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Abstract: A monolithic low noise and low zero-g offset CMOS/MEMS accelerometer and readout
scheme in standard 0.18 µm CMOS mixed signal UMC process is presented. The low noise chopper
architecture and telescopic topology is developed to achieve low noise. The experiments show noise
floor is 421.70 µg/

√
Hz. The whole system has 470 mV/g sensitivity. The power consumption is

about 1.67 mW. The zero-g trimming circuit reduces the offset from 1242.63 mg to 2.30 mg.
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1. Introduction

Micro-electromechanical system (MEMS) products are widely used in our daily life. One of
them is the MEMS accelerometer. The accelerometers have many applications in automobiles,
navigation, vibration monitoring, and even portable electronics [1]. In most cases, measuring the
accelerations and the additional signal processing are necessary. The CMOS (Complementary
Metal-Oxide-Semiconductor)/MEMS process has the advantage of integration. The process can
integrate MEMS devices as well as CMOS circuitry.

The main noise sources of readout circuit are thermal noise and flicker noise. The thermal noise
comes from the random motion of electrons due to thermal effects. The 1/f noise or flicker noise is a
low-frequency noise. The power spectral density (PSD) of flicker noise is inversely proportional to
frequency. The accelerometer operates at low frequency. Hence, flicker noise is dominant.

Due to the process limitation, the sensing capacitor of the accelerometers at 1 g for the
CMOS/MEMS process is in the order of few femto farads. The sensing signal may be damaged
by electronic noise. Therefore low noise circuit is needed.

A low-noise feedforward noise reduction scheme is presented in Reference [2], which is a
simple two-phase correlated double sampling (CDS) scheme to suppress the offset voltage and flicker
noise. Both chopper stabilization (CS) and correlated double sampling are adopted in Reference [3].
The chopper stabilization modulate the sensing signal to high frequency. After amplification,
the output chopper demodulates back to low frequency. The modulation and demodulation is simply
implemented by CMOS switches driven by clock signals.

A pseudo-random chopping scheme is presented in Reference [4], which spreads the interference
over a wide bandwidth, reducing its in-band portion to the level of the noise floor. Other circuit
architectures such as dual-chopper amplifier (DCA), which employs two fundamental chopping clocks,
have been reported in References [1,5–7].

Sensor readout circuits for capacitive accelerometers suffer from a signal offset due to production
mismatch [8]. The offset from process variation can appear at the sensor output. It reduces dynamic
range and causes the DC output level to vary from die to die [9]. The two-part correction is
demonstrated in Reference [8], which consists of a capacitor array and a current digital to analog
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converter (DAC). A capacitor array is used to apply a signal correction by placing digitally controlled
capacitors in parallel to the sensor capacitors. The second part consists of a current DAC placed within
a differential amplifier to balance out asymmetric currents caused by the signal offset.

Standard CMOS process is suitable for implementing digital offset trimming. Hence, the offset
trimming mechanism is presented to overcome the offset from sensor and interface circuit.

The design target refers to ADXL103. ADXL103 is a high precision, low power single-axis
accelerometer with a signal conditioned voltage outputs from Analog Devices. ADXL103 measures
acceleration with a full-scale range of ±1.7 g, sensitivity of 1000 mV/g, noise floor of 110 µg/

√
Hz,

and power of 3.5 mW. ADXL103 can measure both dynamic acceleration and static acceleration.
The main application is for navigation and motion detection [10].

The design target of our readout circuit is ±1 g sensing range, noise floor of 10 µg/
√

Hz,
and power of milli-watt scale, which is suitable for navigation and motion detection. Based on
our previous work [11], the UMC 0.18 µm CMOS/MEMS process is adopted for sensor and circuit
implementation. This paper presents a low noise and low zero-g offset CMOS/MEMS accelerometer
and readout scheme. Section 2 describes the CMOS/MEMS accelerometer and the circuit design
of the low noise and low zero-g offset readout. In Section 3, describes the measurement results of
the proposed readout scheme. Section 4 presents the discussion of the proposed readout scheme by
comparison of performance with the state-of-the-art and presents the conclusions of this work.

2. Materials and Methods

2.1. CMOS/MEMS Accelerometer

In this work, the application-specific integrated circuit (ASIC) compatible 1P6M process of UMC
0.18 µm mixed-signal/RF CMOS process is adopted. The micromachining process is performed on
the wafer of standard CMOS process. Figure 1a shows the top view of the proposed accelerometer.
The proposed CMOS/MEMS accelerometer consists of proof mass, sensing fingers, single-folded
springs, and a curl-matching frame. It is equivalent to a second-order mass-spring-damper mechanical
model, as in Figure 1b. The displacement is transformed into capacitance ∆C by sensing fingers.
The circuit model in Figure 1c is simulated with readout circuit. The circuit is simulated in Cadence
design environment by Spectre simulator. The side view of the CMOS process with micromachining
post process is shown in Figure 1d.
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Figure 1. The proposed accelerometer: (a) The top view of the proposed accelerometer; (b) 
mechanical model of the structure; (c) circuit model of the structure; and (d) the side view of the 
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2.2. Readout Circuit Design 

The readout circuit has two main parts. The first part is a low noise unit and contains the main
amplifier and pre-amplifier. The low noise chopper architecture and telescopic topology is
developed to achieve low noise. The second part is a sensor-trimming unit that is an 8-bit trimming 
capacitor. 

The architecture is shown in Figure 2. The sensing signal is modulated to 333 kHz and passes 
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filter. The overall performance summery is listed in Table 1.
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Brownian noise (μg/√Hz) 7.9 - 
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Power (mW) 2 1.67

Figure 3 shows the working principle of the sensor readout with the simplified modulation 
signal, which can be found in Figure 3b. The modulation frequency is 333.33 kHz. The sensing signal 
in Figure 3a is modulated by modulation clock signal and passes through amplifier stages in Figure 
3c,d. The demodulation is achieved by track-and-hold stage, which is equivalent to multiply the 
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Figure 1. The proposed accelerometer: (a) The top view of the proposed accelerometer; (b) mechanical
model of the structure; (c) circuit model of the structure; and (d) the side view of the structure.

2.2. Readout Circuit Design

The readout circuit has two main parts. The first part is a low noise unit and contains the main
amplifier and pre-amplifier. The low noise chopper architecture and telescopic topology is developed
to achieve low noise. The second part is a sensor-trimming unit that is an 8-bit trimming capacitor.

The architecture is shown in Figure 2. The sensing signal is modulated to 333 kHz and passes
through amplification stages, track-and-hold amplifier (THA), output stage, and band limiting RC
filter. The overall performance summery is listed in Table 1.
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Table 1. System specifications.

Specifications Post-Sim Measurement

System frequency (MHz) 1 1
Chopper frequency (kHz) 333.33 333.33

Overall sensitivity (mV/g) (at 1 g 100 Hz) 434.93 470
Noise (µg/

√
Hz) (at 1 g 100 Hz) 10 421.70

Resonance Frequency (kHz) 4.16 1.25
Brownian noise (µg/

√
Hz) 7.9 -

Sensing Range (g) ±1 ±1
Power (mW) 2 1.67

Figure 3 shows the working principle of the sensor readout with the simplified modulation
signal, which can be found in Figure 3b. The modulation frequency is 333.33 kHz. The sensing
signal in Figure 3a is modulated by modulation clock signal and passes through amplifier stages in
Figure 3c,d. The demodulation is achieved by track-and-hold stage, which is equivalent to multiply the
demodulation signal in Figure 3e. The demodulated signal in Figure 3f passes through the zero-order
hold and the signal in Figure 3g is obtained.
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2.2.1. Low Noise Chopper Architecture

Since flicker noise is inversely proportional to frequency, the operation frequency determines the
noise performance. The chopper architecture modulates the signal to chopping frequency to suppress
flicker noise. The quantitative analysis is carried out at the transistor level to verify the effectiveness of
the proposed architecture.

The sensing signal is modulated to 333.33 kHz by the switches (φA, φZ and φB), which is known as
signal chopping. In this work, both the main amplifier and pre-amplifier are working at high frequency
(at 333.33 kHz chopping frequency). For the conventional design in Reference [1], the sensing signal
is demodulated using φH (at 1 MHz chopping frequency) in Figure 4. After demodulation by φH,
the signal is further boosted by an amplifier.Micromachines 2018, 9, x FOR PEER REVIEW  5 of 13 
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The proposed low noise interface circuit is presented in Figure 5. The modulated sensing signal
is first amplified by main amplifier and further boosted by the pre-amplifier. The amplified signal is
demodulated by φA.
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The noise figure F of the network is defined as the ratio of the available signal-to-noise ratio at the
signal-generator terminals to the available signal-to-noise ratio at its output terminals as the following
equation [12].

F =
SNRin
SNRout

(1)

Total noise figure of the whole system can be expressed by Friis’ Formula:

Fsys = F1 +
F2 − 1

G1
+

F3 − 1
G1G2

+
F4 − 1

G1G2G3
+ . . . +

Fn − 1
G1G2G3 . . . Gn−1

(2)

where Fn is the noise figure for the n-th device and Gn is the power gain (linear, not in dB) of the n-th
device. The design target is lower than the whole system Fsys. For the two amplifier stages, the noise
of main amplifier is F1, the power gain of main amplifier is G1, and the noise of pre-amplifier is F2.
The noise figure of the third stage F3 will be divided by the gain of the first two stages (the G1G2 term).
Thus, the noise figures of the first two stages must be considered [12]. The simplified noise figure is
given by:

Fsys ≈ F1 +
F2 − 1

G1
(3)

Two strategies are applied to lower the noise figure Fsys. The proposed circuit architecture
minimize the F1 and F2 terms. First, modified the circuit architecture operates the second stage
amplifier at 333.33 kHz to lower the F2 term, which reduces noise contribution from the second stage
amplifier. Second, the noise factor of the first amplifier F1 is significant for the readout circuit since the
F1 term is directly added to Fsys. The gain G1 is determined by the overall sensitivity. G1 is around
7.88 V/V.

The telescopic amplifier is shown in Figure 6a, Q1 and Q2 form the input differential pair,
and Q3–Q6 are the cascode transistors. Cascading transistors increase the voltage gain at the cost of
output voltage headroom. Since the output swing requirements are very small at the first stage, on the
order of several millivolts, a telescope may be used. For telescopic topology, the Q1, Q2, Q7, and Q8

are the primary noise sources. The folded-cascode topology is a popular amplifier architecture as
in Figure 6b. Q1 and Q2 form the input differential pair, and Q5 and Q6 are the cascode transistors,
which are folded, as compared to telescopic topology. For folded-cascode topology, the Q1, Q2, Q7,
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Q8, Q9, and Q10 are the primary noise sources. Assuming the transistors exhibit similar noise levels,
folded-cascode topology suffers from greater noise than its telescopic counterpart. The telescopic
topology is desirable since it has fewer noise-contributing transistors, and hence F1 is reduced.
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Spectre PNoise simulation is used for noise characterization. The PNoise simulation gives the
noise response of main amplifier and pre-amplifier. Table 2 shows the comparison of noise and power
at each stage. For main amplifier, Reference [1] modulates the sensing signal to 1 MHz, while the
proposed architecture modulates to 333.33 kHz. For pre-amplifier, Reference [1] demodulates the
sensing signal to 20 kHz, while the proposed architecture is still working at 333.33 kHz. Comparing the
two frequency arrangements, the proposed architecture has 8% less noise than Reference [1] at the
cost of 10% more power consumption. The simulation results verify the effectiveness of the proposed
reduction architecture.

Table 2. Analysis and comparison of noise and power at the two stages.

Stage This Work Reference [1]

Signal
Frequency (Hz)

Power
(µW)

Noise
(µg/

√
Hz)

Signal
Frequency (Hz)

Power
(µW)

Noise
(µg/

√
Hz)

Main Amp. 333.33 kHz 37.18 40.45 1 MHz 29.93 30.18
Pre-Amp 333.33 kHz 40.17 59.84 20 kHz 39.40 171.80

Total 77.34 48.04 69.33 51.97

2.2.2. Low Zero-g Offset Design

The sensing capacitive mismatch needs to be compensated. Small capacitor in sub femto farad
scale is placed in parallel with the sensing capacitors to cancel the sensor offsets. A segmented
split capacitor structure is proposed to realize small capacitor, as in Figure 7. Figure 7b shows the
7-bit trimming capacitance. The most significant bit (MSB) C[7] controls the switch in Figure 7a,
which determines adding trimming capacitance to the upper plane or lower plane of the accelerometer.
The Ctm1 and Ctm2 are the 7-bit trimming capacitance in Figure 7b. Trimming capacitance is estimated
by using the equation below:

C ≈ b0Cb0 + b1Cb1 + b2Cb2 + b3Cb3 + b4Cb4 + b5Cb5 + b6Cb6
(Cb0 + Cb1 + Cb2 + Cb3 + Cb4 + Cb6) + Ct1

(
Ct2

Ct2 + Ct3
)Ct4 (4)
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3. Results

The circuit is implemented in UMC 0.18 µm process. In this work, low noise readout scheme is
presented. The trimming capacitor is added for zero-g offset compensation. The die photo and chip
layout is shown in Figure 8.
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3.1. CMOS/MEMS Accelerometer

The dry-etch-based post-process are used after standard CMOS process for microstructure
fabrication. Figure 9 shows the cross section of the CMOS/MEMS accelerometer. The curl matching
frame and the proof mass of accelerometer have the same curling.
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3.2. Low Noise Design

Figure 10 shows the evaluation board schematic for acceleration readout measurement.
The fabricated chip directly mounts on the printed circuit boards. On board oscillator generates 1 MHz
clock for acceleration readout. The 1.8 V supply is generated by regulator for digital power (VddD) and
analog power (VddA). The calibration readout is controlled by on-board switches. The fabricated chip
directly mounts on the printed circuit boards, as shown in Figure 11.

Noise Considerations in Board Design

A digital circuit can produce noise at 1 MHz. Circuit noise decoupling capacitors are added
at power line for digital noise reduction (1 MHz) (power line filter). Since the power line is 60 Hz,
which is near 100 Hz of the sensing signal and cannot be easily filter by conventional filter. Power line
noise is isolated by using battery power. The battery power passes though voltage regulator into
readout circuit. The voltage regulator LM1117 is adopted, which reported RMS output noise is 0.003%
of VOUT at frequency 10 Hz ≤ f ≤ 10 kHz, where VOUT is 1.8 V.

The evaluation board is placed on the LDS V408 shaker, as shown in Figure 12 for noise and
sensitivity measurement. The shaker generates 1 g signal 1 kHz acceleration input. Figure 13 shows
the spectrum of output voltage at the excitation. The noise floor is 421.70 µg/

√
Hz. The signal-to-noise

ratio (SNR) is around 67.5 dB.
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Figure 13. The output noise spectrum.

The sensitivity of the system is characterized for the two aspects, linearity and frequency response.
The shaker generates 0.25 g signal to characterize the frequency response of the system as in Figure 14.
The frequency range from 10 Hz to 1333.33 Hz is limited by the shaker. For the frequency around
1 kHz, the sensitivity increases due to the resonance of accelerometer.
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The sensing range of readout circuit is designed for ±1 g. The readout circuit is characterized
using 1 kHz signal from zero to 1.5 g as in Figure 15. The linear regression is performed for zero to 1 g
input signal. For a signal larger than 1 g, the output saturates and deviates from linear operation.

3.3. Low Zero-g Offset Design

The trimming capacitor is controlled by the digital value from the evaluation board to eliminate
the zero g offset. The zero-g offset of the system is characterized for the two aspects, static and
dynamic operation.

For static operation, the system output measured without external excitation that is the zero
g output. For the ideal case, the zero-g output should be zero. The difference of positive output
(VOP) and negative output (VON) represents the accelerometer readout. The differential output of the
sensing signal VOP and VON should be the same. Figure 16 shows the output voltage with different
configurations of the trimming capacitor. For the 8’b0000_0000 configuration, the 0 fF trimming
capacitor is in parallel to the sensor capacitors, which stands for zero g offset value without trimming.
The circuit output is saturated. The zero-g offset is 745.06 mV, as in Figure 16a. For the 8’b1111_1111
configuration, the maximum trimming capacitance is in parallel to the sensor capacitors. The offset is
77.08 mV, as in Figure 16b. For the 8’b1001_0000 configuration, the trimming capacitance is in parallel
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to eliminate the zero g offset. The offset is reduced from 745.06 mV to 1.38 mV. That is, the zero g offset
is reduced from 1242.63 mg to 2.30 mg, as in Figure 16c.
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Figure 16. Output measurement without external excitation for various offset trimming configuration:
(a) Trimming capacitor with 8’b0000_0000 configuration; (b) trimming capacitor with 8’b1111_1111
configuration; and (c) trimming capacitor with 8’b1001_0000 configuration.
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For dynamic operation, the excitation of 1 g 1 kHz is applied with different configurations of the
trimming capacitor. For the 8’b0000_0000 configuration, the circuit output is saturated. Sensitivity is
degraded to 1.61 mV/g, as in Figure 17a. For the 8’b1111_1111 configuration, the sensitivity is around
706.32 mV/g. The output exhibits nonlinear distortion, which is obviously undesirable, as in Figure 17b.
For the 8’b1001_0000 configuration, the trimming capacitance is in parallel to eliminate the zero g
offset. The measurement shows sensitivity around 599.58 mV/g, as in Figure 17c.
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Figure 17. Output measurement with 1 g 1 kHz excitation for various offset trimming configuration:
(a) Trimming capacitor with 8’b0000_0000 configuration; (b) trimming capacitor with 8’b1111_1111
configuration; and (c) trimming capacitor with 8’b1001_0000 configuration.

4. Discussion and Conclusions

A monolithic low noise and low zero-g offset CMOS/MEMS accelerometer and readout scheme
in standard 0.18 µm CMOS mixed signal UMC process is presented. For 1 g 100 Hz acceleration
input, the whole system has 470 mV/g sensitivity. The power consumption is about 1.67 mW.
Table 3 compares the performance of the work proposed here to the state-of-the-art. Comparing with
Reference [2], using the same 0.18 µm process node, the noise floor and zero g offset is reduced,
while the overall power consumption is increased.
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Table 3. Comparison of the proposed readout scheme to the state-of-the-art.

Parameters [3] [4] [13] [2] This Work

Sensing Range (g) ±4 ±49 ±30 ±8 ±1

Noise Floor
(µg/

√
Hz) 930 380 1 970 421.70

Zero-g Offset (mg) N/A N/A N/A ±33 2.30

Supply Power (V) 1.2 1.9/3.3 1 1.5 1 1.8

Power (W) 25.44 µ 1.4 m 2.7 m 181 n 1.67 m

Chip Area (Readout
Circuit) (mm2) 1.73 1.1 10.9 1.14 1.23

Process 0.25 µm CMOS
process

0.18 µm CMOS
process

0.35 µm CMOS
process

0.18 µm CMOS
process

UMC 0.18 µm
CMOS/MEMS

1 A 1.9-V supply is regulated from an external 3.3-V supply.

The low noise chopper architecture and telescopic topology is developed to achieve low noise.
The experiments show that noise floor is 421.70 µg/

√
Hz. The trimming capacitors are used for offset

calibration. The zero g trimming circuit reduces the offset from 1242.63 mg to 2.30 mg.
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