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Abstract

A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic

approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with

human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between

immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that

autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of

human genome–human microbiome relationships in disease contexts with tailored systems biology approaches may yield

insights into disease pathogenesis and prognosis.

INTRODUCTION

Two ground-breaking projects in the early genomic era
changed the landscape of health sciences: the Human
Genome Project (1990–2003) [1–3] and the Human
Microbiome Project (2008–2012) [4, 5]. The early promise
of the Human Genome Project was to be able to annotate
the genetic variations associated with human diseases,
based on comparisons with the published reference
genomes. The scientific community has gradually diverged
from that view given the findings of genome-wide associa-
tion studies (GWAS), in which genetic variations have
been investigated in large cohorts [6]. Genetic variations,
even when considered in epistatic, multi-gene models, are
unable to account for complex diseases. Indeed, an exten-
sive GWAS, which employed relatively large cohorts,
could explain no more than 3% of metabolic disease cases
using predictive models of 30 gene loci that had been
inferred to be associated with the corresponding disease
[7]. The new perspective on chronic diseases, with the
exception of Mendelian diseases with relatively large effect
sizes, is that many are driven by complex and systems-
level disorders. Accordingly, multiple genes, as well as
non-genetic or non-epigenetic environmental factors, play
crucial roles [8]. As certain complex diseases emerge as
chronic impairments, where impairments of the immune
system and the microbiome converge to create homeo-
static imbalance, hologenomic interactions must be
investigated.

MICROBIOME AS QUANTITATIVE TRAIT

Pioneering studies that jointly considered the human
genome and microbiome reported that the presence or
abundance of certain microbiome components is associated
with the structural variations in the human genome [9, 10].
For instance, Blekhman et al. gleaned human genome con-
tamination in the Human Microbiome Project data and
detected specific host genetic variations in the context of
each individual microbiome using bioinformatics
approaches [9]. Their report was the first GWAS on human
genome–microbiome associations. Strikingly, they found
that those variations associated with changes in the micro-
biome were mostly observed in the loci previously associ-
ated with autoimmune diseases. It has been postulated that
autoimmune diseases develop after exposure to environ-
mental triggers in patients with a genetic predisposition.
Immune system pathway genes, such as HLA,CRF4,
PTPN22, TBX21, STAT4, IRF4,IRF5, CD247, BANK1, BLK,
IRAK1, FOXP3 and TNFAIP3 are commonly associated
with several autoimmune diseases (e.g. rheumatoid arthritis,
Coeliac disease, type I diabetes, psoriasis, Crohn’s disease
and systemic sclerosis) [11, 12]. Many autoimmune dis-
eases, which involve systemic disorders, could be classified
as pleiotropic disorders. Moreover, recent host genome–
microbiome association studies revealed that these genes
were among those associated with microbiome composition.
According to a study conducted by Volkmann et al., which
considered the gut microbiota of 17 systemic sclerosis
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patients and an equal number of healthy controls in order
to reveal potential pathobionts, the differentiation of the gut
microbiota associated with the disease shows significant
similarities with the gut dysbiosis of Crohn’s disease [13].
This observation implies that autoimmune diseases may
share characteristic host-microbiome variations. Further-
more, the pleiotropic nature of autoimmune diseases (i.e. a
single variation may be associated with multiple pheno-
types) supports the view that the autoimmunity reactome
has certain properties which should be investigated at the
systems level, in a multi-omic investigation of human
genome–microbiome metagenomes.

THE HOMEOSTASIS OF A SUPERORGANISM

The human microbiome corresponds to a complicated eco-
system; it is a large population that forms a symbiotic
super-organism in combination with the human organism.
As there are 10-fold more microbial cells than Homo sapiens
cells in the human body, the human microbiome, which
contains millions of genes, has a far greater proteome-cod-
ing and metabolome-producing potential than the human
genome, which harbours only around 20 000 genes [14].
Environmental factors shape the microbiome composition,
including the mode of delivery at birth and the inherited
maternal microbiome [15]; diet [16, 17]; living space [18];
social interactions [19]; and exposure to xenobiotics, patho-
gens and parasitic organisms [20, 21]. In addition, the inter-
action of the gut microbiome with its host directly shapes
the composition [22]. The currently illuminated part of this
interaction system mainly corresponds to the immunity
metabolisms. Recently revealed interactions between the
microbiome and the immune system show that they exist in
a delicate homeostasis. Tipping of the equilibrium by per-
turbations stemming from either, or both, of the symbiotic
partners might result in disturbances of processes related to
inflammation, autoimmunity, metabolism, neurodegenera-
tion and the development and progression of cancer [23–
25]. Gut microbiome dysbiosis might lead to a decrease in
the activity of critical members or metabolic processes,
resulting in autoimmune disease (with the microbiome
being the primary cause of pathogenesis). Conversely, the
primary driver of the aetiopathology of immune disorders
may be the inability to distinguish between commensal and
pathogenic components of the microbiome, induced by
environmental triggers in genetically predisposed individu-
als (host genetics are the primary cause of pathogenesis).
Although the pathogenesis of a large proportion of autoim-
mune diseases is currently unclear, the involvement of the
human microbiome in both scenarios above raises an
important question: can the gut microbiome be used as a
diagnostic biomarker or a therapeutic target for the preven-
tion and treatment of autoimmune diseases? The human
genome is static and, except for specific modifications (e.g.
genome editing), cannot be manipulated over the lifetime of
an individual. The human microbiome, on the other hand,
is the plastic ‘other genome’ of the human super-organism
that could be shaped or even reassembled by probiotics,

antibiotics, diet, vaccination and transplantation techniques.
This potential makes prospective microbiome-targeted ther-
apies attractive. The promise of this approach has been
observed when the manipulation of commensal bacteria
caused remission of rheumatoid arthritis in mice [26]. Simi-
larly, a healthy microbiome prevented multiple sclerosis in
mice, while germ-free mice in the same conditions devel-
oped the disease [27]. Further studies should be conducted
to reveal the nature of the disease-related dysbiosis and the
factors affecting it, in order to enable the development of
diagnostics and therapies based on the microbiome.

A COMPLEX INTERACTOME REQUIRES

SOPHISTICATED ANALYSIS

While the findings of the microbiome-GWAS studies shed
light on the association between human immunogenetics and
the human microbiome, they are early discovery attempts in
the genome–microbiome multi-omic field, which requires fur-
ther development. The current paradigm is built on a naive
approach, which models the microbiome as a quantitative
trait. This is mainly through the quantification of the micro-
bial community via a or b diversity metrics or evaluation of
the relative abundance of an operational taxonomic unit.
However, in the context of the novel idea of the super-organ-
ism, or the second genome, the microbiome should be treated
as an extension of the human genome rather than a quantita-
tive trait. Previous 16S rRNA gene sequencing studies were
designed to taxonomically profile the microbiome. In order to
explore its functional diversity and construct metabolic mod-
els within a microbiome, a shotgun metagenomics approach is
required. Sequencing the genetic content in this manner
would allow functionally classified genes to be grouped and
gene networks to be constructed in order to form human
genome–microbiome interaction networks. Early versions of
the related metagenomic unit co-occurence networks, such as
the metaHIT catalogue [28], are already available. A systems
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biology model, which integrates metagenomic gene networks
with the disease associations map in the GWAS Catalog [29],
has the potential to suggest direct and indirect genetic varia-
tion–microbiome associations in the context of diseases. Fig. 1
depicts a model constructed from this perspective. Moreover,
hologenome theory suggests that a host co-evolves with its
microbiome. From this point of view, strain-level divergences
that alter the function of certain microbial species could be
expected. The study of strain-level differentiation, which is
also interesting in the context of diseases, can only be resolved
by employing shotgun metagenomics. Recent advances in
metagenomics informatics enable careful taxonomic profiling
at the strain level [30–32]. Parallel to the current paradigm
for microbiome analytics, GWAS that associate genomic
variations with quantitative traits depend on conventional sta-
tistical approaches and single gene/single-nucleotide polymor-
phism -quantitative trait correlation estimations. However,
the majority of diseases and other attribute phenotypes are
epistatic, meaning that the overall phenotype is the net effect
of multiple genes with small effect sizes. Unfortunately, the
conventional GWAS approach has weak sensitivity and is able
to detect only genetic variations with large effect sizes [33].

The introduction of machine learning and data mining
applications, in which multiple gene variations are associ-
ated with phenotypes, would allow epistatic inferences to be
made with greater statistical accuracy, according to retro-
spective studies [6]. By assuming that either individual

microbiome elements or the community diversity are quan-
titative traits, the current GWAS methodology to determine
genome–microbiome associations ignores the potentially
epistatic nature of the symbiosis. Both of the recent studies
conducted by Blekhman et al. [9] and Davenport et al. [10]
followed the conventional one gene-one quantitative trait
GWAS approach. However, human genome–microbiome
relationships are thought to be both epistatic and pleiotropic
[34]. On the other hand, since the sampling and sequencing
of metagenomes require substantial effort and costly proce-
dures, current cohorts are orders of magnitude smaller than
the operational ranges of GWAS. Thus, the observed associ-
ations likely appeared due to their large effect sizes. Impor-
tantly, many genetic associations may be ignored by
underpowered and insensitive analyses. In order to mitigate
this problem, enrichment via combining associated varian-
ces on the same pathways is suggested. This approach was
observed to provide further associations [9]. Nevertheless,
the improved approach still follows the GWAS paradigm, in
which very low P-values are needed before associations can
be proposed. As an alternative, predictive models supported
by machine learning concepts can be proposed to statisti-
cally quantify genome–microbiome associations. Feature
selection with learning machines has enabled detection of
cross-validated disease biomarkers at the current metage-
nome-sampling cohort size [35]. Once features comprised
of groups of single nucleotide polymorphisms and bags of
metagenomic genes are selected, predictive models (e.g.
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Fig. 1. A systems biology approach to MGWAS. Fusion gene-disease interaction networks are compiled from the GWAS Catalog and

the metagenomic unit (e.g. gene, ontology group, metabolic pathway or operational taxonomic unit) co-occurrence network built using

metagenome data. Feature selection by machine learning wrappers suggests associations based on variations in the metagenomic

units to infer direct and indirect associations between genomic variations and the microbiome in the context of the disease.
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Support Vector Machines [36], Random Forest [37]) can be
constructed to perform cross-validation tests that quantify
the significance of the associations. For the aforementioned
reasons, it is indispensable to build future projections on
metagenome-wide association studies (MGWAS) bioinfor-
matics, assessing multiple gene–multiple phenotype associa-
tions in a machine learning context. It is important to
consider that, while very sensitive and powerful enough to
infer associations from a relatively small number of instan-
ces (e.g. the current cohort size of metagenome projects),
machine learning approaches are vulnerable to overfitting
and suggesting false positives, especially in the context of a
large number of variables, as in the case of MGWAS [38].
Therefore, careful bioinformatics strategies should be devel-
oped in order to make sensitive, yet sufficiently specific,
MGWAS analyses to reveal further human genome–micro-
biome interactions. It should be noted that the top-down
approach of systems biology via omic technologies only cap-
tures snapshots of a complex living system. While this in sil-
ico support is a valuable hypothesis proposal paradigm, the
results (e.g. detected biomarkers or suggested biological
models) should always be subjected to in vivo validations.
For example, the precise microbiome targets suggested by
the multi-omic studies should be tested in knockout animal
experiments, as the early phase of metagenomic drug dis-
covery studies. Moreover, independent autoimmune disease
cohorts should be enrolled for the validation of the discov-
ered, non-invasive diagnostic biomarkers.

In the future, it will be possible to conduct multi-omic stud-
ies with larger cohorts as sequencing technologies provide
lower cost and higher throughput solutions. This will gener-
ate more insightful data, with enhanced generalization abil-
ity and statistical power. Given that, focussing on
longitudinal study designs may provide further insights, not
only because they would capture temporal changes along
with disease prognosis, but also because metagenomic units
associated with human genetics might become more detect-
able. Recent twin studies have reported that the taxa that are
controlled by host genetics tend to be temporally more sta-
ble taxa that were not associated with host genetics [39].
Consideration of the temporally low-variance metagenomic
units could add another dimension to the computational
prediction of genome variation–microbiome associations.

CONCLUSION

Based on the recent literature, it is plausible to infer that the
associations between variations in human immune system
pathway genes and certain human microbiome taxa might
imply the interplay of human genome–microbiome in the
pathogenesis of autoimmune diseases. Thus, multi-omic stud-
ies, in which the microbiome and the human genome are
sequenced jointly, involving autoimmune patients and corre-
sponding healthy cohorts will dramatically improve our
understanding of complex diseases. To this end, machine
learning-based systems biology may be useful, given that the
current metagenomic cohorts, ranging from a few hundred to
a few thousand subjects [10], are statistically underpowered to

conduct conventional GWAS, which confines the discovery of
associations to only highly specific mechanisms.
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