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ABSTRACT Pseudomonas aeruginosa chronic lung infections in individuals with cys-
tic fibrosis (CF) significantly reduce quality of life and increase morbidity and mortal-
ity. Tracking these infections is critical for monitoring patient health and informing
treatments. We are working toward the development of novel breath-based bio-
markers to track chronic P. aeruginosa lung infections in situ. Using comprehensive
two-dimensional gas chromatography coupled with time-of-flight mass spectrometry
(GC�GC–TOF-MS), we characterized the in vitro volatile metabolomes (“volatilomes”)
of 81 P. aeruginosa isolates collected from 17 CF patients over at least a 5-year pe-
riod of their chronic lung infections. We detected 539 volatiles produced by the P.
aeruginosa isolates, 69 of which were core volatiles that were highly conserved. We
found that each early infection isolate has a unique volatilome, and as infection pro-
gresses, the volatilomes of isolates from the same patient become increasingly dis-
similar, to the point that these intrapatient isolates are no more similar to one an-
other than to isolates from other patients. We observed that the size and chemical
diversity of P. aeruginosa volatilomes do not change over the course of chronic in-
fections; however, the relative abundances of core hydrocarbons, alcohols, and alde-
hydes do change and are correlated with changes in phenotypes associated with
chronic infections. This study indicates that it may be feasible to track P. aeruginosa
chronic lung infections by measuring changes to the infection volatilome and lays
the groundwork for exploring the translatability of this approach to direct measure-
ment using patient breath.

IMPORTANCE Pseudomonas aeruginosa is a leading cause of chronic lung infections
in cystic fibrosis (CF), which are correlated with lung function decline. Significant
clinical efforts are therefore aimed at detecting infections and tracking them for
phenotypic changes, such as mucoidy and antibiotic resistance. Both the detection
and tracking of lung infections rely on sputum cultures, but due to improvements in
CF therapies, sputum production is declining, although risks for lung infections
persist. Therefore, we are working toward the development of breath-based di-
agnostics for CF lung infections. In this study, we characterized of the volatile
metabolomes of 81 P. aeruginosa clinical isolates collected from 17 CF patients
over a duration of at least 5 years of a chronic lung infection. We found that the
volatilome of P. aeruginosa adapts over time and is correlated with infection
phenotype changes, suggesting that it may be possible to track chronic CF lung
infections with a breath test.
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Cystic fibrosis (CF) is an autosomal recessive disease caused by a mutation in the
CFTR protein that regulates ion transport across epithelia. In the lungs, reduced or

lost CFTR function leads to defective mucociliary transport, facilitating infection and
colonization by a plethora of microorganisms (1). Pseudomonas aeruginosa is one of the
most prevalent lung pathogens in CF— especially after adolescence (2)—and is able to
establish chronic infections that can last for years to decades (3, 4). P. aeruginosa lung
infection is associated with more rapid lung function decline, increased risk of
hospitalization, and increased risk of death (5, 6). Significant clinical efforts are
therefore aimed at diagnosing and treating new infections to delay the onset of
chronic infection (7).

As P. aeruginosa transitions from an acute infection to chronicity, it undergoes a
variety of genotypic, phenotypic, and metabolic changes (8, 9). It has been well
established that several phenotypes are correlated with chronic infection, including
reduced motility and increased mucoidy, antibiotic resistance, and biofilm formation
(9–11), and some of these phenotypes are also correlated with poorer patient outcomes
(6, 12, 13). In light of this, P. aeruginosa phenotypes could be used to evaluate infection
stage, CF disease progression, and patient morbidity risk (10, 12, 14, 15). Poor access to
infection sites in the lower airways, however, delays the detection of new P. aeruginosa
infections and reduces the feasibility and accuracy of disease state tracking via bacterial
phenotypes, whether by culture-dependent or culture-independent methods (16).

We are developing breath-based diagnostics to detect new P. aeruginosa infections
and track chronic infection phenotypes in the CF lung. Breath contains thousands of
volatile organic compounds capable of conveying a wealth of information about
human health and disease (17, 18), and it is being leveraged for the development of
diagnostics for wide-ranging conditions (19, 20). In the context of chronic lung infec-
tions, breath-based diagnostics possess significant advantages over other diagnostic
modalities. First, breath provides a noninvasive way of sampling the entire ventilated
lung, a limitation of both sputum and bronchoalveolar lavage fluid that leads to delays
in diagnosis of new infections and detection of infection phenotype changes (16,
21–24). Second, breath sampling captures metabolic information about the pathogens
in situ, eliminating the need for microbial enrichment steps and speeding the time to
diagnosis by days to weeks (25, 26). Additionally, in situ metabolic measurements
provide information on the physiology of the pathogens in the context of disease
versus the context of the lab. We propose that a breath-based diagnostic can be
created for detecting and tracking CF P. aeruginosa lung infections by correlating the
microbial genotypic and phenotypic changes that occur during chronic infections to
changes in the infection volatile metabolome, or “volatilome.”

In order to develop a set of biomarkers for diagnosing and tracking P. aeruginosa
lung infections in CF, we must consider the genomic, phenomic, and volatilomic
diversity of the species and how that diversity may be altered via adaptation to the CF
lung environment. A recent effort to sequence more than 1,300 P. aeruginosa isolates
demonstrates that the genomes are highly flexible, with only 1% of the pan-genome
being conserved across all isolates (27). An untargeted analysis of the volatile metab-
olites produced in vitro by 24 P. aeruginosa clinical isolates shows that the volatilomes
are also diverse, with 18% of the pan-volatilome being conserved in this comparatively
small study (28). In the context of CF, most early P. aeruginosa infections in young
patients are caused by unique strains that come from the patients’ environments
(29–32). We therefore expect the volatilomes early in infection to have high interpatient
dissimilarity, reflecting the genomic diversity of P. aeruginosa CF isolates (3, 33–35), and
to be chemically diverse (i.e., volatiles from a wide range of chemical classes). Once
chronic infections are established, however, the “founder” P. aeruginosa strain evolves
into a population of clonal substrains (3, 8, 36–40), many of which harbor CF-typical
loss-of-function mutations in regulatory genes and sigma factors (e.g., lasR and mucA)
(3, 41, 42). From this, we posit that the size of the P. aeruginosa volatilome will shrink
during chronic infection, with a concomitant decrease in chemical diversity and a
reduction in interpatient dissimilarity.
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The primary goal of this study was to build a foundation for using volatilomes to
diagnose and track P. aeruginosa CF lung infections by exploring how the in vitro
volatilome of P. aeruginosa CF isolates changes over the course of chronic infection. We
used comprehensive two-dimensional gas chromatography coupled with time-of-flight
mass spectrometry (GC�GC–TOF-MS) to characterize the volatilomes of 81 P. aerugi-
nosa isolates from early and late chronic lung infections from 17 persons with CF. Using
an untargeted metabolomics approach, we characterized the size and chemical com-
position of the CF P. aeruginosa volatilome and identified core volatiles that would be
a primary source of breath biomarkers for diagnosing infections. We also investigated
how the P. aeruginosa volatilome is shaped by the CF lung environment, characterizing
changes in volatilome sizes and compositions over time, and how these changes relate
to intrapatient and interpatient volatilome dissimilarities. A secondary goal of this study
was to provide further data on the P. aeruginosa volatilome via the largest single
analysis of P. aeruginosa headspace volatiles to date.

RESULTS
Characteristics of P. aeruginosa CF isolates. We obtained from a biorepository 81

P. aeruginosa chronic infection isolates, which had been collected from 17 individuals
with CF. From 14 patients, two or three P. aeruginosa isolates were obtained: one isolate
that was the first cultured P. aeruginosa strain and one or two isolates that were
collected at least 5 years after the first. We refer to these isolates as early and late
isolates, respectively. For one patient (patient 75), four isolates were collected: two early
isolates collected 1 month apart and two late isolates collected 10 and 16 years after
the first. For one patient (patient 23), 32 additional isolates were collected over the
course of a 7.5-year infection period, which we termed intermediate isolates. For one
patient, only one isolate was collected. These isolates were genetically characterized in
a study by Smith et al., who determined that the intrapatient replicate isolates are all
clonally related, with the exception of the four isolates from patient 75, which are
actually two clonally related early/late pairs (isolates 75E-1 and 75L-2 are clonal, and
isolates 75E-2 and 75L-1 are clonal) (3).

For all isolates, we characterized five clinically relevant phenotypes in vitro: mucoidy,
pyocyanin production, rhamnolipid production, protease production, and twitching
motility (Fig. 1; Table S1). These phenotypes are commonly altered during the course
of chronic CF lung infections (15). There were wide ranges in the expression of these
phenotypes across all isolates, as expected. Several isolate sets exhibited phenotypes
consistent with age of collection, in that early isolates possessed higher degrees of
motility, higher quantities of pyocyanin, rhamnolipids, and proteases (indicating intact
quorum regulation) and lower mucoidy compared to their cognate late isolates (e.g.,
those from patients 23, 31, 33, 36, and 76). The associations between relative patient
age at isolate collection and P. aeruginosa phenotypes were not perfect, however. For
example, early isolate 62E had no detectable pyocyanin, proteases, rhamnolipids, or
twitching motility, and many of the late isolates retained more early-like phenotypes
(e.g., both late isolates from patients 41, 66, 71, 75, and 101, and 60L-1, 74L-2, and
100L-2). Despite observable changes in isolate phenotype within a patient, no pheno-
types were significantly different when the late isolate(s) was compared to the early
isolate. Collectively, the 81 isolates were highly varied and represented the array of
phenotypes we expect to observe in the span of P. aeruginosa CF lung infections from
initial infection to long-established chronic infections.

In vitro volatilome of P. aeruginosa CF isolates. Taking an untargeted metabo-
lomics approach, we cultured the clinical P. aeruginosa isolates in vitro and character-
ized their volatilomes using GC�GC–TOF-MS. Following extensive data processing,
including removal of analytically biased chromatographic features, we conservatively
attributed 539 nonredundant volatile compounds to the growth and metabolism of the
P. aeruginosa isolates (Table S2). Among these, 69 compounds are shared by at least
95% (n � 77) of the isolates, representing core volatiles. Using minimum metabolomics
reporting standards, we assigned compound identification levels 1 to 4 (with 1 being
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FIG 1 Relative phenotype production of 81 P. aeruginosa CF chronic lung infection isolates. Each
phenotype was independently scaled to a range of 0 to 1, with 0 representing the minimum data point
and 1 representing the maximum data point (excluding outliers), and the relative productions are
depicted in the heat map as standardized values (mean-centered and scaled to unit variance) across
isolates. Phenotype score is the sum of the scaled, nonstandardized phenotype values, rounded to the
nearest integer.
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high; 2 was the highest level in this study) based on a combination of mass spectral
and chromatographic characteristics. We were able to assign putative names to 14
core and 33 noncore compounds with an ID level of 2 (Table 1), many of which have
been previously reported as P. aeruginosa volatiles (Table 1). While we detected
2-aminoacetophenone (the volatile compound responsible for the grape-like odor
of P. aeruginosa), it possessed an intraclass correlation slightly lower than the
applied threshold of 0.75 and was ultimately filtered out of our peak list. We also
identified several compounds from a variety of chemical classes that have not been
previously reported for P. aeruginosa, including alcohols (3-methyl-1-buten-1-ol,
1-butoxy-2-propanol, and 2-butyl-1-octanol), esters (butanoic acids and methyl

TABLE 1 Putatively identified volatile compounds metabolized by P. aeruginosa CF isolates

Compound namea Formula Chemical class No. of samples (n � 81) Reference(s)b

Core volatile compounds
3-Methylbutanal C5H10O Aldehyde 79
Thiocyanic acid, methyl ester C2H3NS Ester 77 43
3-Methyl-1-butanol C5H12O Alcohol 77 44, 46, 47
Pyridine C5H5N Aromatic 77
3-Penten-2-one C5H8O Ketone 77
3-Methyl-1-buten-1-ol C5H10O Alcohol 78
4-Methyl-3-penten-2-one C6H10O Ketone 81 28, 48
Hexanal C6H12O Aldehyde 81 44, 46, 48
Heptanal C7H14O Aldehyde 80
2,5-Dimethylpyrazine C6H8N2 Aromatic 81 43
2-Nonanone C9H18O Ketone 81 28, 43–45, 47–53
4-Ethyl-1,2-dimethylbenzene C10H14 Aromatic 77
1,3,3-Trimethyl-(bicyclo)-heptan-2-ol C10H18O Alcohol 78
1-(4-Ethylphenyl)-ethanone C10H12O Ketone 79

Noncore volatile compounds
Dimethyl sulfide C2H6S Other 29 28, 43, 44, 46, 47, 50, 54, 55
2-Methyl-3-buten-2-ol C5H10O Alcohol 35
2-Butanone C4H8O Ketone 1 28, 43–45, 47, 49, 52, 56
Tetrahydrofuran C4H8O Aromatic 1
Acetic acid C2H4O2 Carboxylic acid 55
Methyl thioacetate C3H6OS Thiol 3 44, 46, 48
2,4-Dimethylfuran C6H8O Aromatic 66 28
Butanoic acid, methyl ester C5H10O2 Ester 3
3-Hydroxybutan-2-one C4H8O2 Ketone 18
Dimethyl disulfide C2H2S2 Other 1 28, 44–48, 52, 54–59
2-Methyl-butanoic acid, methyl ester C6H12O2 Ester 3
3-Methyl-butanoic acid, methyl ester C6H12O2 Ester 3
Furfural C5H4O2 Aromatic 67 46
2-Butylfuran C8H12O Aromatic 6
2-Hexen-1-ol C6H12O Alcohol 51 28
1-Butoxy-2-propanol C7H16O2 Alcohol 61
6-Methyl-2-heptanone C8H16O Ketone 33
1-Methylethylbenzene C9H12 Aromatic 57
3-Octanone C8H16O Ketone 56 28, 47
4,6-Dimethyl-2-heptanone C9H18O Ketone 47
2-Ethyl-5-methylpyrazine C7H10N2 Aromatic 58
4-Nonanone C9H18O Ketone 49 28
Tetramethylpyrazine C8H12N2 Aromatic 5
2-Octenal C8H14O Aldehyde 48 43
Octanenitrile C8H15N Other 73 28
2,4-Octadienal C8H12O Aldehyde 9 28
3-Decanone C10H20O Ketone 41 43
Decanal C10H20O Aldehyde 65
2-Decanone C10H20O Ketone 13 28
4-Undecanone C11H22O Ketone 30
2-Dodecanone C12H24O Ketone 18 28, 43
2-Butyl-1-octanol C12H26O Alcohol 48
2,4-bis(1,1-Dimethyl)-phenol C14H22O Aromatic 26

aCompounds in bold type have not been previously reported as P. aeruginosa volatile compounds.
bReferences reporting these volatiles in P. aeruginosa cultures.
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isovalerate), aromatics [tetrahydrofuran, tetramethylpyrazine, 2-butylfuran, 3-cyano-2,5-
dimethylpyrazine, and 2,4(1,1-dimethyl)-phenol], unsaturated ketones [3-hydroxy-
butan-2-one, 4-undecanone, 1-octen-3-one, 3-penten-2-one, 6-methyl-2-heptanone,
and 1-(4-ethylphenyl)-ethanone], and an aldehyde (decanal).

Chemical classifications were assigned to ID level 2 and 3 compounds (187 com-
pounds) using mass spectral match and retention time characteristics (Fig. 2). Among
level 2 and 3 core volatiles, the majority of classified compounds were hydrocarbons
(41%), followed by ketones (16%). Other oxidized compounds, including alcohols,
aromatics, acids, and thiols, accounted for an additional 43%. The noncore volatiles had
similar chemical compositions, which are consistent with previous studies of the P.
aeruginosa volatilome (25, 28, 43–45). Of the entire volatilome, 65% of the volatiles
(n � 352) possessed less than an 80% mass spectral match to the 2011 NIST MS library
and as such were classified as unknowns.

Relationships in the P. aeruginosa CF volatilome within and between patients.
Because every patient is infected by a genetically unique strain, we hypothesized that
the dissimilarities of intrapatient volatilomes would be lower than those of interpatient
volatilomes. Additionally, due to the greater metabolic potential of early-infection
isolates with intact regulatory networks, we hypothesized that the volatilomes of
interpatient early isolates would be more dissimilar than those of interpatient late
isolates. We calculated the pairwise Euclidean distances as a measure of dissimilarity
between all early isolate volatilomes (“inter-early dissimilarity”), all late isolate volatil-
omes (“inter-late dissimilarity”), and between early and late isolate volatilomes from the
same patient (“intrapatient dissimilarity”). Significant differences between means were
tested using one-way analysis of variance (ANOVA) with Tukey’s honestly significant
differences (HSD) multiple comparison procedure. Interestingly, the inter-early dissim-
ilarity was the lowest (mean, 35.2; median, 33.8), and the inter-late dissimilarity was the
highest (mean, 39.1; median, 39.1), and these differences were significant (95% confi-
dence interval [CI], 3.05 to 4.86; P � 0�) (Fig. 3). Similarly, mean inter-late volatilome
dissimilarity was significantly greater than that of intra-patient volatilomes (mean, 36.4;
median, 35.6) (95% CI, 0.41 to 4.97; P � 0.013). Even more intriguing was that the

FIG 2 Size and chemical composition of volatile compounds metabolized by 81 P. aeruginosa CF chronic
infection isolates. (a) Identified compounds; (b) identified and unknown compounds; (c) identified
compounds, scaled to 100%; (d) identified and unknown compounds, scaled to 100%. C, core com-
pounds, defined as those detected in 95% or more of samples; NC, noncore compounds; C�NC, sum of
core and noncore compounds.
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inter-early dissimilarity was lower than even the intrapatient dissimilarity, though this
difference was not significant (95% CI, �1.11 to 3.66; P � 0.515). For comparison, we
also calculated the pairwise Euclidean distances of all isolates in this study (pooled;
mean, 38.0; median, 37.9); the mean inter-early and mean inter-late dissimilarities were
both significantly lower than the mean dissimilarity of the pooled isolates (95% CIs, 1.99
to 3.77 and �1.65 to 0.51; P � 0�).

Visualizing the Euclidean distances between isolate volatilomes via nonmetric mul-
tidimensional scaling (NMDS) and ordered dissimilarity images (ODI), we looked for
clustering of clonal isolates, which indicates intrapatient similarities. The NMDS and ODI
of the Euclidean distances of all 81 isolate volatilomes show a primary cluster com-
posed mostly of intermediate isolates of patient 23 (Fig. S1). To reduce the influence of
the overrepresented patient 23 isolates in data visualization, we truncated our data set
to 48 isolates by removing the intermediate isolates of patient 23 and the lone patient
21 isolate. The ODI plot and NMDS of the truncated set revealed three clusters of
similarity, none of which include all isolates from a single patient (Fig. 4; Fig. S2a and
b). This refutes our hypothesis that isolates from the same patient maintain a similar
volatilome over time. To determine if any interpatient or intrapatient isolate pairs are
significantly different, we performed permutational multivariate analysis of variance
(PERMANOVA) on the Euclidean distances for all possible pairs. Following Benjamini-
Hochberg adjustment of P values, no pairs of isolates were identified as having
significantly different volatilomes (q � 0.1 for all isolate pairs). However, PERMANOVA
conducted on all isolates indicated strong significant differences between the 81
volatilomes (pseudo-F80,161 � 28.0; P � 0.01), as well as between the volatilomes of the
truncated set of 48 isolates (pseudo-F47,96 � 29.2; P � 0�), reinforcing the inference
from the ODI and NMDS that the CF P. aeruginosa volatilome is heterogeneous.

Though we did not find that patient isolates maintain similar volatilomes over the
duration of chronic infection, it is noteworthy that the majority of patient 23’s isolates
have strong similarities (Fig. S1). Taking a closer look at the 35 isolates from patient 23
(Fig. 5; Fig. S2c), the ODI and NMDS revealed four distinct similarity neighborhoods: one
neighborhood consisting of only the early isolate, 23E, which stands alone; a second,
consisting of the four latest-collected isolates, 23I-32, 23I-33, 23L-1, and 23L-2; a third,
consisting of isolates 23I-7, 23I-9, 23I-12, 23I-14, and 23I-29; and a fourth, encompassing
the remainder of the isolates. The four latest-collected isolates are less defined by their
similarity to each other than their dissimilarity to all other isolates collected during the
infection. A linear regression of the Euclidean distances between the early isolate and

FIG 3 Violin plots and box plots of pairwise dissimilarities (defined as Euclidean distance) of P.
aeruginosa chronic infection isolate volatilomes. “Inter-Early” indicates between-patient early-early isolate
dissimilarities. “Inter-Late” indicates between-patient late-late isolate dissimilarities. “Intra-Patient” indi-
cates within-patient early-late isolate dissimilarities. “Pooled” represents all pairwise volatilome dissim-
ilarities. Red circles indicate the means. Significant differences between means were identified using
one-way ANOVA with Tukey’s HSD test. *, P � 0.05; ***, P � 0.001.

P. aeruginosa Cystic Fibrosis Volatilome

September/October 2020 Volume 5 Issue 5 e00843-20 msphere.asm.org 7

https://msphere.asm.org


the intermediate and late isolates as a function of patient age showed that isolates
became increasingly dissimilar to the early isolate over time (Pearson’s r � 0.70;
P � 0�) (Fig. 6). These observations are underpinned by the phenotypic differences of
the four latest isolates and the number and types of known mutations that were
accumulated in the 23L versus 23E isolates (3). As described by Smith et al. (3), the P.
aeruginosa infection sampled from patient 23 (referred to as patient 1 in the referenced
publication) diversified from a patient age of 1.5 to 3 years into a population of isolates,
with mutations in virulence, motility, quorum sensing, iron transport, efflux, and
transcription and translation genes. The volatilome dissimilarities we measured reflect
the genotypic diversification of the infection as a function of time (Fig. 6).

Chemical characteristics of the volatilomes of early and late isolates. We
compared the chemical characteristics of the early and late volatilomes, positing that
the size and chemical diversity of the volatilomes would decrease from early to late
infection due to loss-of-function mutations. To perform the comparison, we needed to
balance the size of the isolate groups, and we did so by selecting 10 pairs of P.
aeruginosa isolates that had large changes in phenotypes over the duration of infection,
thereby enhancing the differences we might find in the early versus late volatilomes
(Fig. 1; Table S1). Visual inspection of the 10 pairs of GC�GC chromatograms suggests
reductions in the number and variety of volatile compounds produced by late isolates
(Fig. 7; also, see Fig. 2 in Miscellaneous Information [https://doi.org/10.6084/m9
.figshare.12990908]). Contrary to the appearance of the chromatograms, however, the
overall size and chemical compositions of the early and late volatilomes were similar to
each other (Fig. S3a to d), with hydrocarbons representing approximately 50% and
alcohols and ketones together representing approximately 30% of the 410 early and
441 late volatiles. We quantified the chemical richness and diversity of the pooled early
and pooled late isolates using the Shannon-Wiener diversity index (Table S3) and found
that the volatilomes of early and late isolates were similar, whether all volatiles or only
the noncore volatiles were used.

FIG 4 Ordered dissimilarity image (ODI) of the truncated set of 48 P. aeruginosa clinical isolates depicting volatilome dissimilarity
defined by Euclidean distance.
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The uniformity in the early versus late volatilomes is not a function of data
aggregation, as the volatilomes of the individual isolates are highly similar in number
and chemical composition, with the exception of one late isolate (76L) that has a
slow-growth phenotype (Fig. S3e to h). Furthermore, when individual isolate pairs were
examined, for the vast majority there were no differences in the richness and diversity
of their volatilomes (Table S3). Together, these results suggest that there are not major
differences between the number and diversity of chemical compounds between early
and late isolates. Hierarchical clustering analysis (HCA) of the P. aeruginosa isolates by
their volatilomes underscores this observation; we observed no discernible clustering of
the early versus late isolates based on the presence and absence of volatiles (Fig. S4a).

FIG 5 Ordered dissimilarity image (ODI) of the 35 P. aeruginosa clinical isolates from patient 23 depicting volatilome
dissimilarity defined by Euclidean distance. For visual clarity, the isolate labels do not include the patient number.

FIG 6 Dissimilarity of patient 23 volatilomes over time, defined as Euclidean distance from the early
isolate (not shown). For visual clarity, the isolate labels do not include the patient number and
intermediate isolate labels have been truncated to include only the numeral that signifies collection
order (e.g., I-1 is represented as 1). The black line represents the linear regression fit (r � 0.70; P � 0�),
and the shaded region represents the standard error of the regression line.
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Abundance of volatile compounds in early and late isolates. Though we did not
observe any differences in the early- and late-isolate volatilomes based on presence
and absence of metabolites, the chromatograms suggest a reduced volatilome in late
infection. We therefore posited that while the numbers of volatiles do not significantly
change from early to late infection isolates, the relative concentrations of volatiles do.
Using volatile abundances, we performed HCA on the 20 selected early and late isolates
and found clustering by the time of isolate collection and phenotype score (Fig. S4b).
We were interested in whether clustering still occurs in the larger, less curated set of 48
isolates (i.e., the truncated set), which has more discordance between phenotype and
time of collection (Fig. 1). HCA of the truncated set of isolates shows that early isolates
are generally more similar to one another than late isolates are (Fig. 8), reinforcing
observations made by calculating Euclidean distances; however, significant proportions
of the early and the late isolates are misclustered. Interestingly, the majority of the late
isolates clustering with the early isolates in the upper clade have more early-like
phenotypes, and several early isolates that have more late-like phenotypes (e.g., 62E,
73E, and 70E) cluster in the lower clade with late isolates, indicating a relationship
between the isolate phenomes and volatilomes. We also observed clustering by
phenotype when the volatilomes of all 81 isolates were analyzed (Fig. S5). Similar
phenomena were observed when the truncated set or all 81 isolates were clustered by
the core volatilome (Fig. S6) and even when only the 23 core alcohols, aldehydes, and
hydrocarbons were used (Fig. 9; Fig. S7), suggesting that a set of conserved volatiles
could be identified and used as biomarkers for detecting phenotypic changes in
chronic infections.

DISCUSSION

P. aeruginosa isolates from cystic fibrosis lung infections have a large and diverse
volatilome. We conservatively attribute 539 detected volatiles to P. aeruginosa growth
and metabolism, only 13% of which were core volatiles. For volatiles that we could
assign to a chemical class, hydrocarbons represented the highest proportion, followed

FIG 7 Representative GC�GC chromatograms of early (top) and late (bottom) chronic infection isolates
(41E and 41L-2 are depicted). Dark blue represents the baseline, and peak intensity is depicted using a
color gradient from light blue (low) to dark red (high). Chromatographic regions where 1tR is �200 s and
2tR is �0.5 s were excluded for visual clarity. All chromatograms for the 10 selected early and late isolate
pairs are provided in Miscellaneous Information at https://doi.org/10.6084/m9.figshare.12990908.
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by ketones, which we observed both in the pan-volatilome and for individual patient
isolates. Approximately 40% of core volatiles have been identified in other P.
aeruginosa metabolomic studies, including the most frequently detected in vitro
volatiles 2-butanone, 2-nonanone, dimethyl sulfide, and dimethyl disulfide (see Table 1
for references). The majority of the core volatiles we detected, however, are reported
here for the first time. This opens up speculation that there may be a unique core
volatile profile for strains colonizing the CF lung, though due to the interstrain variation
in the P. aeruginosa volatilome, many more CF and non-CF isolates will need to be
characterized via untargeted GC�GC analyses to determine if this may be the case. To
date, a number of studies have attempted to identify collections of volatiles to
differentiate P. aeruginosa-positive or -negative subjects from breath (44, 60–67) and
bronchoalveolar lavage (25), with promising results. Unlike this study, however, the
referenced analyses were targeted at single compounds (e.g., hydrogen cyanide or
2-aminoacetophenone), did not characterize the volatilome of P. aeruginosa in detail,
and/or did not draw inferences to infection stage or changes across time. This study
represents the first untargeted comparative analysis of P. aeruginosa volatilomes over
long-term chronic infections, expanding the body of knowledge on P. aeruginosa
metabolism and broadening the potential applications for breath-based diagnostics.

Despite the trend toward reduced or loss-of-phenotype expression in late isolates—
which we hypothesized would correspond to a reduced metabolome size—we ob-
served that late isolates produce the same number and variety of volatile compounds

FIG 8 Hierarchical clustering analysis (HCA) of the truncated set of 48 P. aeruginosa clinical CF isolates,
based on the relative abundance of 539 volatile compounds. Volatiles are in columns (standardized
relative abundance). Clustering is based on rows (isolates), which are color coded by their phenotype
score (left color block) and relative time of collection (right color block). ALC, alcohols; ALD, aldehydes;
ARO, aromatics; CA/EST, carboxylic acids and esters; HC, hydrocarbons; KET, ketones; THI, thiols; OTH,
other compounds; UNK, unknown identity.
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as early isolates. However, the relative abundance of volatiles produced by the late
isolates is significantly reduced. Our data suggest that mutations that arise in P.
aeruginosa chronic infection isolates do not result in complete inhibition of metabolic
pathways but may instead reduce metabolic flux. This observation has implications for
diagnostics, signifying that presence and absence of P. aeruginosa volatile metabolites
would provide little diagnostic value for tracking chronic lung infections. Rather, a
breath-based diagnostic for monitoring P. aeruginosa adaptations in CF will likely need
to measure the relative abundance of metabolites. Importantly, a subset of core
volatiles can be used to cluster isolates based on commonalities in phenotypes,
indicating that a diagnostic based on the relative abundances of conserved hydrocar-
bons, alcohols, and aldehydes (or a few selected volatiles from these classes) may be
sufficient to track P. aeruginosa infection in most patients. It should be noted that core
P. aeruginosa volatiles are not necessarily unique to P. aeruginosa. In fact, a review of
the mVOC 2.0 microbial volatile organic compound database (68) shows that nearly half
of the core volatiles (and a third of named compounds overall) have been reported as
being produced by other CF lung bacterial pathogens, including Staphylococcus aureus,
Klebsiella pneumoniae, Haemophilus influenzae, Stenotrophomonas maltophilia, and
Burkholderia spp. This further highlights the necessity of developing a breath-based
diagnostic based on the relative abundances of sets of volatiles, which has been shown
to accurately discriminate between human pathogens (distantly or closely related to P.
aeruginosa) in numerous in vitro, ex vivo, and in vivo analyses (25, 48, 69–71).

Based on the genomic heterogeneity of P. aeruginosa (3, 33–35), we hypothesized
that every patient would have a unique P. aeruginosa volatilome and that intrapatient

FIG 9 Hierarchical clustering analysis (HCA) of the truncated set of 48 P. aeruginosa clinical CF isolates,
based on the relative abundance of 23 core alcohols, aldehydes, and hydrocarbons. Volatiles are in
columns (standardized relative abundance). Clustering is based on rows (isolates), which are color coded
by their phenotype score (left color block) and relative time of collection (right color block). ALC, alcohols;
ALD, aldehydes; HC, hydrocarbons.
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isolates would have more similar volatilomes than interpatient isolates. On the contrary,
we observed that the volatilomes of early and late isolates from a single patient are no
more similar to one another than they are to any other isolate (intrapatient versus
pooled data [Fig. 3]). Interestingly, the volatilomes of interpatient early isolates are even
more similar than intrapatient isolates, while the volatilomes of interpatient late isolates
have the highest dissimilarity. These data indicate that the genomic similarity within
patients is less influential on the volatilome than the posttranscriptional diversity that
evolves within a chronic P. aeruginosa infection population. The data from patient 23,
however, suggest that intrapatient isolates are more likely to have similar volatilomes
when there are fewer mutational and phenotypic differences between them. From
these results, we propose that a breath-based diagnostic to track P. aeruginosa chronic
lung infections would be personalized, with each patient’s breathprint at initial infec-
tion serving as a baseline to which subsequent breathprints are compared. Sustained,
significant deviations from the patient’s baseline breathprint would indicate that the P.
aeruginosa population phenotype has changed, and therefore, the patient may be at
higher risk for associated poor clinical outcomes (e.g., higher risk of exacerbation) (15)
and at higher risk of infection eradication failure after antibiotic treatment (12). In a
longitudinal case study of a single CF patient, we showed that changes in the dominant
species colonizing the lung are correlated with changes in the volatile metabolites
detected in sputum (72), and therefore, monitoring for breathprint deviations may also
work for P. aeruginosa infections, as these data suggest. Despite this, the issue of
specificity becomes a concern unless biomarkers for individual P. aeruginosa pheno-
types are identified and used for tracking; this is the subject of ongoing work.

We highlight some limitations in this study. Although we make reference to early
isolates and those phenotypes associated with early infection, it is important to
recognize that these isolates were merely the first culturable P. aeruginosa from the
patients included in this study. It is likely that some patients had P. aeruginosa in the
lung for some years in spite of persistent negative cultures into late childhood or
adolescence (15), exemplified by the fact that isolates 62E and 73E exhibited late-like
phenotypes. Phenotype discordance with collection time or apparent infection stage
underscores a major drawback of culture-based methods for infection staging (e.g., in
vitro phenotyping) in that the respiratory microbiome is prone to undersampling,
especially during initial colonization, due to the complex structure of the lung. The
increased use of new therapeutics (e.g., CFTR modulators) also impacts culture-based
diagnostics, as they reduce sputum production, limiting the opportunity for clinical
cultures. Utilizing breath-based biomarkers, on the other hand, can overcome these
challenges, as breath represents a sample of the entire ventilated lung environment.

P. aeruginosa chronic infection phenotypes are positively correlated with advanced
patient age (15, 73–75), and we observe a moderate but significant correlation (Ken-
dall’s tau, – 0.41; P � 0.001) between subject age and late-infection phenotype scores in
this study. The variability of isolate volatilomes we observed might therefore be
explained by the age of their corresponding patients. Testing this would require
analyzing isolate volatilomes from a larger number of subjects that were diagnosed
with their first P. aeruginosa infections at younger and older ages. In either case, the
issue of the potential covariance between age and volatilome on P. aeruginosa diag-
nostics could be overcome by taking a multifactorial approach as opposed to using
volatile biomarkers only. We may find that using a combination of several clinical
predictors, such as age, P. aeruginosa phenotype, and volatilome, provides more
diagnostic power than any individual metric. It will be important to explore this more
closely in future work. Additionally, while we presented volatilome trends in relation to
only five clinically relevant phenotypes in this study (production of pyocyanin, rham-
nolipids, and proteases, twitching mobility, and mucoidy), there are additional clinically
relevant phenotypes, including antibiotic resistance, that should be included in future
analyses.

In summary, current methods for tracking P. aeruginosa lung infection progression
are predominantly culture based (16, 21), and our results suggest a potential role for in
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vitro volatile metabolomics in staging chronic infections in conjunction with estab-
lished clinical laboratory methods. The clinically correlated P. aeruginosa phenotypes
we measured in this study—mucoidy, motility, and quorum-regulated traits—are sen-
sitive to environment (76–79); as such, the metabolomes we characterized from in vitro
cultures are unlikely to directly reflect the metabolomes these isolates produced in the
CF lung. For the development of a breath test for tracking infections in situ, it will be
necessary to utilize culture models that are more reflective of the lung (80–83) and to
collect ex vivo and in vivo infection volatilomes (25, 61, 84). The utility of breath for
tracking chronic lung infections is being demonstrated in tuberculosis lung infection
models (26), and therefore, we anticipate that the development of a breath-based
diagnostic for tracking P. aeruginosa chronic lung infections is feasible. It will also be
important to ensure that the P. aeruginosa volatiles we have identified are detectable
in breath. This is the primary goal of the observational clinical study IMproving P.
Aeruginosa deteCTion using Breath (IMPACT-Breath), which is under way. Despite the
limitations of in vitro analyses, this study presents the first comprehensive analysis of
the P. aeruginosa volatilome from chronic CF lung infections and lays the groundwork
for the application of volatile metabolomics in tracking CF lung disease.

MATERIALS AND METHODS
Bacterial isolates. Eighty one P. aeruginosa isolates from 17 individuals with CF were acquired from

the Cystic Fibrosis Isolate Core at Seattle Children’s Center for Global Infectious Disease Research. From
the majority of patients we obtained three isolates: one early isolate, defined as the first cultured P.
aeruginosa isolate, and two late isolates collected a minimum of 5 years after the first isolate. For one
patient (patient 23), 32 additional isolates were collected at intervals over 7.5 years between the
collections of the early and two late isolates. For one patient, only one isolate was included in this study.
The full strain names of the isolates are provided in Table S1, and all isolates are available upon request
from the CF Isolate Core (https://www.seattlechildrens.org/research/resources/cystic-fibrosis-isolate/).

We quantified five phenotypes that are correlated with chronic infections: proteases, pyocyanin,
rhamnolipids, twitching motility, and mucoidy. P. aeruginosa was cultured from glycerol stocks on
lysogeny broth Lennox (LB) agar for 24 h, and then a single colony was cultured aerobically to stationary
phase in LB broth (10 g tryptone, 5 g yeast extract, 5 g NaCl per liter) at 37°C with shaking at 200 rpm,
unless otherwise noted. Results of phenotype assays are reported in Table S1 as means for biological
triplicates, except for mucoidy, for which five replicates were measured. Pyocyanin production was
evaluated by methods adapted from reference 85. Cell-free P. aeruginosa culture supernatant (7.5 ml) was
extracted with 4.5 ml of chloroform, inverted for 2 min and centrifuged at 4,122 � g for 15 min. Three
milliliters of the organic phase was removed, extracted with 750 �l of 0.2 N hydrochloric acid, and
vortexed for 2 min. The aqueous phase was aliquoted into a 96-well plate, and absorbance was measured
at 520 nm. Protease production was evaluated by methods adapted from reference 15. A sterile wooden
inoculation stick was dipped into a culture of P. aeruginosa and then gently touched to the surface of a
brain heart infusion-skim milk agar (1.5%) plate. Plates were incubated upright at 37°C, and zones of
clearance were measured at 48 h. Rhamnolipid production was evaluated by methods adapted from
reference 86. Proteose peptone-glucose-ammonium salts (PPGAS) medium was inoculated from an LB
preculture of P. aeruginosa and cultured at 37°C to stationary phase with shaking at 200 rpm. Cultures
were centrifuged at 21,694 � g for 1 min to pellet cells. The supernatant was serially diluted 2-fold in
PPGAS, and 20 �l of each dilution was spotted onto a microtiter plate lid. Spots were classified as drops
or collapsed drops and assigned numeric scores corresponding to the number of dilutions needed to
obtain a drop. Twitching motility was evaluated by methods adapted from references 87 and 88. The
pointed end of a sterile toothpick was touched to the edge of a single P. aeruginosa colony and then
stabbed to the bottom of a twitching motility agar plate (per liter: 10 g tryptone, 5 g NaCl, 5 g yeast
extract, 10 g agar). Plates were incubated at 37°C for 24 h, and the radius of the interstitial biofilm was
measured. For mucoidy, frozen glycerol stocks of P. aeruginosa were streaked onto LB agar (1.5%) plates
and grown for 48 h. Colonies were visually inspected, and the degree of mucoid morphology was scored
from 0 to 2, in 0.5 increments (0 � highly mucoid, 2 � nonmucoid). Twenty pairs of isolates (one early
and one late) from 10 patients were selected for additional statistical analyses, described below, based
on changes to their phenotypes during chronic infections.

Sample preparation. Isolates were cultured as previously described (89). Briefly, isolates were
cultured aerobically for 16 h at 37°C in 5 ml of LB and then diluted 1,000-fold into 25 ml of fresh LB and
grown for 24 h under the same conditions. For metabolomics analyses, cells were removed via
centrifugation through a 0.2 �m filter, and 2 ml of each filtrate was transferred to a 10 ml GC headspace
vial with a screw cap. Samples were prepared in biological triplicate, with LB medium controls prepared
in parallel, and stored at �20°C prior to analysis.

GC�GC analysis and data processing. Culture filtrates were thawed and maintained at 4°C until
analyzed, as previously described (89). Headspace volatiles were characterized using a Pegasus 4D
GC�GC–TOF-MS (LECO Corporation, St. Joseph, MI) equipped with a MPS Pro rail autosampler (Gerstel
Inc., Linthicum Heights, MD). Column set configuration and GC�GC, MS, and data processing method
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parameters were previously reported (89) and are summarized in Table 1 of Miscellaneous Information
(https://doi.org/10.6084/m9.figshare.12990908).

Data processing steps are outlined in Fig. 1 of Miscellaneous Information. Chromatographic artifacts
and suspected contaminants based on peak names and comparisons to blanks were removed (see Table
2 in Miscellaneous Information), as well as poorly modulated peaks eluting prior to 358 s (acetone
retention time) in the first dimension. Missing values were handled as follows: if detected in one of three
replicates, the measured value was permuted to 0; if detected in two of three replicates, the missing
value was imputed as half of the minimum detected value for that compound across all samples.

Probabilistic quotient normalization (PQN) was applied to account for differences in peak abundance
due to variations in culture cell density, followed by a log10 transformation (90). Peaks were further
filtered out based on the following criteria: (i) a within-triplicate intraclass correlation coefficient (ICC) of
�0.75 (definition, absolute agreement; model, two-way mixed effects; type, mean of k measurements)
(91) and (ii) detection only in sterile medium or abundance not significantly greater than in sterile
medium using the Wilcoxon rank-sum test with Benjamini-Hochberg adjustment (significance threshold
of 0.05) (92).

For statistical analyses beyond the reporting of detected peaks, peaks that showed significant
correlations to run order were identified using Kendall’s tau with Benjamini-Hochberg adjustment
(�0.6 � � � 0.6, significance threshold of 0.05) and removed. Principal component analysis (PCA)
revealed an apparent batch effect that was attributed to, at least in part, a nonbiological phenomenon
and was described previously (89). This batch effect was corrected using an empirical Bayes approach
(93). The geometric means of triplicates of the batch-corrected data were used for further statistical
analyses. For analysis of the 10 paired early and late chronic infection isolates, batch-corrected data were
not used, as all of these isolates were contained within the same batch.

Peaks were putatively identified using published reporting standards (94). Level 2 identifications
were determined based on the following criteria: (i) �80% mass spectral forward match using the NIST
2011 library; (ii) (a) first-dimension retention times that possess a strong linear fit with carbon number
in homologous series (r2 � 0.995, for the identification of selected 2-, 3-, and 4-ketones) or (b)
experimentally determined linear retention indices (LRIs) consistent with published LRIs, as determined
by the following acceptance criteria based on the differences between experimental and published
nonpolar and polar column RIs for Grob’s test mix: [(RIexperimental � RInonpolar)/(RIpolar � RInonpolar)] � 100 �
0 to 43%.

Level 3 identifications were based on at least an 80% mass-spectral forward match score. Chemical
classifications (alcohols, aldehydes, aromatics, carboxylic acids, esters, hydrocarbons, ketones, thiols, or
other) were assigned based primarily on their mass spectral identity and secondarily on their chromato-
graphic characteristics. Using polar second-dimension columns, compounds of different functional
classes elute at easily discernible second-dimension retention times (2tR) in a stratified manner, typically
as follows (from smallest 2tR to largest): hydrocarbons � ketones � aromatics (43, 95–98). In this study,
compounds identified as hydrocarbon, ketones, and aromatics eluted at approximately 0.71 s � 0.05 s,
0.88 s � 0.22 s, and 1.12 s � 0.26 s, respectively. Level 4 identifications are those that meet none of the
above-mentioned criteria.

Statistical analyses. A phenotype score was determined, for each replicate, by scaling the data for
each phenotype to a range of 0 to 1, where 1 is the maximum value and 0 is the minimum value
(excluding outliers). Scaled phenotype data were then summed to yield the score and averaged across
replicates. Patient age was not included in calculation of scores. Two-tailed Wilcoxon signed-rank tests
(with continuity correction, where appropriate; significance threshold of 0.05) were used to test for
significant differences between late- and early-isolate scores.

Volatile compounds that were detected in at least 95% of all samples were classified as “core”
volatiles. Significant differences between interisolate phenotypes were tested using the Wilcoxon
signed-rank test (significance threshold of 0.05). Significant differences between intra- and interpatient
volatilomes were tested using one-way analysis of variance (ANOVA) (significance threshold of 0.05), and
Tukey’s honestly significant differences (HSD) multiple comparisons procedure (significance threshold of
0.05). The relatedness of isolates based on their volatilomes was assessed using agglomerative hierar-
chical clustering analysis (HCA), nonmetric multidimensional scaling (NMDS), and permutational multi-
variate analysis of variances (PERMANOVA) on the Euclidean distances between isolates. Linear regres-
sion and Pearson’s correlation of Euclidean distances of patient 23 isolates were used to assess
intrapatient isolate dissimilarity over time. All statistical analyses were performed using R version 3.3.2
(The R Foundation for Statistical Computing) with the following packages (version): ICC (2.3.0), pair-
wiseAdonis (0.0.1), pheatmap (1.0.8), stats (3.3.2), and sva (3.22.0).

Data availability. Metabolomic data (chemical feature peak areas and retention time information)
included in this study are available at the NIH Common Fund’s National Metabolomics Data Repository
(NMDR) website, the Metabolomics Workbench, at www.metabolomicsworkbench.org, where it has been
assigned project ID PR000970 and study ID ST001414 (https://doi.org/10.21228/M89Q4F). Miscellaneous
Information (additional tables and figures) can be found at Figshare (https://doi.org/10.6084/m9.figshare
.12990908).
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FIG S1, JPG file, 0.7 MB.
FIG S2, JPG file, 0.3 MB.
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FIG S7, JPG file, 0.3 MB.
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