-Aldrich, Saint Louis, MO, USA) or sesame oil (Sigma-Aldrich, Saint Louis,
MO, USA) subcutaneously on days 18 and 19 of pregnancy [7]. Few studies exist comparing
cortisol and GR affinity between rodents and humans; it is suggested that guinea pig GR has
4-fold lower affinity for synthetic GC (sGC) than human GR [24]. Thus, the dosage used in
this study (1mg/mL) has been found to be comparable to the dose used in pregnant women
(0.3–0.5 mg/kg) [25]. Weaning occurred at postnatal day 21 and male rats were housed 2 ani-
mals per cage, according to prenatal treatment (Control or iuGC). The offspring males, from
each dam were, divided in four groups in order to use the same birth colony at different ages:
24 hours and 1, 3 and 8 months old. We used 8 control and 10 iuGC damns. Both control and
iuGC had an average litter size of 8 with approximately 60% of males and 40% of females.).
Each time point represent different important human phases: third trimester of gestation, pre-
adolescence, beginning of adulthood and mature adulthood [26].
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Neonatal assessment
After spontaneous delivery at term (22 d), 2 new-borns male rats from each litter, were sacri-
ficed by decapitation. The abdominal cavity was opened and, after removing the small intes-
tine, the length was measured.

Handling and oral gavage
Prior to habituation to oral gavage, all animals were handled daily for 5 minutes, over one
week. Habituation to oral gavage took 5 days. On the 4th day animals received Fluorescein iso-
thiocyanate-conjugated (FITC) dextran 70 kDa (FD-70) (Sigma-Aldrich, Saint Louis, MO,
USA), to measure permeability; and, on the last day, animals received Carmine red (Sigma-
Aldrich, Saint Louis, MO, USA) one hour before sacrifice, to measure gut transit. A curved-
stainless steel feeding needle with different lengths: 50 nm for 1 month old and 100 mm for 3
and 8 months old (Fine Science Tools, Heidelberg, Germany) was used to perform the gavage
technique. Animals were sacrificed by 1 mL intraperitoneally (i.p.) injection of a lethal dose of
pentobarbital (Eutasil 200mg/mL, Algés, Portugal).

Gastrointestinal permeability
In vivo GI permeability was measured one day before sacrifice. Rats were administered0.2 mL
FD-70, by oral gavage. FD-70 was dissolved in phosphate-buffered saline (PBS, pH 7.4) to
reach a concentration of50 mg/mL (Sigma-Aldrich, Saint Louis, MO, USA) [27]. One hour
after administration, venous blood was collected by tail vein puncture. Preliminary data
showed that at 1 hour most of carmine dye has not yet reached the colon. Thus, at this time
point we will be assessing small intestine function. Blood samples were centrifuged (10.000
rpm at 4°C) for 5 minutes. Plasma (50μl) was mixed with an equal volume of PBS (pH 7.4) and
added to a 96-well microplate. The concentration of fluorescein was determined by spectro-
photometry (Model 680 microplate reader, Bio-rad, USA) with an excitation wavelength of
485 nm an emission wavelength of 530 nm, using a calibration curve.

Gastrointestinal Transit
Carmine red, which cannot be absorbed from the lumen of the gut, was used to study ex vivo
GI transit [28]. On the 5th day of gavage habituation, rats were given 0.2 mL of Carmine red
dye (Sigma-Aldrich, Saint Louis, MO, USA) suspended at the concentration of 6% (w/v) in dis-
tilled water containing 0.5% methylcellulose (Davilose forte, Barcarena, Portugal) [29]. One
hour after carmine administration, rats were sacrificed and transcardially perfused with 50 mL
saline (0.9% w/v of NaCl). The stomach, small and large intestine were dissected and the dis-
tance travelled by Carmine red in the small intestine was measured. GI transit was assessed as
the ratio between the distance travelled by the Carmine red and the total length of the small
intestine.

Morphological analysis in the Small Intestine
The abdominal cavity was opened and stomach, small intestine and colon were removed. Since
GI tract is easily over-stretched, we placed the whole gut in a sterile workbench and the length
was measured with a ruler. For stomach we measured the biggest diameter (between pyloric
antrum and fundus) and whole small intestine (duodenum, jejunum and ileum) was consid-
ered. All measurements were performed by a blinded investigator. After dissection, the same
2–3 cm segment distal ileum of each animal was kept for 24 h in 3.7% paraformaldehyde
(PFA) solution. Then, tissues were removed from PFA and embedded in paraffin blocks,
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sectioned, placed on glass microscope slides and stained with haematoxylin and eosin.
Smooth-muscle and submucosa plus mucosa morphometric were examined by light micros-
copy at 4 x magnification using an Olympus BX51 (Olympus, Lisbon, Portugal) and analysed
with Visiopharm Integrator System 2.12.3.0 Software (Visiopharm, Broomfield, CO). The
thickness values of submucosa plus mucosa and muscular layers are an average of 3 different
measurements, in transversal tissue sections, in a blind fashion.

Proliferation and apoptosis analysis in small intestine
Proliferation Assay. For the proliferation studies, animals were injected intraperitoneally

with bromodeoxyuridine (BrdU, 50 mg/Kg, Sigma-Aldrich, Saint Louis, MO, USA) one hour
before sacrifice, after the last gavage. BrdU is a synthetic nucleoside that is an analogue of thy-
midine and can be incorporated into the newly synthesized deoxyribonucleic acid (DNA) of
replicating cells, substituting to thymidine during DNA replication. BrdU incorporation into
DNA can be identified by immunostaining and reveals cells that were actively replicating their
DNA. Paraffin-embedded tissue were dewaxed and permeabilized with Tris-buffered saline
(TBS)/0.2% Triton X-100 (Sigma-Aldrich, Saint Louis, MO, USA) during 10 minutes. Antigen
retrieval was performed during 20 minutes at lower power heating on the microwave with cit-
rate buffer (2.282 g/L citric acid monohydrate, Sigma-Aldrich, Saint Louis, MO, USA,
pH = 6.0), pre-heated at maximum power during one minute. Acidification was performed at
room temperature with hydrochloride acid 2M during 30 minutes, endogenous peroxidase was
inactivated with 9% H2O2 diluted in TBS in a 1:10 ratio during 15 minutes and non-specific
protein bindings was blocked with 10% Bovine Serum Albumin (Sigma-Aldrich, Saint Louis,
MO, USA) in TBS during 30 minutes. These procedures were alternated with a 3-minute wash-
ing with TBS 3 times each. The sections were exposed to monoclonal rat anti-BrdU antibody
(1:100 diluted in TBS, Monoclonal Rat Anti-Bromodeoxyuridine Mo744, Clone BU20A, Dako,
Lisboa, Portugal) overnight at 4°C and, the following day, they were incubated with avidin-bio-
tin-peroxidase complex (UltraVision Large Volume Detection System Anti-Polivalent, HRP,
ThermoScientific, Waltham, MA, USA) for 60 minutes at room temperature. Immunoreactiv-
ity was visualized with a revelation kit (ImmPACT NovaRED Peroxidase Substract, SK-4805,
Vector Laboratories, Burlingame, CA, USA) according to manufacturer’s protocol. All sections
were subsequently counterstained with 50% haematoxylin and eosin using an automatic stainer
(Leica Autostainer XL, Leica, Wetzlar, Germany). As a negative control one of the sections was
not incubated with the primary antibody, which did not results in any staining of the tissue.

Apoptosis Assay. In situ cell death detection kit (TUNEL assay, Roche Diagnostics, Ama-
dora, Portugal) labels DNA strand breaks generated during apoptosis, which allow us to stain
apoptotic cells. Paraffin-embedded tissue were deparaffinised, incubated for 2 min on ice with
Phosphate buffered saline (PBS)/0.1% Triton X-100 (Sigma-Aldrich, Saint Louis, MO, USA),
immersed in citrate buffer (0.01 M, pH = 6.0, Sigma-Aldrich, Saint Louis, MO, USA) for 1 min-
ute at 750 W and rapidly cooled in distilled water. The slides were treated for 15 min at room
temperature with proteinase K (20 μg mL-1 in 10 mM Tris/HCl, pH 7.6) and non-specific pro-
tein bindings was blocked with 3% Bovine Serum Albumin (Sigma-Aldrich, Saint Louis, MO,
USA) in PBS during 30 minutes. No inhibition of endogenous peroxidase was performed
because hydrogen peroxidase (H2O2) pre-treatment has been reported to weaken terminal
deoxynucleiotidyl transferase (TdT) activity and induce DNA breaks [30]. Subsequently incu-
bated with the TUNEL reaction mixture (Label solution and enzyme solution) for 60 min at
37°C. For positive control, DNA strand breaks were induced in all nuclei by pre-incubation of
the sections for 30 min at 37°C with 1U/ml DNAse I (Roche Diagnostics, Amadora, Portugal)
in 10 mM Tris-HCl buffer (pH 7.5, to which 1 mMMgCl2 and 0.1% BSA were added). For
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negative control, the section is incubated with the label solution, instead of TUNEL reaction
mixture. The slides were again immersed in 3% BSA (Sigma-Aldrich, Saint Louis, MO, USA)
and incubated with Converter-POD (Anti-fluorescein antibody, Fab fragment from sheep,
conjugated with horse-radish peroxidase) for 30 min at 37°C in a humidified chamber, fol-
lowed the revelation reaction (ImmPACT NovaRED Peroxidase Substract, SK-4805, Vector
Laboratories, Burlingame, CA, USA). All sections were subsequently counterstained with 50%
hematoxyline and eosin using an automatic stainer (Leica Autostainer XL, Leica, Wetzlar,
Germany).

Proliferation and apoptosis quantification. The number of labelled cells was estimated
using stereological method: mucosa plus submucosa and muscularis layers were selected and
the software (Visiopharm Integrator System 2.12.3.0 Software, Visiopharm, Broomfield, CO)
randomly selects 400μm2 probes from 10% of total epithelium area to make the counts. The
size of area in each animal varies through 0.2 m2 and 0.4 m2, accordingly with the animal age.
This was performed on Olympus BX51 (Olympus, Lisbon, Portugal) and images were recorded
using Pixelink PL-A622-KIT (Pixelink, Ottawa, Ontario, Canada).

Serotonin quantification
On the sacrifice day, 2–3 cm of the ileum were rapidly dissected, snap-frozen (dry ice) and
stored at -80°C until use. Perchloic acid (0.2 N) was added to each sample and, after disruption
and sonication (1 min on ice), samples were centrifuged at 4°C at 5000 rpm. The supernatant
was filtered through a Spin-X high-performance liquid chromatography (HPLC) column
(Costar, Lowell, MA, USA) to remove debris. Levels of 5-HT was measured by HPLC com-
bined with electrochemical detection using a Gilson instrument (Gilson, Middleton, WI, USA),
fitted with an analytical column (Supelco Supelcosil LC-18 3μM, flow rate: 1.0 ml/min, Belle-
fonte, PA, USA) as previously described [31]. Briefly, 150μl supernatant aliquots were injected
into the system, using a mobile phase of 0.7 M aqueous potassium phosphate (pH 3.0) in 10%
methanol, 1-heptanesulfonic acid (222mg l-1, Sigma-Aldrich, Saint Louis, MO, USA) and Na-
EDTA (40 mg l-1, Sigma-Aldrich, Saint Louis, MO, USA). A standard curve using known con-
centrations of serotonin was run each time.

Data analysis
Data are presented as mean value per group ± standard deviation (SD). Statistical analysis was
performed using SPSS (IBM SPSS Statistics 22 software, New York, USA) and graphs were
made in GraphPad Prism 6.0 (GraphPad Software, Inc., La Jolla, CA, USA). The mean values
of multiple groups were determined by two-way factorial analysis of variance—ANOVA (age x
group), followed by the Bonferroni’s post hocmultiple comparison test for group differences
determination. Student’s t-test was used to compare the two groups at 24 h of life. Normality
test (Kolmogorov-Smirnoff test) and equality of variances (Levene’s test) were evaluated before
the statistical tests. The significance was set at P< 0.05.

Results

iuGC exposure decreases the length of the small intestine
To evaluate the impact of prenatal GC exposure in GI structure, we measured the length of
different GI organs (stomach, small intestine and colon). Two-way ANOVA revealed a signifi-
cant influence of age (F2,41 = 12.015, P = 0.0001) and group (F1,41 = 10.658, P = 0.002) on length
of small intestine. Compared with controls, iuGC animals presented shorter small intestine
(Fig 1A) at 1 (109.75 ± 3.79 cm in CTR vs. 102.22 ± 6.34 cm in iuGC) and 3 months of age
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(113.22 ± 3.38 cm in CTR vs. 107.3 ± 6.15 cm in iuGC). No differences in size of the stomach
and colon were detected between the CTR and the iuGC group at all ages (Fig 1B and 1C), sug-
gesting a preferential and selective effect of iuGC in the small intestine. To evaluate whether
this alteration is congenital or a postnatal adaptation, we assessed the length of small intestine
in newborn rats at 24 h postnatal (Fig 1D). At this time, iuGC animals already showed a reduc-
tion in small intestine size (26.27 ± 0.96 cm in CTR vs. 21.62 ± 2.5 cm in iuGC). The length of
the small intestine was normalized to the animal weight, and no statistical differences were
found (S1 Fig)

iuGC does not impact microscopic structure but affects proliferation and
apoptosis rate
We further investigated the impact of iuGC on the morphology of the small intestine. At the
structural level, we evaluated the thickness of small intestine wall and no differences were
found in the thickness of muscular and submucosal plus mucosal layers (Fig 2). To clarify the
decreased in total length of small intestine, despite normal microscopic structure, we per-
formed proliferation and apoptosis assays. As shown in Fig 3A, BrdU positive cells were found

Fig 1. In utero glucocorticoid exposure decreases the length of small intestine at 24 hours, 1 and 3 months old. (A) The length of small intestine is
shorter in iuGC rats at 1 and 3 months old, n = 6, 17, 6 CTR and n = 9, 10, 7 iuGC. (B) Stomach length in control and iuGC animals, n = 10, 9, 6 CTR and
n = 10, 11, 7 iuGC. (C) The length of colon in control and iuGC animals, n = 10, 9, 6 CTR and n = 10, 11, 7 iuGC. (D) Small Intestine is shorter in iuGC
animals at 24 hours of life, n = 4 CTR and n = 13 iuGC. iuGC, in utero glucocorticoid exposed animals. *P <0.05, *** P <0.001.

doi:10.1371/journal.pone.0161750.g001
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almost exclusively within epithelium crypts, where proliferation is known to be higher [32–34].
Two-way ANOVA revealed an effect of age (F2, 18 = 9.625; P = 0.001) and group (F1, 18 = 40.54;
P = 0.0005) on proliferation. Decreased proliferation was seen in iuGC animals at all ages
(Fig 3B).

Regarding apoptosis, a TUNEL assay was used to detect DNA fragmentation indicative of
apoptosis. An interaction age x group (F2, 22 = 3.828; P = 0.037), age (F2, 22 = 29.621;
P = 0.0005) and group (F1, 22 = 20.341; P = 0.0001) was found. iuGC animals showed increased
apoptosis at all time-points (Fig 3D). In control animals apoptosis was seen mostly within the
muscular layer, while in iuGC animals there were high levels of apoptosis also within the sub-
mucosa and mucosa layers (Fig 3C). Despite of short small intestine and dysregulation of pro-
liferation/apoptosis rates, we did not found alterations on layer’s length, which could mean
that iuGC impacts on a particular cell subpopulation.

Fig 2. Muscularis and submucosa plus mucosa layers length in small intestine. (A) Muscularis and (B)
submucosa plus mucosa layers at 1, 3 and 8 months old. There were no differences between groups. iuGC, in
utero glucocorticoid exposed animals. (A) n = 6, 4, 6 CTR and n = 5, 10, 7 iuGC. (B) n = 6, 7, 6 CTR and n = 5,
9, 7 iuGC.

doi:10.1371/journal.pone.0161750.g002
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iuGC animals present dysmotility despite normal intestinal permeability
To assess the impact of iuGC on GI function we evaluated GI permeability and transit. To assess
permeability and transit, animals were given (by oral gavage) FITC-dextran and Carmine red,
respectively. As oral gavage can be a stressor and may alter gut transit baseline [35, 36], we per-
formed a preliminary study to evaluate the impact of oral gavage in GI transit. Animals showed
decrease gut transit when given acute oral gavage when comparing to repeated gavages (habitua-
tion) (S2 Fig) suggesting that a single exposure to oral gavage functions as an acute stressor.
Thus, in our studies, all animals had a period of habituation to oral gavage (5 days). After this
period, a red dye was given by oral gavage into the stomach. One hour after, the animals were
sacrificed and the distance travelled by the red dye was measured. There is an effect of age
(F2, 52 = 3.221; P<0.05) and group (F1, 52 = 20.163; P<0.001) on transit. iuGC animals at 3 and 8
months old had decreased GI transit (ratio between the distance travelled by the red dye and
total length of small intestine) when compared to control animals (Fig 4A). At 1 month old, tran-
sit showed a tendency to be slower in iuGC rats (P = 0.07). Regarding permeability, we have

Fig 3. Prenatal treatment decreases proliferation and increases apoptosis in small intestine. (A) Proliferation was assessed by BrdU staining. (B)
Proliferation rate is decreased within the crypts in iuGC rats, n = 3, 4, 5 CTR and n = 3, 6, 3 iuGC. (C) Apoptosis rate was assessed by TUNEL assay. (D)
Apoptosis is increased in iuGC rats (mostly within the submucosa and mucosa layers), n = 6, 3, 5 CTR and n = 5, 3, 6 iuGC. iuGC, in utero glucocorticoid
exposed animals.** P <0.01, *** P <0.001. Scale bars: 500 μm.

doi:10.1371/journal.pone.0161750.g003
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measured in vivo intestinal permeability by luminal mucosa-to-blood flux of FITC-dextran. No
changes were found in blood concentrations of FITC-dextran between animals, which is consis-
tent with a normal functional intestinal barrier in iuGC animals (Fig 4B).

iuGC animals have decreased 5-HT at 3 months old
Most of 5-HT in the blood is derived from the GI tract and it has a crucial role in gut motility
[37]. Thus, we quantified 5-HT levels in the small intestine. iuGC animals showed decreased
levels of 5-HT at 3 months old (P<0.05) (Fig 5).

Discussion
The present study shows the impact of prenatal administration of DEX on the GI tract of rats
through gestation to young adulthood. iuGC differentially impacted gut size, leading to a

Fig 4. iuGC animals at 3 and 8 months old have a decreased GI transit. No differences in intestinal
permeability. (A) Ratio of the distance travelled by red dye and total small intestine length. Ratio is lower at 3
and 8 months old. There was no differences among groups at 1 month old (P = 0.07), n = 7, 17, 6 CTR and
n = 6, 19, 7 iuGC. (B) Intestinal permeability in Control and iuGC animals at 1, 3 and 8 months old. There were
no differences between groups, n = 3, 9, 5 CTR and n = 4, 10, 7 iuGC. iuGC, in utero glucocorticoid exposed
animals. ** P <0.01, *** P <0.001.

doi:10.1371/journal.pone.0161750.g004
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reduction in small intestine total length without affecting the size of other GI organs, such as
the stomach and the colon. Dysregulation of proliferation and apoptosis rates found in iuGC
animal model could account for alterations on the normal ENS maturation and, consequently,
GI motility. Moreover, it is shown that iuGC decreases gut transit without affecting intestinal
permeability. iuGC decreases 5-HT levels in the small intestine at 3 months old, which may be
related with the central serotonergic unbalance, which reinforce the importance of brain-gut
axis.

Both DEX and betamethasone can be used as prevention of respiratory distress syndrome,
as primary cause of early neonatal mortality and disability. Treatment protocols do not show a
preference for one in particular, since meta-analysis of different studies directly comparing
DEX with betamethasone found no statistically significant differences [38, 39]. The impact of
DEX, prenatally administrated in rodents, has been studied in more detail since it is associated
with central nervous system (CNS) negative effects [7, 40, 41].

DEX is a sGC, which binds exclusively to glucocorticoid receptors (GR), while cortisol
(CORT, corticosterone in rodents) binds to both receptors: GR and mineralocorticoid recep-
tors (MR), which are expressed in the gut [42]. In basal conditions, CORT shows a higher affin-
ity for MR, but with stress, when CORT secretion is elevated, GR also become activated [11].
The expression of GR and MR varies through the GI tract, accounting for the different roles of
each GI organ. The duodenum and jejunum express lower levels of MR and higher levels of
GR, compared with ileum and colon. Nonetheless, binding to GR in the ileum seems to be
higher than in the duodenum and jejunum [42, 43]. In contrast, MR binding assays showed no
differences in affinity throughout the gut despite different protein distribution [42]. The dis-
tinct distribution of GC receptors may explain the differential impact of DEX administration
in gut size, with decreased length of small intestine, where GR receptors are highly expressed
[42, 43]. The levels of sGC, during gestation, are important for differentiation and maturation
of various systems, such as the CNS [44–46] and the GI tract [47, 48]. In fact, sGC are widely
used to promote lung maturation in preterm delivery [49]. Women at risk of preterm delivery,
between 26 and 35 weeks of gestation, are treated with DEX which, besides promoting lung

Fig 5. Serotonin levels, in small intestine, are decreased in iuGC animals at 3 months old. Serotonin
levels are decreased in iuGC rats at 3 months old. There were no differences among groups at 1 and 8
months old, n = 10, 3, 4 CTR and n = 7, 5, 4 iuGC. iuGC, in utero glucocorticoid exposed animals.* P <0.05.

doi:10.1371/journal.pone.0161750.g005
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maturation, seems to decrease the risk of intraventricular harmorrhage, necrotizing entercolo-
litis and neonatal death [49], suggesting a boosted maturation of these systems by iuGC.
Although sGC are important for gut development they may not be essential for it, indeed, Gart-
ner et al showed that mice lacking GR presented with normal gut development when compared
to wild-type littermates [47].

While no significant changes were found at the microscopic level (no changes in layers
development), there was a reduced length of the small intestine. Small intestine length is
shorter in iuGC at 24 hours, 1 and 3 months old, which equates to the period from the third tri-
mester to the beginning of the adulthood in humans [26]. No changes were found at 8 months
old rats. In contrast to our findings, Majumdar et al showed that chronic administration of
hydrocortisone (10 days) to pregnant rats increases small intestine and pancreas size at birth,
emphasizing the role of corticoids in gut development [48]. Majumdar et al used hydrocorti-
sone, which is known to have equal affinity to GC and MR, while in the present study DEX was
used, which binds exclusively to GR [50]. Despite that, DEX may impact the expression of
growing factors in the GI tract, affecting its length. Newborn mice receiving DEX showed
decreased expression of transforming growth factor (TGF) and epidermal growth factor (EGF)
in GI smooth muscle [51]. EGF has been shown to increase GI length when given artificial for-
mula to rat pups, while TGF has been associated with myogenic alterations, namely morphol-
ogy and contractile activity [52, 53]. TGF is expressed in human and rat ileum smooth muscle
and has been implicated in GI maturation after birth in rat, when circulating GC levels increase
(third week) [53–55]. On the other hand, TGF has no impact in small intestine size in adult
animals [56]. At 8 months old, iuGC rats did not show differences in the small intestine size,
which could reflect that the catch-up phenomenon seen in some preterm babies [57] may be
delayed in the gut. Our results are in agreement with other studies, which show that iuGC
delays puberty onset and neurodevelopment [10, 58].

In parallel, we found that iuGC decreased cell proliferation in the intestinal crypts and
increased apoptosis, mostly in mucosa and submucosa layer. There is evidence supporting that
DEX can induce apoptosis in different types of cells [44–46, 59–61]. In addition, there is also
evidence that DEX can decrease gastric epithelium proliferation at the ulcer site [62]. In the
ENS, as in the CNS, neurogenesis is essential after neuronal migration, but is through pro-
gramed cell death (PCD) that regulated apoptosis provides an efficient control of population
size and arrangement [63, 64]. In animals models, neurogenesis in the ENS has been found
during gestation and adulthood, but the role of pre and postnatal PCD is not clear, since the
majority of studies do not found apoptotic activity in the ENS [65–67]. However, recently,
Wallace et al found PCD activity in pre-enteric neural crest cells (NCC) [68]. The mechanism
by which cells undergo PCD following DEX administration are unclear. It would be interesting
to better characterize these cells populations in further studies to better understand whether
increased apoptosis is happening in glia or mast cells. Changes in glia cells could play as an
opportunistic phagocyte, as it happens in the CNS, or dysfunction of the cells may induce loss
of enteric neurons [69, 70]. The induction of apoptosis and the inhibition of proliferation by
iuGCmay affect the normal maturation process and organization of the ENS and produces
long lasting alterations in cell cycle in the ENS.

The GI tract has its own nervous control through the ENS, which is capable of controlling
all functions independently from CNS (but with possible modulation by the later). At
E9.5-E10, neural crest cells (NCC) begin to migrate along the entire length of the GI tract, pro-
liferating and differentiating into different enteric neurons and glia cells [71, 72]. At the same
time, migration of smooth cells from mesoderm to the gut can be seen [73]. Spontaneous con-
tractions of the duodenum and colon start at E13.5 and E14.5, as the circular muscle layer is
already formed [73]. These contractions are dependent on muscular activity and are designated
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myogenic-mediated contractions. Organized contractions, responsible for the presence of
motility patterns and mediated by neurons (neurogenic-mediated contractions), can be seen
from E18.5 (duodenum) and 1 week after birth (colon) [74]. The delay between differentiation
of neurons and the development of neurogenic-mediated motility patterns reflect the time
needed for maturation of the complex connections within the ENS [74]. In the duodenum and
jejunum, intracellular recordings show that slow waves are not present until E18.5 and E19,
which coincides with the arise of KIT positive cells with the morphological features of myen-
teric interstitial cells of Cajal (ICC-MP) [74]. ICC-MP, derived from the mesenchyme, are seen
as the pacemaker of the gut, being responsible for initiating gut contractions [75–78]. In this
study, administration of DEX occurs on E18 and E19 of gestation, which matched the first neu-
ral mediated contractions and functional ICC-MP in the duodenum and jejunum of the small
intestine. Thus, this animal model is probably not affecting the normal differentiation and
migration of GI cells, as these occur earlier in the embryonic development, but may be impact-
ing their maturation. Although comparative studies between rat and humans are limited,
Clancy et al. made a prediction of neuronal events model, which allow us to predict that E18
and E19 in rat corresponds to E67 and E92 in humans (10–13 weeks) [79–82]. This timepoint
(E18 and E19) corresponds to the beginning of gut peristalsis in humans, which the presence of
immunoreactivity to KIT is one of the peristalsis landmarks [74, 83].

In the present study, dysmotility was seen only in adult iuGC rats (3 and 8 months), after
weaning, which may also reflect the importance of the microflora for postnatal maturation of
ENS [84]. In fact, some studies showed a relation between different feeding periods with ENS
development [85, 86] and not only can GC affect microflora environment [87–89] but, also,
dysmotility itself can impact the distribution of intestinal microflora in the digestive tract [90,
91]. ICC, which generate slow waves responsible for peristalsis in the small intestine [78, 92],
go through a differentiation process over the first month, from birth until weaning to adult-
hood phase [85]. Increased branching processes, as a network enteric maturation process, was
found in colon’s mice over the first month in ICC-MP [93]. In addition, some studies in mice
and guinea pigs, show that ICC continues proliferating until P24-35, despite decrease density
[93–95].

iuGC treatment did not affect gut permeability. Although the role of GC in intestinal matu-
ration, namely permeability, in humans (last trimester) and rodents (first weeks of life) has
been described, little is known about the impact of prenatal stress in gut permeability [96–100].
After birth, rats go through a period of low levels of corticosterone (6–12) until day 14, when
levels start to rise until reach a peak on day 24 [96, 101]. The increase of corticosterone levels
are associated with enzymatic and mucosa cells maturation [101]. In the last years, studies have
shown disruption of the intestinal barrier in rat gut under stress namely maternal separation
(MS) [102, 103]. Accordingly with Moussaoui et al, corticosterone has a direct effect on gut
permeability. Moussaoui et al showed that neonatal stress has impact colon permeability at day
10 but not at day 20 [102]. This seems to be related to GC’s sensibility, since when GC recep-
tors are blocked MS rats display normal epithelial barrier function. Different from this MS
model, iuGC animals show normal corticosterone levels [11], which may explain our results.

The GI tract has 95% of total 5-HT in the body [104] and all 5-HT in the blood is derived
from the gut (90% of 5-HT is secreted by Enterochromaffin cells, EC) [37]. EC are present in
the duodenum since E15 [105], when levels of 5-HT or enteric neural 5-HT receptors arise
[106].We found low levels of 5-HT in the gut of iuGC animals, particularly at 3 months old.
The administration of sGC (including DEX) has been shown to impact 5-HT levels, in the
CNS, through trypyophan hydroxylases (THP1 and TPH2), the rate-limiting enzyme for bio-
synthesis of 5-HT [107, 108], also present in the EC. However, there are few studies approach-
ing the impact of sGC, administered during pregnancy, in the TPH. Hiroi R. et al showed that
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iuGC increases the expression of TPH2 mRNA at P7, but decreases in adulthood, in the CNS
(dorsal raphe nucleus) [109]. Interestingly, previous studies, showed that iuGC leads to a
hyperanxious phenotype in adulthood [7, 41] at 2–3 months old, the time point which we are
reporting decreased 5-HT levels in the gut. Moreover, iuGCmay be impacting 5-HT levels
through regulation of 5-HT receptors. Nagano et al found a decrease of 5-HT1A receptor
mRNA in medial prefrontal cortex (mPFC) and 5-HT content in the hippocampus of iuGC
animals [110]. Both the mPFC and the hippocampus express GR and MR [111, 112] and have
been shown to influence GI motility, which may link the changes observed in the brain and in
the periphery [113–115]. It is known that distribution of 5-HT receptors occurs in a cephalo-
caudal way. During ontogeny the binding of 3H-5-HT appears for the first time on day E14, in
the stomach and small intestine from the pylorus to the levels of the mid-jejunum. 3H-5-HT
binding sites then spread distally, reaching the ileocolic sphincter on day E15, the proximal
colon on days E-16-18, and the distal colon on day P2 [116]. As reviewed somewhere else, it
has been suggested that stimulation of 5-HT2B receptors by 5-HT influences the fate of late-
developing enteric neurons. In foetal mice at E14-E16 mRNA for 5-HT2B receptor was found
in every ganglion of the developing myenteric plexus. At 18 the proportion of neurons express-
ing 5-HT2B receptor mRNA declined to the low adult levels. Moreover, activation of these
receptors increases proliferation of ICC cultured from neonatal mouse jejunum [117]. Thus,
administration of DEX at E18-19 may be impacting the expression of 5-HT2B in time which
could reflect changes in serotonin levels in adulthood. This is a speculative hypothesis, yet to be
explored. Although it has been shown changes in GI tract with age, little is known about the
changes in serotonin levels with aging [118]. Our results add to the lacking literature in this
topic. Taken all together, iuGC can impact 5-HT levels in the gut and within the CNS, which
suggest a bidirectional communication between brain and gut.

Conclusion
Although GC are widely administered to pregnant women, studies are still lacking regarding
the impact of this administration on the GI tract [119]. Despite the great improvement in sur-
vival of preterm babies with prenatal DEX administration, little is still known on possible
adverse effects of this administration in adulthood. The present study shows that iuGC differ-
entially impacts GI motility, proliferation and apoptosis rate as well as serotonin levels. These
effects are age-dependent.

Supporting Information
S1 Fig. Small intestine length normalized per weight at 24 hours and 1, 3 and 8 months old.
The length of the small intestine was normalized per animal weight and no differences were
found, n = 5, 6, 9, 6 CTR and n = 3, 9, 11, 7 iuGC. iuGC, in utero glucocorticoid exposed ani-
mals.
(TIF)

S2 Fig. Impact of acute/chronic gavage on GI transit, at 3 months old. Acute gavage, as
acute stressor, leads to a decrease in transit in Control Wistar rats. After 5 days of chronic
gavage, while Control rats have normal transit, iuGC show dysmotility; n = 5 and 5 CTR and
n = 4 and 4 iuGC. iuGC, in utero glucocorticoid exposed animals.� P<0.05
(TIF)

S1 File. Minimal Data Set. The attached file contains the minimal dataset for the above study,
including the data from (1) small intestine’s length, (2) layers’ length in the small intestine, (3)
rate of apoptosis and mitosis in the small intestine, (4) upper gastrointestinal transit and
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permeability, (5) serotonin levels in the small intestine, (6) normalized data (length per weight)
and (7) upper gastrointestinal transit after acute and chronic gavage.
(XLSX)
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