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ABSTRACT

Sets of genes expressed in the same tissue are
believed to be under the regulation of a similar set
of transcription factors, and can thus be assumed to
contain similar structural patterns in their regulatory
regions. Here we present a study of the structural
patterns in promoters of genes expressed specifi-
cally in 26 human and 34 mouse tissues. For
each tissue we constructed promoter structure
models, taking into account presences of motifs,
their positioning to the transcription start site, and
pairwise positioning of motifs. We found that 35
out of 60 models (58%) were able to distinguish
positive test promoter sequences from control
promoter sequences with statistical significance.
Models with high performance include those for
liver, skeletal muscle, kidney and tongue. Many of
the important structural patterns in these models
involve transcription factors of known importance
in the tissues in question and structural patterns
tend to be conserved between human and mouse.
In addition to that, promoter models for related
tissues tend to have high inter-tissue performance,
indicating that their promoters share common
structural patterns. Together, these results illustrate
the validity of our models, but also indicate that the
promoter structures for some tissues are easier to
model than those of others.

INTRODUCTION

The activity of genes and their products is regulated
on many levels. As one of the first levels, regulation of
transcription plays an important role in this regulatory
system. Transcription factors (TFs) bind the regulatory
regions of genes on specific sites in the genome—
commonly referred to as transcription factor binding

sites (TFBSs) or cis-regulatory motifs—and in this way
help the formation of the transcription initiation
complex. Therefore, the understanding of TFs and their
binding sites is key to understanding the regulation of
transcription. As such, they have received considerable
attention, both in the field of their prediction and the
modeling of their binding motifs (1,2), and their functions
in different tissues (3,4).

It is becoming more and more clear that the regulation
of transcription in higher eukaryotes is a complex process.
A single promoter can contain multiple binding sites for
up to 10 or more different TFs, and significant coopera-
tion and competition exist between different regulatory
proteins (5). Therefore, in higher organisms, it is no
longer sufficient to regard TFs as individually operating
molecules and it is not surprising that attention is shifting
towards modeling regulatory regions on a higher level.
Various techniques, such as thermodynamic models
(6,7), Bayesian networks (8.,9), hidden Markov models
(10,11) and Markov chains (12) have been used, and
recent studies have successfully focused attention on
local clusters of TFBSs, so called cis-regulatory modules
(CRMs). Smith et al. (13) modeled CRMs using the
MARS algorithm and used their models to predict
whether genes are up- or down-regulated in 28 tissues.
Blanchette et al. (14) scanned the genome for CRMs,
computing scores from conserved sites using windows of
different sizes. Van Loo et al. (15) described an approach
for modeling CRMs, using a Genetic Algorithm (GA) to
find an optimal set of motifs distinguishing positive
promoter sequences from others. However, in general
these studies tend to focus only on the enrichment of pre-
dicted TFBSs, ignoring other structural patterns such as
relative distances or orientation of sites.

Previously, we have presented an approach for the
modeling of the structure of promoters driving tissue-
specific expression (16). In this approach, structural
patterns are generated on the presence of motifs and
their positioning with regard to the transcription start
site (TSS) and to each other. Subsequently a GA selects
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a small set of structural patterns that optimally distin-
guishes positive training promoters from negative
training promoters. The model was applied successfully
on a set of muscle-specific genes in the nematode
C. elegans.

Here we present an updated version of this model
and its application on sets of genes expressed specifically
in 26 human and 34 mouse tissues. Using 10-fold cross-
validation (CV) we evaluate the capability of the model to
predict tissue-specific expression of genes based on struc-
tural patterns in their promoter regions. In about half of
the sets the model performs significantly better than
expected at random. We find that the performance of
our model is highly variable between different tissues.
Interestingly, tissues traditionally used in the study of
tissue-specific regulation of transcription, such as skeletal
muscle, liver and kidney, tend to be easier to model. We
find high performance when applying human models on
mouse datasets and vise versa, indicating that the struc-
tural patterns are conserved between human and mouse
promoters. Additionally, high performance is observed
when applying models trained on one tissue on promoters
expressed specifically in functionally related tissues.
Finally, the GA in this updated model assigns weights
to the structural patterns, and top structural patterns
turn out to contain many patterns describing the posi-
tioning of motifs proximal to the TSS. This stresses the
importance of not focusing all attention solely on CRM
modeling.

MATERIALS AND METHODS
Tissue-specific datasets

As expression data we used the microarray expression
data of Su et al. (17), which includes data for 79 tissues
and cell types in human and 61 tissues and cell types in
mouse. For each gene we processed raw expression data to
Z-scores, using the mean and the standard deviation of the
gene’s signal over all tissues. We defined genes as ‘tissue-
specific’ when the Z-score exceeded the threshold value of
3. Genes with Z-scores exceeding the threshold in multiple
tissues are considered ‘tissue-specific’ in each of these
tissues. All tissues with at least 50 tissue-specific genes
were used for further analysis.

TSS data and promoter sequences

TSSs of genes were defined using a combination of data
DBTSS (for both human and mouse data) (18), CAGE
data (for mouse) (19) and data from the UCSC Genome
Browser (20) (for both human and mouse). Where
possible TSSs were assigned using data from DBTSS.
If not, CAGE data (for mouse) and UCSC TSS annota-
tions were used. The regions from —1000 to +200 were
extracted from the repeat-masked hgl8 and mmOc
versions of the human and mouse genome, respectively.

Training, validation and test samples

We used 10-fold CV for evaluating performance of
the models. Therefore, positive promoter sequences were

randomly divided into 10 partitions. Each of the 10
partitions was used once as test set. The remaining 90%
were used for training the models. They were further
divided randomly into two parts of equal size; a training
set and a validation set. Motif prediction and generation
of structural patterns were performed on the training set.
The validation set was used in the GA runs, for selecting
individuals for the next generations. Finally, performance
was evaluated on the test set.

Control sequences were sampled from the genomic set
of promoter sequences, excluding positive sequences. No
overlap was allowed between sequences for training and
testing purposes. We prefer the term ‘control sequences’
over the term ‘negative sequences’, as the promoters we
used as controls are not necessarily inactive in the tissue
under consideration.

Motif prediction, evaluation and selection

In training sequences we predicted de novo motifs using a
set of four popular motif prediction programs, and con-
verted motifs to PWMs. Subsequently, we scanned these
sequences, and a set of randomly picked up control
promoters using all de novo PWMs and all vertebrate
PWMs from the TRANSFAC database version 2008.4
(21). For each motif a measure for over-representation
was calculated from the predicted sites in the positive
and control sequences. For this measure of over-
representation, a corresponding p-value was calculated
using random sampling from a second set of randomly
selected promoters. Redundancies in the PWM set were
removed using tomtom (22), stepwise removing less
over-represented PWMs from pairs of similar PWMs.
From the final set of non-redundant PWMs, PWMs
with a p-value <0.01 were retained. We refer to the
Supporting material for a more detailed description.

Promoter structure model

Using this final set of PWMSs the positive and control
training and test sequences were scanned, and based on
the predicted sites the promoter models were trained. For
a detailed description we refer to Vandenbon and Nakai
(16). Here we limit the description to a short summary,
and a description of the changes made to the model.
From the predicted sites for the final set of PWMs in the
training sequences structural patterns over-represented in
the positive sequences were generated. Three types of
patterns are considered: (i) presence of sites anywhere in
the promoter sequences, (ii) presence of sites within a
certain region relative to the TSS and (iii) relative posi-
tioning of pairs of sites. From the large set of generated
patterns, a GA subsequently selects a set of meaningful
patterns. Briefly, in GA optimization, initially a popula-
tion of individuals is generated with each individual rep-
resenting a possible solution to the problem of interest.
In this study, the solutions are subsets of structural
patterns. For each individual in the population, the
solution it encodes is applied on the training samples
and the resulting performance is used as a measure of
the fitness of the individual. Subsequently, individuals
are selected stochastically based on their fitness, and



modified to form the next generation. This process is
repeated for a number of generations, until a suitable
solution is obtained. For a more detailed introduction
on GAs we refer to Johnson and RahmatSamii (23).

While the GA in the original study was rather simple,
we have made some changes in order to get more
biologically meaningful results, and to avoid over-fitting
the training data. First of all, instead of just selecting a
number of patterns from the total set of patterns, the new
GA also gives weights to each selected pattern, and adjusts
the weights in a way that improves performance on
the training sequences. Let P be the set of all structural
patterns; C(s,P) the vector of counts of patterns present
in promoter sequence s; and W, the vector of weights of
the patterns as allocated by the GA. Then,

Score(s,P,W) = C(s,P)' W, 1

where Score(s,P,W) is the score of promoter s given
Pand W.

The GA adjusts the vector W in such a way that the
fitness of the individuals in the GA is increased. Let F be
the fitness of an individual. Whereas in the original model
as described by Vandenbon and Nakai (16), F was only
a function of the area under the curve (AUC) of the
receiver operator characteristic (ROC) curve of the
training sequences, we have expanded the definition of F
to also include a direct measure of the over-representation
of true positive training sequences among the top scoring
sequences. Let Sensgs represent the sensitivity at 95%
specificity, and let Sensg, represent the sensitivity at
90% specificity. Then, the fitness of each individual is
defined to be

F(A UC, S€I’1S95, SenS90) = (A UC/OS) + (SenS95/0.05)
+ (Sensgy/0.1)

A third change is in the use of the training data. While
using separate sets of samples for training a model and
testing gives a more correct estimation of the performance
of the model than training and testing on the same
samples, it does not necessarily prevent the model
from over-learning the training data. Here, we used the
following approach for reducing over-learning: we used a
separate set of samples for estimating performance during
training (referred to as the validation set), as described
in Gagne et al. (24). In our GA, in the reproduction
step, individuals were selected based on their fitness on
the training sequences. Subsequently, during the selection
step, individuals were selected from the expanded popula-
tion based on their fitness on the validation set. This way,
individuals performing well on the training set but not on
the validation set (e.g. over-fitted individuals) will not be
selected for the next generation. Note that the training and
validation sets do not contain any of the test set sequences.
Finally, we introduced a penalty function to limit the
complexity of the models: individuals received a penalty
as the number of patterns with non-zero weights increases.
A simulated annealing approach was used, resulting in
lower penalties at the start of training, and gradual
increase of penalties as training progresses.

Nucleic Acids Research, 2010, Vol. 38, No.1 19

For each of the tissue datasets, for each of the 10 CV
runs, the GA was run 100 times. The weights given to each
pattern were averaged over the 100 runs to make the final
weights of each model.

Evaluation of performance

Using the averaged weights of each pattern, and the
counts for each pattern in each promoter sequence,
the final score of each sequence was calculated. From
the scores of the positive test sequences, and the control
test sequences, a ROC curve was constructed and the
AUC value was calculated for each CV set. Two other
measures for performance are the sensitivity at 95%
specificity and the sensitivity at 90% specificity. For
these three measures of performance, p-values were
calculated by random shuffling of the scores for positive
and negative test sequences. From these shuffled scores the
three measures of performance were calculated. This was
repeated one million times. For each of the actual
measures of performance, the fraction of shuffled
measures of performance equal to or higher than the
actual measure was used as P-value.

RESULTS AND DISCUSSION
Tissue-specific motif over-representation

In a first step we identified over-represented de novo
and known TFBS in the training sequences of each of
the 60 sets of tissue-specific genes. For many tissues
we found known vertebrate TFBS motifs from the
TRANSFAC database to be significantly over-represented
in each of the promoter sets (see Tables 1 and 2 in the
Supplementary Data for an overview). For many of the
over-represented TFBSs, the role of the corresponding TF
in the tissue in question is known and has been extensively
reported in the literature, and in many cases similar motifs
were found to be over-represented in human and mouse
tissues. Some examples are ETS binding sites (including
PU.1) in myeloid cells, monocytes, NK cells, and B and T
cells (25-30), HNF4 sites in human and mouse liver, and
mouse small and large intestine (31,32), HNF1 sites in
human fetal liver, human and mouse liver (33), and
MEF?2 sites in human and mouse skeletal muscle tissue
(34,35), SRF sites in human skeletal muscle and mouse
heart (34,36). Other in silico studies on similar datasets
have reported similar results (3,4,13).

Promoter structure model performance

For each dataset we constructed a set of non-redundant
over-represented PWMs, and generated structural
patterns concerning their presence and positioning in the
promoter sequences. A GA was used to train a promoter
structure model for each of the datasets, by assigning
a weight to each structural pattern (see Materials
and Methods section for a more detailed description).
Finally, the performance of the trained models was
evaluated by applying them on test sequences.

Table 1 shows an overview of the performance of the
model on the human and mouse datasets. It is obvious
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Table 1. Overview of results for (A) 26 human and (B) 34 mouse
tissues and cell types

Description Size (No. AUC value
of seqs)
Value Corrected
p-value
Human datasets
Tongue 76 0.8066 <6.0e—5
Fetal liver 89 0.7879 <6.0e—5
Kidney 95 0.7056 <6.0e—5
Skeletal muscle 67 0.6986 <6.0e—5
Liver 276 0.6814 <6.0e—5
Testis interstitial 131 0.6680 <6.0e—5
Bronchial epithelial cells 75 0.6656 <6.0e—5
Placenta 124 0.6521 <6.0e—5
PB- CD14+ monocytes 142 0.6272 6.0e—5
Testis 159 0.6028 1.8e—4
Heart 80 0.6411 4.2¢—4
Pancreas 58 0.6592 7.8e—4
Lung 74 0.6390 1.4e-3
BM- CD71 + early erythroid 187 0.5799 4.4e-3
Whole blood 110 0.5917 0.024
PB- CD56+ NK cells 146 0.5757 0.043
BM- CD33+ myeloid 160 0.5702 0.063
PB- CD8+ T cells 62 0.6064 0.11
721 B lymphoblasts 215 0.5478 0.46
Smooth muscle 81 0.5676 1.0
PB- BDCA4+ dentritic cells 95 0.5619 1.1
Testis leydig cell 66 0.5718 1.3
Adipocyte 50 0.5737 2.1
PB- CD19+ B cells 70 0.5579 2.8
BM- CD105+ endothelial 53 0.5547 5.1
BM- CD34 + 85 0.5227 14.1
Mouse datasets
Small intestine 205 0.7267 <6.0e—5
Tongue 102 0.7148 <6.0e—5
Snout epidermis 125 0.7018 <6.0e—5
Digits 105 0.6799 <6.0e—5
Liver 325 0.6736 <6.0e—5
Kidney 213 0.6677 <6.0e—5
Eye 103 0.6653 <6.0e—5
Testis 787 0.6428 <6.0e—5
Large intestine 124 0.6403 <6.0e—5
Fertilized egg 589 0.6396 <6.0e—5
Thyroid 156 0.6314 <6.0e—5
Skeletal muscle 145 0.6209 <6.0e—5
Oocyte 655 0.6147 <6.0e—5
Pancreas 381 0.5794 <6.0e—5
Umbilical cord 83 0.6626 6.0e—5
Bone 87 0.6372 3.0e—4
Placenta 109 0.6203 4.2¢e—4
Bone marrow 96 0.6258 6.0e—4
CD4+ T-cells 64 0.6476 1.0e—3
Heart 75 0.6365 1.1e=3
Dorsal root ganglia 63 0.6367 4.4e-3
Blastocysts 165 0.5685 0.068
Stomach 77 0.5882 0.22
Lung 88 0.5823 0.23
Spleen 83 0.5733 0.62
Salivary gland 107 0.5641 0.65
Medial olfactory epithelium 120 0.5580 0.83
Mammary gland (lact) 62 0.5681 1.9
Vomeralnasal organ 63 0.5575 34
B220+ B-cells 163 0.5327 4.5
Adrenal gland 58 0.5413 8.3
Prostate 57 0.5102 23.7
Thymus 55 0.4692 47.1
Embryo day 6.5 68 0.4239 59.1

A description of each dataset, the number of promoter sequences it
contains, the average AUC value of the ROC curves obtained from
the 10 cross-validation runs, and a corrected P-value for this value is
shown. Tissues are ranked in order of increasing P values and
decreasing AUC values (PB: peripheral blood; BM: bone marrow).

Table 2. Overview of the top five structural patterns in the
cross-validation run with highest performance for the
human fetal liver dataset

Pattern Pattern content Pattern
rank weight

Motif 1 in region —100 to +200 relative to TSS 0.015
Motif 2 in region —250 to +200 relative to Motif 3 0.012
Motif 4 in region —350 to +50 relative to Motif 5 0.011
Motif 2 in region —200 to + 150 relative to TSS 0.010
Motif 6 in region —150 to +200 relative to TSS 0.010

[ O S

The rank, content and weight of each pattern is indicated. Motif IDs
refer to the motif logos shown in Figure 1.

Table 3. Overview of the 10 tissue pairs with the highest inter-tissue
performance for the human models

Model tissue Sequence AUC Correlation
tissue of expression

Kidney Fetal liver 0.7305 0.21

Liver Kidney 0.6939 0.38

Pancreas Fetal liver 0.6876 0.16

Liver Fetal liver 0.6870 0.29

Skeletal muscle Tongue 0.6846 0.35

Kidney Tongue 0.6806 0.11

PB- CD14+ Lung 0.6542 0.03
monocytes

Pancreas Tongue 0.6497 0.08

PB- CD14+ Tongue 0.6460 —0.20
monocytes

Liver Tongue 0.6431 0.11

The tissue on which the model was trained, and the tissue on which
it was applied are shown, along with an AUC value as measure of
performance. The value shown is an average of the 10 cross-validation
runs. The final column shows the Pearson correlation coefficient of the
expression of the genomic set of genes for the model tissue and target
sequences tissue.

that performance greatly varies between the tissues: AUC
values averaged over the 10 CV runs range from as high
as 0.81 for the human tongue model down to values
lower than expected at random for the mouse embryo
day 6.5 model (a random scoring process has an
expected average AUC value of 0.5). After Bonferroni
correction for multiple testing (60 tissues), for 35 out
of 60 sets the average AUC values were significantly
higher than expected at random (Bonferroni-corrected
p-value <0.01, as determined by random shuffling of
scores between positive and negative test sequences).
These include 14 human and 21 mouse sets. Likewise, 28
sets have significantly higher average sensitivity at 95%
specificity than expected at random (14 human and 14
mouse sets), and 32 sets have significantly higher average
sensitivity at 90% specificity than expected at random
(16 human and 16 mouse sets). For 24 out of 60 sets, all
three measures of performance were significantly higher
than expected (10 human sets and 14 mouse sets—see
Tables 3 and 4 in the Supplementary Data for more
data on the performances).

In the following sections we will shortly discuss the
content of some models and their performances.



Table 4. Overview of the inter-species performance of some models

Human model Mouse AUC Sensitivity  Sensitivity
sequences at 95% at 90%
specificity  scpecificity
Tongue Tongue 0.6899  18.7 28.6
Liver Liver 0.6694  18.0 29.1
Kidney Kidney 0.6321 142 22.9
Heart Heart 0.6221 153 24.1
Skeletal muscle  Skeletal muscle  0.6064  15.2 22.3
Lung Lung 0.5997 123 19.4
Pancreas Pancreas 0.5803 9.5 17.5
Testis Testis 0.5436 8.6 15.1
Placenta Placenta 0.5135 7.2 12.9

Models are trained on human datasets and applied on mouse datasets.
The tissue on which the model was trained, and the tissue it was
applied on are shown, along with three measures of performance.
Ten randomly selected pairs of sets gave the following values for the
measures of performance (average + SD): AUC: 0.529 + 0.055; sensi-
tivity at 95% specificity: 6.6 = 3.7; Sensitivity at 90% specificity:
12.7 £5.2.

Fetal liver promoter structure models

Liver is a tissue that is often used in the study of tissue-
specific regulation of transcription (32,37). In this study
too, the liver promoter models perform relatively well.
One advantage of our model is that more important
structural patterns are assigned higher weights by the
GA during training, allowing for easy identification of
biologically important structural features. Table 2 and
Figure 1 show the top five structural patterns we found
for the best performing CV run of the human fetal
liver dataset, and the corresponding sequence motifs.
The fetal liver promoter model is dominated by a small
set of known TFs: HNF1, and to a lesser extent HNF3,
HNF4, C/EBP and GATAZ3. The importance of HNFI,
HNF3, HNF4 and C/EBP in liver-specific gene expression
regulation has been well reported (38,39), and other
computational studies have found similar results
(37,40,41). In eight of the 10 CV runs, a rule on the posi-
tioning of HNFI in the region around —200 to + 150 is
present in the top five rules, with remarkably little varia-
tion in the region depicted by the rule. Similar rules were
found to have high weights in the human liver promoter
model and the mouse liver promoter model, illustrating
their validity. In Table 2, in addition to the positioning
of HNF1 to the TSS, also a relative positioning rule
involving HNF1 and a motif resembling HNFI
(COMPI) in its close proximity is shown. This might
indicate the presence of strong and weak HNF1 binding
sites in close proximity of each other. A recent study using
a thermodynamic approach for the analysis of regulatory
regions reported that a combination of a strong and a
weak site might provide a more sensitive regulation than
a combination of two strong sites or two weak sites (42).
Recently other studies too, have stressed the importance
of weak binding sites (7,43).

We refer to the Supplementary Data for a descrip-
tion of human and mouse liver, human skeletal muscle
and human tongue promoter models. The top patterns
in these tissues illustrate the general nature of our
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Motif ID Motif Logo Comment

Motif 1 | % ATTT‘%‘

T 2 3 4 5 6 7 8

ATTAATA L\A Tgr::16.4E-6)

T 5 & 7 8 5 D OB

A | NF-Y
i k?é,.}A (E: 0.85)

COMP1
(E: 0.069)

unknown motif

bits

Motif 2

Motif 3

Motif 4 [T ?i\T O
o DAL

Motif 5 unknown motif

C/EBPgamma
(TRANSFAC PWM)

Motif 6

Figure 1. The motif logos of the sequence motifs present in the top five
structural patterns of the human fetal liver model as shown in Table 2.
The motif IDs correspond to the IDs used in Table 2. For each motif,
the motif logo and a comment are shown. Motif logos labeled as
‘unknown motif> do not show a significant resemblance to any PMW
in the Transfac database. For logos similar to known motifs, the
known motif is indicated together with the tomtom E-value.
‘TRANSFAC PWM’ indicates that the motif used corresponds
directly to a PWM from the Transfac database.

model: they contain patterns on the positioning of
CRMs with regard to the TSS, patterns describing the
distal and proximal positioning of pairs of motifs, and
patterns on the unrestricted presence of sites anywhere
in the promoter sequences. Cooperating TFs or clustering
of sites in CRMs can be represented by patterns describing
proximal positioning of pairs of sites. Distal interactions
between TFs through the formation of loops in the DNA
sequence can be modeled by patterns describing distal
positioning.

Inter-tissue performance

An additional illustration of the validity of the promoter
models was found when applying models of one tissue on
the promoter sequences of genes expressed specifically
in other tissues. We used the promoter models of each
tissue to score the positive and control promoter
sequence sets, and evaluated the ability of the model to
distinguish between these two sets of sequences. We
limited this analysis to datasets for which the model
showed significant performance on its original test
sequences (14 datasets for human, 21 for mouse).
Promoter sequences labeled as specific for both the
model tissue and the target tissue were excluded before
the evaluation of performance between tissues, in order
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to avoid sequences used as training samples for the model
to be also used for the evaluation of performance.

We found that applying promoter structure models
of one tissue on the sequences of a tissue with similar
expression values [as measured by the Pearson correlation
coefficient (PCC) between expression values of all genes in
the model and target tissue] tend to result in higher per-
formance (as measured by AUC values). The PCC
between AUC values and correlation of expression
values was 0.34 for human models (P = 3.3e-6), and
0.40 for mouse models (P <2.2e-16). Table 3 shows the
human tissue combinations with the highest performance
(see also Table 9 in the Supplementary Data). While the
average AUC value over all combinations of tissues was
close to that expected at random (average AUC: 0.54; SD:
0.07), performance of some tissue combinations was
significantly higher. Examples include the performance
of the kidney model on fetal liver-specific promoters, the
liver model on kidney promoters and the pancreas model
on fetal liver promoters.

Another example of a pair of related tissues is tongue
and skeletal muscle. The expression values of the genomic
set of genes in these tissues show a relatively high corre-
lation, with a PCC of 0.35 (average PCC over all human
tissue pairs: 0.04; SD: 0.15). They are thus likely to share a
common regulatory mechanism, and indeed the models of
these two tissues show high mutual performance (AUC of
the skeletal muscle model on tongue sequences: 0.6846).
In addition, there is a high correlation between the
scores of the genomic set of promoter sequences for
both models (PCC: 0.63; average PCC over all human
tissue pairs: 0.18; SD: 0.22), which indicates that these
two models contain similar patterns. Nevertheless, top
patterns of the two models do not show a clear similarity
(see the Supplementary Data for a more detailed descrip-
tion of the top patterns of both tissues), and sites that
are mainly responsible for tongue-specific expression
are different from sites responsible for skeletal muscle
expression.

For a number of high performing pairs of tissues
(for example monocytes and lung) there is no apparent
correlation between their expression values. A previous
study on CRMs has lead to similar observations (13).
We hypothesize that expression in these tissues is
regulated by different TFs binding similar DNA motifs,
or by similar TFs interacting with different cofactors.
Many TFs binding similar motifs are known, and
previous studies have found that promoter regions of
genes specifically expressed in different tissues are still
enriched for similar motifs. Smith et al. (44) found that
nuclear receptor binding site motifs and E-box motifs were
over-represented in the tissue-specific promoters of 11 and
10 of the 14 human and mouse tissues they investigated,
respectively (44).

Similar results were obtained in mouse (see Table 10
in the Supplementary Data). For the mouse tissues
especially, high performing tissue combinations show a
tendency to have a high correlation of expression over
the genomic set of genes. The top 10 performing
combinations have an average PCC of 0.28 (average
PCC over all mouse tissue combinations: 0.00; SD: 0.13).

Inter-species performance

In addition to inter-tissue similarities, we also found inter-
species similarities. We used models with significant per-
formance of one species and applied them on the promoter
sequences of the same tissue in the other species. Table 4
shows the performance of some human promoter struc-
ture models on mouse datasets (see Table 11 in the
Supplementary Data for the performance of mouse
models on human datasets). We found that in many
cases applying human models on the same tissue they
were trained on in mouse lead to high performance. The
reverse case was also true (mouse models on human
datasets). This was not the case for randomly selected
pairs of sets, which showed performances close to what
can be expected at random (average AUC: 0.529; SD:
0.055). Models with high performance in one species—
such as tongue and liver—tend to also have high perfor-
mance when applied on the other species dataset. In
general, mouse models applied on human datasets seem
to have somewhat higher performance than human
counterparts applied on mouse datasets. We suspect that
this is caused by the higher quality of the human TSS
annotations compared to those of mouse.

Easy and difficult tissues: where is the difference?

The promoter structures of some tissues are clearly easier
to model than those of others. It is not surprising that
tissues that are often used for computational analysis of
tissue-specific regulation, such as skeletal muscle, liver and
kidney, have a relatively high performance, and can thus
be considered as ‘easy’ to model. In addition to that, a
tendency for similar tissues to show high performance in
both human and mouse is observed. Examples are tongue,
skeletal muscle, liver and kidney models. There are a
number of possible causes for the variance of performance
between different tissues. One obvious cause might be that
the model is capable of capturing important structural
features for some of the tissues, but not for others.
However, while there might be some additional structural
patterns that our model cannot capture, it is unlikely that
the regulation of transcription in different tissues is con-
trolled by completely different types of molecules and
interactions. We did, however, observe a tendency for
high-scoring tissues to have a clear regulatory signal
located in the region immediately upstream of and
around the TSS. For each promoter model, the weights
of patterns describing positioning of TFBSs relative to the
TSS were mapped to the region described in each pattern.
Thus we obtained a ‘total weight’ for each position in the
promoter sequences. Figure 2 shows a visualization of
the average weights for the five human models with the
highest performance, and the five human models with the
lowest performance (see also Supplementary Figures 10
and 11 for figures on all models). When comparing the
weight distribution in high-performing models with that
of low-performing models, we observed a clear pattern of
higher importance around the TSS in high-performing
models. Previous studies have reported the importance
of this region in the regulation of tissue-specific expression
(45) and transcriptional regulation in general (46).
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Figure 2. The distribution of the weights of patterns describing the positioning of regulatory motifs relative to the TSS. Average weights with error
bars corresponding to the standard deviation are shown for the five human tissues with the highest performance (tongue, fetal liver, kidney, skeletal
muscle and liver, indicated in green), and for the five tissues with the lowest performance (testis leydig cell, adipocyte, PB-CD19+ B cells, BM-
CD105+ endothelial cells and BM-DC34 +, indicated in red). The vertical grey line indicates the position of the TSS.

Other genome-wide studies of regulatory regions have
reported potential regulatory sites with positional prefer-
ence for this region (4,47). In low-performing models,
this pattern was far less pronounced. This observation
indicates that tissues with a clear regulatory signal
proximal to the TSS show a tendency to be easier to
model. An additional interpretation is that in tissues
that are difficult to model, this proximal regulatory
signal is absent, or situated in other regions. Studies
have found that regulatory modules containing binding
sites for certain TFs might target proximal regions,
while others show a preference for more distal regions
(14,15). Regions responsible for the regulation of expres-
sion in such tissues might be located further upstream
(>1kb upstream), causing them to be missed by our
model.

Another factor likely to play a role in the differences in
performance might be the heterogeneity of tissues. The
same set of genes might be under the control of different
regulatory factors in different cell types, resulting in the
binding sites for different TFs not to be significantly over-
represented in the entire datasets. We did indeed observe a
tendency for high performing tissues to have one or more
clearly over-represented known TFBS motifs, while tissues
with low performance often had no significantly over-
represented known TFBS motifs. We also found that

models for tissues such as liver and skeletal muscle,
which are believed to be relatively homogeneous,
achieved high performance. However, it is difficult to
conclude that homogeneous tissues are ecasier to model
than others, because of on one hand the difficulty of mea-
suring the degree of homogeneity of tissues and on the
other hand the fact that we do not know the precise com-
position of the tissue samples used in the study of Su et al.
(17). Another level of heterogeneity is the existence of dif-
ferent regulatory pathways controlling expression of
subsets of genes within the same cell type or tissue,
which might make it more difficult for the model to
capture the relatively more diverse structural patterns.
Finally, experimental contaminations might be a source
for differences in performance. This might be especially
the case for tissues where contamination by blood cells
is likely to occur, such as lung and thymus. Some results
of a recent genome-wide study on human TFs have lead
to similar suggestions (48).

CONCLUSION

We have presented a promoter architecture model and its
performance on sets of genes that show increased expres-
sion in a 26 human and 34 mouse tissues. Our results show
that performance of our model is greatly variable between
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the different tissues and cell types. In 35 out of the 60
datasets (58%), our model performs significantly better
than a random scoring function. The high performance
in some tissues shows that structural patterns in human
and mouse promoter sequences can be used to distinguish
genes expressed specifically in a certain tissue from genes
that are not. Examination of the models in some tissues
with high performance revealed that many patterns with
high weights contain structural information on known
regulators of importance. In addition, application of
models between related tissues, and between human and
mouse indicate that the model is capable of picking up
biologically meaningful structural information. No
species-specific prior knowledge was used in the training
of the model, and all tissues were addressed with the exact
same approach. We thus believe that the model is appli-
cable on other species and tissues as well, even though
differences in performance depending on the tissue of
interest are likely to appear. Where successful, our
model can help us to understand the mechanisms of tran-
scription regulation, and can provide hypothesis for con-
ducting wet experiments.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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