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Abstract

Rumination and impaired inhibition are considered core characteristics of depression.
However, the neurocognitive mechanisms that contribute to these atypical cognitive processes
remain unclear. To address this question, we apply a computational network control theory
approach to structural brain imaging data acquired via diffusion tensor imaging in a large
sample of participants, to examine how network control theory relates to individual
differences in subclinical depression. Recent application of this theory at the neural level is
built on a model of brain dynamics, which mathematically models patterns of inter-region
activity propagated along the structure of an underlying network. The strength of this
approach is its ability to characterize the potential role of each brain region in regulating
whole-brain network function based on its anatomical fingerprint and a simplified model of
node dynamics. We find that subclinical depression is negatively related to higher integration
abilities in the right anterior insula, replicating and extending previous studies implicating
atypical switching between the default mode and Executive Control Networks in depression.
We also find that subclinical depression is related to the ability to “drive” the brain system
into easy to reach neural states in several brain regions, including the bilateral lingual gyrus
and lateral occipital gyrus. These findings highlight brain regions less known in their role in
depression, and clarify their roles in driving the brain into different neural states related to
depression symptoms.

Depression is attributed to various maladaptive affective and cognitive processes, including
atypical cognitive control processes (Rizk et al., 2017). Specifically, impaired inhibition of
negative thoughts, also known as rumination, is considered a major symptom in depression
(Beck, 1976; Nolen-Hoeksema & Morrow, 1993). However, the precise neurocognitive pro-
cesses that lead to such atypical inhibition processes are currently debated. This is also the case
for the neurocognitive processes related to subclinical levels of depression, which are an
important precursor of depression (Li et al., 2015). Here, we apply a state-of-the-art com-
putational approach—network control theory (NCT)—to quantitatively examine how dif-
ferent control strategies in specific brain regions relate to subclinical levels of depression. Such
an approach can further elucidate the nature of this atypical inhibition and possibly serve as
predictors in the occurrence of Major Depression Disorders (MDD).

In the past few years, a large-scale, whole-brain systems approach has been applied to study
psychopathology (Menon, 2011). Such an approach is moving away from examining clinical
symptoms and their relation to specific brain regions (such as the amygdala in relation to
depression) and is focusing on how such clinical symptoms relate to the interaction between
brain regions and networks. Network approaches typically examine the interaction, and
dysfunction, of three large-scale networks: The Executive Control Network (ECN), the Default
Mode Network (DMN), and the Salience Network (SN). The ECN is a set of prefrontal and
posterior parietal regions that are engaged during cognitive tasks that require externally
directed attention, such as working memory, relational integration, response inhibition, and
task-set switching (Zabelina & Andrews-Hanna, 2016). The DMN is a set of midline and
inferior parietal regions that activate in the absence of most external task demands, and is
often associated with mind-wandering and other modes of spontaneous thought (Andrews-
Hanna, Smallwood, & Spreng, 2014). The SN is a set of cingulate and fronto-insular regions
that are involved in detecting, integrating, and filtering relevant interoceptive, autonomic, and
emotional information (Seeley et al., 2007; Uddin, 2015).

In line with a network system approach, effort has been made to identify the role of the
ECN, DMN, and SN in patients with MDD. Specifically, Cole, Repovš, and Anticevic (2014)
proposed a theory that highlighted the significance of ECN global dysconnectivity in mental
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disorders such as MDD (Cole, Repovš, & Anticevic, 2014).
Recently, Schultz et al. (2018) provided empirical evidence sup-
porting this theory. The authors found a negative relationship
between depression symptoms and a measure of global con-
nectivity in the ECN (Schultz et al., 2018). Furthermore, several
studies have found atypical activation in the DMN, related to
rumination and processing of negative stimuli in patients with
MDD (Cooney, Joormann, Eugène, Dennis, & Gotlib, 2010;
Hamilton, Chen, & Gotlib, 2013; Hamilton, Chen, Thomason,
Schwartz, & Gotlib, 2011; Sheline et al., 2009). For example,
Hamilton, Furman et al. (2011) found atypical ECN and DMN
activation related to maladaptive rumination processes in patients
with MDD (Hamilton, Furman et al., 2011). Finally, increased
attention is given to the role of the SN in MDD (Hamilton, Chen,
& Gotlib, 2013; Hamilton et al., 2016). This is based on the role of
the SN in orienting and responding to stimuli, and its role in
switching between the ECN and DMN (Sridharan, Levitin, &
Menon, 2008). Such research focuses on the role of the amygdala
and the anterior insula in MDD. The amygdala is involved in
mnemonic and affective processing, particularly negatively
valanced emotions such as fear and anxiety (Calhoon & Tye,
2015). The anterior insula has widespread anatomical connections
to cortical and limbic regions and is implicated in the coordina-
tion between the ECN and DMN (Iwabuchi et al., 2014; Menon &
Uddin, 2010). Importantly, atypical functional activity and con-
nectivity of the anterior insula have been found in several studies
in patients with MDD (Iwabuchi et al., 2014). Specifically, the
right anterior insula has been implicated in greater levels of
maladaptive rumination (Hamilton, Furman et al., 2011), and has
been argued to represent a vulnerability marker for depression
(Liu et al., 2010).

As such, neuroimaging studies using network methods are
elucidating important interactions across different neural systems
related to MDD. Functional Magnetic Resonance Imaging (fMRI)
is well suited for examining state-level variability across partici-
pants, given that rest- and task-based functional activity related
patterns fluctuate in ways that predict cognitive measures.
However, anatomical brain network analysis may better capture
trait level variability across participants, by measuring stable
individual differences in their neuroanatomy that might constrain
neural and cognitive states. This is due to the unique information
embedded in the brain’s anatomical network organization, that
has been demonstrated to organize much of observable functional
activity such as that observed in fMRI (Hermundstad et al., 2013;
Hermundstad et al., 2014; Medaglia et al., 2018b). Such infor-
mation can be measured via diffusion tractography, measuring
white matter tract connectivity in typical and clinical populations
(Sotiropoulos & Zalesky, 2017).

Indeed, an association between white matter abnormalities and
MDD has been established (Sexton, Mackay, & Ebmeier, 2009;
White, Nelson, & Lim, 2008). Several studies using diffusion
tensor imaging (DTI) have examined whole brain white matter
connectivity related to MDD (De Witte & Mueller, 2017; Gong &
He, 2015; Griffa, Baumann, Thiran, & Hagmann, 2013; Murphy
& Frodl, 2011; Rizk et al., 2017). However, these studies have
resulted in conflicting findings, with some reporting MDD-
related differences in white matter connectivity (Bai et al., 2012;
Korgaonkar, Fornito, Williams, & Grieve, 2014) and others
showing no differences (Choi et al., 2014; Qin et al., 2014). Fur-
thermore, most studies of MDD have focused on the amygdala
and its connectivity to other brain regions (De Witte & Mueller,
2017). A recent DTI study examined the relationship between

cognitive control processes and white matter integrity in unme-
dicated young and midlife patients with MDD (Rizk et al., 2017).
The authors found that unlike control participants, patients with
MDD failed to exhibit an association between Stroop interference
and white matter integrity in the anterior cingulate cortex (Rizk
et al., 2017). However, the authors argue for the importance of
further studies elucidating the relation between white matter
integrity and cognitive control mechanisms in patients
with MDD.

Thus, individual differences in subclinical levels of depression
may be related to variance in whole brain white matter con-
nectivity, which may impact efficient cognitive control processes.
However, the current research on the influence of depression on
white matter integrity is contradictory and debated (Rizk et al.,
2017). This may be due to small sample sizes usually collected in
such studies or the focus on white matter integrity, as opposed to
white matter connectivity, as related to depression. In the current
study, we apply computational NCT in relation to individual
differences in subclinical depression. This allows us to compu-
tationally examine how whole brain structural connectivity the-
oretically “controls” dynamic brain processes in relation to
individual differences in subclinical depression.

From an engineering perspective, network control is a process
in which a system is deliberately shifted or guided along a par-
ticular trajectory to support specific goals (Tang & Bassett, 2018).
This guidance is usually theoretically examined by simulating
injection of signals into the system via deliberate perturbations.
Recently, NCT has been applied to study the dynamics of large-
scale neural systems (Gu et al., 2015; Medaglia et al., 2016; Yan
et al., 2017). For example, Yan et al. (2017) applied NCT to
investigate the significance of controllability of specific neurons in
Caenorhabditis Elegans on its locomotion behavior. Importantly,
these predictions were empirically examined and verified by
ablating specific neurons identified as significant controllers (Yan
et al., 2017), thus demonstrating the feasibility of this computa-
tional theoretical approach in examining control strategies and
dynamics in such neural systems.

Investigating the controllability of neural dynamics is com-
putationally challenging, requiring to model non-linear neural
dynamics and the neural structural connectivity that gives rise to
such dynamics (Gu et al., 2015). Thus, a common practice in the
general application of NCT is based on linear models of dynamic
processes (Liu, Slotine, & Barabási, 2011). Accordingly, the
application of control theory in neuroscience is built upon ana-
tomical connectivity networks combined with a simplified, linear
model of such neural dynamics (Gu et al., 2015). This assumption
of linear dynamics is commonly accepted and is based upon prior
models linking anatomical brain networks to resting state func-
tional dynamics (Abdelnour, Voss, & Raj, 2014; Bettinardi et al.,
2017; Cole, Ito, Bassett, & Schultz, 2016; Galán, 2008; Honey
et al., 2009; Honey, Thivierge, & Sporns, 2010; Muldoon et al.,
2016). Importantly, Muldoon et al. (2016) demonstrated how a
non-linear computational model of neural dynamics validates
controllability measures computed based on the simplified linear
model. Thus, while the forefront of computational neuroscience
aims to develop methods to map the relation between structural
and functional signals (e.g., Medaglia et al., 2018b), controllability
measures built on a simplified linear model have proven their
fruitfulness.

Recent applications of NCT to neural systems have proposed a
set of three controllability metrics that quantify the contributions
made by individual brain regions in “driving” the brain network
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from one state into another (Gu et al., 2015). Here, “state”
refers to the magnitude of neurophysiological activity across
brain regions at a single time point. Average controllability
quantifies the theoretical extent to which a specific brain region
can easily “drive” the brain into easy to reach states with little
energy and has been observed in DMN regions (Gu et al., 2015;
Pasqualetti, Zampieri, & Bullo, 2014). Modal controllability
quantifies the theoretical extent to which a specific brain region
can easily “drive” the brain into states that require a substantial
amount of energy, or are difficult to reach states, and has been
observed in fronto-parietal regions (Gu et al., 2015). Boundary
controllability quantifies the theoretical extent to which a spe-
cific brain region lies at the “boundary” between network sub-
communities, contributing to the integration between them.
Brain regions with high boundary controllability have been
associated with attention systems (Gu et al., 2015). Together,
these three control roles define different continua in brain
networks: Brain regions may vary in their tendency to drive the
brain to or away from specific types of states or into integrated
or segregated states. However, these measures are mathematical
abstractions and the significance of these measures in studying
behavior is still open. A growing number of studies is, however,
currently establishing a link between NCT and cognition
(Kenett et al., 2018; Medaglia et al., 2016; Medaglia et al.,
2018a; Tang et al., 2017).

A few recent studies have demonstrated the feasibility of
applying NCT to study cognition. Medaglia et al. (2016) related
modal and boundary controllability to performance on a variety
of tasks that demand executive control (such as the Stroop task),
and it is the first to ground cognitive control in network con-
trollability measures. Tang et al. (2017) investigated whole brain
network controllability measures related to typical neurocognitive
development. The authors found that the relative strength of
average controllability of subcortical brain regions predicted
improved cognitive performance as related to development.
Kenett et al. (2018) applied NCT to examine differences in con-
trollability measures across the whole brain related to intelligence
and creativity. The authors found a positive relation with average
controllability and intelligence, and a positive relation with modal
controllability and creativity across different brain regions (Kenett
et al., 2018). The authors also find opposite relations between
boundary controllability, intelligence, and creativity. Thus, dif-
ferent controllability measures across different brain regions can
be related to cognitive processes in typical populations. Recently,
Jeganathan et al. (2018) applied NCT analysis on a sample of
participants with bipolar depression and participants that are in
high risk of bipolar depression. The authors found decreased
average controllability in both of these groups compared with
controls in several brain regions including the right inferior
frontal gyrus, insula, and the pre-central gyrus (Jeganathan et al.,
2018).

Thus, the application of NCT in neurocognitive research
advances our understanding of regions’ theoretical roles in
driving activity across the brain as related to cognitive pro-
cesses in typical and clinical populations. In the current study,
we apply NCT to white matter anatomical connectivity net-
works in a large sample of participants (N= 349) who were
assessed for subclinical depressive symptoms. For each parti-
cipant, we extracted anatomical connectivity matrices based on
diffusion tractography, and computed average, modal, and
boundary controllability for regions across the whole brain. We
then examined and compared the relation of each of the

controllability measures to the depression measure. This allows
us to quantitatively examine theories on the roles of the ECN,
DMN, and SN regions in driving brain network dynamics as
related to subclinical depression. While we are theoretically
motivated to focus on these network systems, we conduct a
whole-brain analysis to examine differences in controllability
across all possible brain regions. This is motivated by the
possibility that different brain regions actually regulate such
dynamics, whereas functional imaging studies are the con-
sequences of underlying dynamic-driving roles across the
brain. In line with studies that have revealed atypical hyper
activity and connectivity within the ECN and DMN, we
expected to find higher average controllability in brain regions
related to these systems. In line with studies implicating the
right anterior insula in atypical switching between ECN and
DMN in MDD, we expected to find a significant relation
between boundary controllability and subclinical levels of
depression in this region.

1. Methods

1.1. Participants

The sample was collected as part of a large research project (http://
fcon_1000.projects.nitrc.org /indi/retro/southwestuni_qiu_index.
html) exploring the associations among individual differences in
brain structure and function, cognitive function, and mental health
(Liu et al., 2017). Participants were recruited from Southwest
University by means of the campus network, advertisements on
bulletin boards and leaflets, or through face-to-face communica-
tions on campus. Before enrolling in the study, each participant
was screened with a set of exclusion procedures involving self-
reported questionnaires as well as structured and semi-structured
interviews. All participants were required to be right-handed, and
none had a history of psychiatric disorder, cognitive disability,
substance abuse, or MRI contraindications.

In the current study, we only included participants that
completed the Beck Depression Inventory (BDI, see below),
which consisted of 351 participants. In addition, we excluded
participants who had BDI scores with values higher than the cut-
off score for severe clinical depression (BDI score of 30; Beck,
Steer, & Carbin, 1988). Thus, the final sample included 349
participants (156 male, 191 female; average age of 20 years,
SD= 1.27) with an average BDI score of 7 (SD= 5.5, skew-
ness= .92). This research project was approved by the Southwest
University Brain Imaging Center Institutional Review Board, and
written informed consent was obtained from each participant.
Participants received payment depending on time and tasks
completed.

1.2. Materials

1.2.1. Behavioral measures
Depression Assessment—Depression was assessed using the BDI
(Beck, Ward, Mendelson, Mock, & Erbaugh, 1961). The BDI is a
21-item self-report questionnaire measuring the severity of
depressive symptoms within the past week. Participants who
score higher in the BDI exhibit more depressive symptoms. The
BDI is a reliable and widely used measure that assesses the
severity of depressive symptoms from non-clinical to clinical
samples (Beck, Steer, & Carbin, 1988).
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1.2.2. MRI data acquisition
Imaging data were collected using a 12-channel head coil on a
Siemens 3T Trio scanner (Siemens Medical Systems, Erlangen,
Germany) at the Brain Imaging Center, Southwest University.
High-resolution, three-dimensional T1-weighted structural ima-
ges were obtained using a Magnetization Prepared Rapid
Acquisition Gradient-echo sequence (TR/TE= 1,900 ms/2.52
ms, FA= 9°, resolution matrix= 256 × 256; slices= 176; thick-
ness= 1.0mm; voxel size= 1 × 1 × 1mm3). Diffusion tensor ima-
ges were obtained using a diffusion-weighted, single shot, spin
echo, EPI sequence (TR/TE= 11,000/98 ms, matrix= 128 × 128,
field of view= 256 × 256mm, voxel size= 2 × 2 × 2mm3, 60 axial
slices, 2mm slice thickness, b value 1= 0 s/mm2, b value
2= 1,000 s/mm2) in 30 directions and repeated acquisition of data
three times to increase the signal-to-noise.

DTI data were reconstructed in DSI Studio (www.dsi-studio.
labsolver.org) using q-space diffeomorphic reconstruction (QSDR;
Yeh, Wedeen, & Tseng, 2011). QSDR first reconstructs diffusion-
weighted images in native space and computes the quantitative
anisotropy (QA) in each voxel. These QA values are used to warp
the brain to a template QA volume in Montreal Neurological
Institute (MNI) space using the statistical parametric mapping
nonlinear registration algorithm. Once in MNI space, spin density
functions were again reconstructed with a mean diffusion distance
of 1.25mm using three fiber orientations per voxel. Fiber tracking
was performed in DSI Studio with an angular cut-off of 35, step
size of 1.0mm, minimum length of 10mm, spin density function
smoothing of 0, maximum length of 400mm, and a QA threshold
determined by its signal in the colony-stimulating factor. Deter-
ministic fiber tracking using a modified FACT algorithm was
performed until 1,000,000 streamlines were reconstructed for each
individual. These parameters were chosen based on previous
neurocognitive studies applying NCT (Betzel, Gu, Medaglia, Pas-
qualetti, & Bassett, 2016; Gu et al., 2015; Kenett et al., 2018;
Medaglia et al., 2018a; Tang et al., 2017).

Anatomical scans were segmented using FreeSurfer (Fischl,
2012) and parcellated using the connectome mapping toolkit
(Cammoun et al., 2012). Based on previous research (Gu et al.,
2015; Hermundstad et al., 2013; Medaglia et al., 2016), a parcel-
lation scheme including 234 brain regions (Cammoun et al.,
2012) was registered to the B0 volume from each participant’s
DTI data. The B0 to MNI voxel mapping produced via QSDR was
used to map region labels from native space to MNI coordinates.
To extend region labels through the grey-white matter interface,
the atlas was dilated by 4mm (Cieslak & Grafton, 2014). Dilation
was accomplished by filling non-labeled voxels with the statistical
mode of their neighbors’ labels. In the event of a tie, one of the
modes was arbitrarily selected. Each streamline was labeled
according to its terminal region pair. Finally, we conducted
automatic quality control analysis to assess the quality of the DTI
data (Roalf et al., 2016). For each participant’s DTI data, we
computed their temporal signal-to-noise ratio (tSNR). tSNR was
computed by averaging each brain voxel’s mean and standard
deviation, after brain masking and motion correction. This ana-
lysis did not reveal any participants with an outlier tSNR values.
As such, no participant was excluded based on this analysis.

From these data, we constructed structural connectivity net-
works that map streamline connections between 234 cortical and
sub-cortical regions. In these anatomical connectivity matrices,
brain regions are defined as nodes, and a link between two nodes
represents the number of streamlines connecting them, normal-
ized for their density (Sotiropoulos & Zalesky, 2017).

1.2.3. Network controllability analysis
To assess the ability of a certain brain region to influence other
regions in different ways, we adopt the control theoretic notion of
controllability. Controllability of a dynamical system refers to the
possibility of driving the state of a dynamical system to a specific
target state by means of an external control input (Tang & Bas-
sett, 2018). Classic results in control theory ensure that con-
trollability of the network is equivalent to the controllability
Gramian matrix, which determines whether a linear system is
controllable (Summers, Cortesi, & Lygeros, 2016). A rigorous
mathematical formulation of network controllability in brain
networks can be found in Gu et al. (2015). From the Gramian
matrix, different controllability measures can be computed for
each node (brain region) in the network. Here, based on previous
research of network controllability in brain networks, we compute
for each participant and each brain region their average con-
trollability, modal controllability, and boundary controllability
(Gu et al., 2015; Medaglia et al., 2016; Pasqualetti, Zampieri, &
Bullo, 2014).

Average controllability identifies brain regions that, on average,
can drive the system into different states with little effort (input
energy). A state can be defined as the vector of neurophysiological
activity magnitudes across brain regions at a single time point.
Thus, regions with high average controllability can move the
brain to many easily reachable states (Figure 1d). Thus, these
regions may be important in allowing the brain to move smoothly
between many cognitive functions that require little cognitive
effort. Previous work has identified brain regions that demon-
strate high average controllability, such as the precuneus, pos-
terior cingulate, superior frontal, paracentral, precentral, and
subcortical structures (Gu et al., 2015).

Modal controllability identifies brain regions that can drive the
brain into different states that require high effort to achieve (those
which require substantial input energy). Thus, regions with high
modal controllability can move the brain to many difficult to
reach states (Figure 1e). From a cognitive perspective, these
regions may be important in switching the brain between func-
tions that require significant cognitive effort. Previous work has
identified brain regions that demonstrate high modal controll-
ability, such as the postcentral, supramarginal, inferior parietal,
pars orbitalis, medial orbitofrontal, and rostral middle frontal
cortices (Gu et al., 2015).

Boundary controllability identifies brain regions that can drive
the brain into states where different cognitive systems are either
coupled or decoupled (Figure 1f). >From a cognitive perspective,
these regions may be important in gating, synchronizing, or
otherwise manipulating information across different cognitive
processes. Previous work has identified brain regions that
demonstrate high boundary controllability, such as the rostral
middle frontal, lateral orbitofrontal, frontal pole, medial orbito-
frontal, superior frontal, and anterior cingulate cortices (Gu et al.,
2015).

Boundary controllability identifies network nodes that lie at
the boundaries between network communities, as defined across
all possible levels of hierarchical modularity in a network (Tang &
Bassett, 2018). As such, an initial identification of brain modules
(or communities) is required. While data-driven approaches have
been developed to achieve such an identification, identifying brain
modular organization remains an open challenge (see Medaglia
et al., 2016). Here we chose to side step this issue and use a
modular assignment that was computed via a data-driven
approach that analyzed a large independent sample of resting
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state functional data using the same parcellation atlas. This
approach, based on the method developed by Mišić et al. (2015),
uses a consensus analysis to identify a partition that maximizes
the modular partition of a large sample of independent datasets
(Mišić et al., 2015). This partition identified 12 systems which are
in line with neural systems identified in previous research
(Dosenbach et al., 2010). Using this a priori independent mod-
ularity partition controls for the stochastic nature of the boundary
controllability method and is justified by the identified relation
between anatomical connectivity and resting state functional data
(Honey et al., 2009).

1.2.4. Analysis overview
Our analysis process is as follows (Figure 1): We defined anato-
mical brain networks by subdividing the entire brain into 234
anatomically distinct brain regions (network nodes) in a com-
monly used anatomical atlas (Cammoun et al., 2012; Daducci
et al., 2012; Hagmann et al., 2008). Following prior work (Bassett,
Brown, Deshpande, Carlson, & Grafton, 2011; Gu et al., 2015;
Hermundstad et al., 2013; Hermundstad et al., 2014), we con-
nected nodes (brain regions) by the number of white matter
streamlines identified by a commonly used deterministic tracto-
graphy algorithm (Cieslak & Grafton, 2014). This procedure
results in sparse, weighted, undirected structural brain networks
for each participant. To control for volume confounds between
pairs of brain regions i and j, streamline counts were normalized
by dividing by the sum of streamlines brain region i has, which
resulted in a measure of streamline density (Medaglia et al., 2016).
Next, a simplified model of brain dynamics was applied to
simulate network control and quantify average, modal, and
boundary controllability for each brain region for each partici-
pant, as described above (Gu et al., 2015; Tang & Bassett, 2017).
Intuitively, a node’s average and modal controllability values are
negatively related (Gu et al., 2015; Wu-Yan et al., 2018). This
intuition was verified in a previous study analyzing the same
dataset (Kenett et al., 2018).

We then conducted a whole-brain correlation analysis between
BDI and each of the network controllability measures for all brain

regions for all participants. As the BDI measure is skewed
(skewness= .92), we conducted a Spearman rank correlation
analysis for average, modal, and boundary controllability, con-
trolling for multiple comparisons by calculating the false dis-
covery rate (Benjamini & Hochberg, 1995; Benjamini & Yekutieli,
2001) with a false positive rate of 0.05. The brain networks were
then visualized via the BrainNet Viewer (http://www.nitrc.org/
projects/bnv/; Xia, Wang, & He, 2013). Anatomical labels were
determined using the Brainnetome Atlas (http://atlas.brainne-
tome.org), which uses state-of-the-art multimodal neuroimaging
techniques to provide a current fine-grained, cross-validated atlas
and contains information on both anatomical and functional
connections (Fan et al., 2016).

2. Results

We applied the network controllability analysis, as described
above. To verify that the white matter connectivity matrices and
controllability measures we compute are consistent with previous
studies we conduct two initial inspections. First, we examine the
consistency of our white matter connectivity matrices. To do so,
we compare our white matter connectivity matrices to an exter-
nal, published, data set of DTI data from 270 participants (Jung,
Mead, Carrasco, & Flores, 2013). To compare the consistency of
the white matter connectivity matrices in our sample, we con-
ducted the following analysis: First, for each participant in each
sample we computed Pearson’s correlation across all pairs of
vectors of their white matter connectivity matrices. Next, we
computed the mean and standard deviation of the correlation
matrix for each participant. Finally, we calculated the average over
the average correlation distribution and the average over the
standard deviation distribution for all participants in each sample.
Since comparing across different DTI data sets is a challenge
(Lebel, Treit, & Beaulieu, 2017), we only demonstrate that we
achieve comparable results for the white matter consistency
correlation distribution of our current data set (mean= 0.03,
SD= 0.16) and this second sample (mean= 0.03, SD= 0.16).

Figure 1. Overview of Methods: (A) We performed diffusion tractography for each participant, and (B) applied a probabilistic whole-brain parcellation. (C) anatomical
connectivity matrices are constructed that represents the number of streamlines between pairs of regions, normalized by density. Finally, we define a simplified model of brain
dynamics and simulate network control to quantify (D) average, (E) modal and (F) boundary controllability for each node (brain region) in the network for each participant.
Figure adapted from Kenett et al. (2018).
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Second, we examined whether our controllability measures com-
puted over the sample map on to previously reported brain regions.
To do so, we follow the approach conducted by Gu et al. (2015):
We average the controllability scores for each brain region over
all participants to derive a mean average, modal, and boundary
score for each of our 234 brain regions. Next, for each con-
trollability measure independently we examine the 30 brain
regions with the highest scores for that controllability measure.
In accordance with Gu et al. (2015), the top-30 average con-
trollability brain regions included a majority of DMN regions
such as the inferior parietal lobe and the medial frontal gyrus;
the top-30 modal controllability brain regions included a
majority of ECN regions such as the cingulo-operculum regions
and also the insula; and the top-30 boundary controllability
brain regions included a majority of attention regions including
superior frontal areas and the frontal poles. Thus, our con-
trollability analysis is consistent with previous reports on the
dispersion of network controllability measures across the brain
(Gu et al., 2015).

Next, we correlated the different network controllability
measures across all brain regions with the BDI measure. This
analysis revealed several brain regions that survived false dis-
covery rate correction (Table 1; Figure 2), including a significant
negative correlation with boundary controllability and BDI in the
right anterior insula (adjusted p< .001). Furthermore, five regions
exhibited a significant positive correlation with average controll-

ability and a significant negative correlation with modal con-
trollability: An area in the right inferior parietal lobe (IPL:
average: adjusted p< .001; modal: adjusted p< .001), bilateral
Lingual gyrus (right: average: adjusted p< .001; modal: adjusted
p< .001; left: average: adjusted p< .05; modal: adjusted p< .05),
and an area in the right lateral-occipital cortex (average: adjusted
p< .05; modal: adjusted p< .05). A region within the left post-
central gyrus also showed a negative correlation with average
controllability and a positive correlation with modal controll-
ability (average: adjusted p< .05; modal: adjusted p< .05).

3. Discussion

In the current study, we applied a novel computational approach—
NCT —to quantify the relation between the role of different brain
regions in theoretically “controlling” whole brain neural dynamics
related to subclinical depressive symptoms. We argue that NCT
can advance our understanding of evoked control processes related
to subclinical levels of depression, as measured by the BDI. Our
approach is motivated by previous initial work that has implicated
the importance of average controllability in typical development
and intelligence (Kenett et al., 2018; Tang et al., 2017) and modal
and boundary controllability in cognitive control tasks and crea-
tivity (Kenett et al., 2018; Medaglia et al., 2016; Medaglia et al.,
2018a). We conducted a NCT analysis on a large sample of par-

Table 1. Whole-brain correlation analysis between Beck Depression Inventory and network controllability measures (average, modal, and boundary) for the
entire sample

Area Hemisphere BA x y Z Average Boundary Modal

Insula Right 48 34 14 − 6 − .20***

Inferior parietal
lobe

Right 39 42 − 74 24 .13* − .13*

Lingual Right 17 10 − 86 4 .14* − .14*

Cuneus Right 17 6 − 86 26 .15* − .15*

Fusiform Right 37 32 − 10 − 36 .15* − .15*

Post-central gyrus Left 3 − 42 −34 58 − .15* .15*

Notes: Only correlations with brain regions that survived false discovery rate (FDR) are presented. All correlation values reported survived FDR correction; x, y, z coordinates represent the
peak maximal voxel in Montreal Neurological Institute space. Anatomical labels were determined using the Brainnetome Atlas (BA) (http://atlas.brainnetome.org).
*p< .05; ***p< .001.

Figure 2. Relations between BDI and individual differences in average, modal, and boundary controllability anatomical brain networks. Maps highlight brain regions with
significant correlation values that survived FDR correction. Warmer/colder colors indicate a positive/negative correlation between controllability and behavior.
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ticipants (N= 349) who underwent diffusion tract imaging,
alongside behavioral measurement of depressive symptoms. Our
findings extend past work linking brain structure to subclinical
depression by uncovering controllability effects within specific
brain regions associated with depressive symptomology.

One main finding of the present study is a significant negative
correlation between boundary controllability and BDI in the right
anterior insula. The insula is part of the SN, which is implicated
in coordinating behavioral responses through the detection and
orientation toward internal and external stimuli (Menon, 2011;
Seeley et al., 2007; Uddin, 2015). The right anterior insula is
considered a key node in the SN, involved in mediating dynamics
between the ECN and DMN (Uddin, 2015). Several studies have
implicated this region in MDD (Diener et al., 2012; Hamilton,
Furman et al., 2011; Iwabuchi et al., 2014; Manoliu et al., 2014;
Strigo, Matthews, & Simmons, 2010; Wiebking et al., 2015).
Manoliu et al. (2014) conducted a resting state functional con-
nectivity analysis to investigate the relationship between the
anterior insula dysfunction, altered brain network interaction,
and severity of depression in MDD. The authors found that
decreased functional connectivity of the right anterior insula
within the SN was significantly correlated with the severity of
MDD symptoms; such symptoms were also related to atypical
functional connectivity between sub-systems of the ECN and
DMN (Manoliu et al., 2014).

Manoliu et al. interpret their findings as supporting the
hypothesis that dysfunction of the right anterior insula may be
associated with abnormal interactions between ECN and DMN in
patients with MDD. This abnormal interaction is a result of
impaired right anterior insula-mediated control of network
interaction (Menon, 2011). Previous studies have implicated the
pivotal role of the right anterior insula in modulating interactions
between the ECN and DMN (Sridharan, Levitin, & Menon, 2008),
and clinical neuroscience has reported atypical activity and con-
nectivity within these networks in patients with MDD (Hamilton,
Furman et al., 2011). As such, the significant negative correlation
between boundary controllability of the right anterior insula
related to BDI reported in the present study strengthens and
extends these previous findings. Importantly, NCT allows us to
quantitatively characterize the role of the right anterior insula in
mediating interactions between the ECN and DMN. Such a
negative relation may be related to a diminished ability to inte-
grate between ECN and DMN, which inhibits suppression of
maladaptive and repetitive thought, linked to hyper activity in the
DMN (Hamilton, Furman et al., 2011).

We also found a significant positive relation between BDI and
average controllability in several right hemisphere brain regions,
including the IPL, lingual gyrus, fusiform, and cuneus. While still
debated, a few studies have found atypical activation in the right
IPL related to depression (Hao et al., 2015; Li, et al., 2015; Sheline
et al., 2009). Based on the role of the right IPL in attentional
processing of emotional stimuli (Canli et al., 2004), Hao et al.
(2015) found that depressed patients exhibited higher IPL acti-
vation when processing sad emotional stimuli. Li et al. (2015)
found decreased grey matter volume in a sample of women with
subclinical depression. The authors interpreted this finding as
indicating that reduced IPL volume may induce inefficient
attentional control on negative emotion processing (Li et al.,
2015). While the bilateral lingual gyrus and the lateral occipital
gyrus areas are less commonly related to depression, a few studies
have revealed abnormal activation in these areas (Jung et al., 2014;
Keedwell et al., 2009; Veer et al., 2010). Keedwell et al. (2009)

demonstrated an emotional processing bias towards negative
information in the lingual gyrus and the primary visual cortex,
and Veer et al. (2010) found decreased functional connectivity of
the bilateral lingual gyrus in MDD. In the context of the present
study, we suspect that subclinical depressive symptoms may be
related to deficits in controlling visual-affective information flow,
as related to higher average controllability in these areas.

Finally, we found a weak significant positive correlation
between modal controllability and depression in the post-central
gyrus. Although the postcentral gyrus has been linked to modal
controllability in non-clinical samples (Gu et al., 2015), to our
knowledge, this is the first study linking structural and functional
deficits in this region to depressive symptomology . Future work
should replicate and further examine how controllability within
the postcentral gyrus relates to subclinical and clinical depressive
symptoms.

The current study adds to a growing amount of studies that
have demonstrated the strength of applying NCT to study neural
dynamics related to different cognitive phenomena (Kenett
et al., 2018; Medaglia et al., 2016; Medaglia et al., 2018a; Tang
et al., 2017). In relation to clinical population, to the best of our
knowledge, only one study similar to ours exist (Jeganathan
et al., 2018). Jeganathan et al. (2018) investigated average con-
trollability and network characteristics of white matter con-
nectivity networks in participants with bipolar depression,
participants with high risk of bipolar depression, and controls.
The authors found average controllability deficits (lower com-
pared with controls) in a left lateralized network of brain regions
that included the inferior frontal gyrus, insula, and the post-
central gyrus in participants with bipolar depression. The
authors also found average controllability deficits in a right
lateralized network of brain regions that included the prefrontal
cortex and striatal regions in participants with high risk of
bipolar depression. The authors interpret their findings
regarding the altered average controllability in participants with
bipolar depression as related to altered connectivity between
these regions, mediating dysfunctional cognition with emotional
homeostasis (Jeganathan et al., 2018). It is important to note
that while our study is related to the work of Jeganathan et al.
(2018), we examined a sample of participants with subclinical
levels of depression and examined a broader range of controll-
ability measures. Regardless, the work of Jeganathan et al. (2018)
and the current study demonstrate how such a quantitative
approach can be applied to study psychopathology such as MDD
and bipolar depression. Further research is needed to quantify
the spectrum of varying degrees of depression and the neural
dynamics leading to these varying states.

The focus of the current study is on atypical inhibition and
rumination as signals of maladaptive cognitive control related to
depression and how NCT can be applied to quantify such signals.
However, it is important to note that the BDI measures both a
psychological–cognitive factor and an affective–somatic factor
(Steer, Ball, Ranieri, & Beck, 1999; Storch, Robert, & Roth, 2004).
While rumination is attributed to hyper-connectivity in the DMN
(Hamilton, Furman et al., 2011), Burrows, Timpano, and Uddin
(2017) have recently proposed that rumination is related to dys-
function in the SN, specifically the insula (Burrows, Timpano, &
Uddin, 2017). This hypothesis is supported by atypical con-
nectivity patterns between the SN and DMN related to rumina-
tion (Kaiser et al., 2016), and also to recent findings that altered
insula timing in coupling between ECN and DMN is altered in
patients with MDD (Hamilton, Furman et al., 2011). Burrows,
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Timpano, and Uddin (2017) interpret this atypical timing of the
anterior insula as potentially indicating processing of heightened
salience of negative information in participants with MDD. Our
main finding of a negative correlation between boundary con-
trollability in the anterior insula and BDI supports the hypothesis
on the role of the SN in rumination and offers a potential bridge
across the two factors measured by the BDI.

A few limitations in our study exist. First, the controllability
metrics are calculated over the entire space of all possible states.
In reality, however, neural systems occupy a restricted space of
biologically viable configurations, generally avoiding pathologi-
cal states (e.g., seizures) and states that require too much
energy to reach. While methods for controlling transitions
between specific configurations in a restricted state space are
beginning to be explored (Betzel et al., 2016; Gu et al., 2017),
those methods are not yet fully developed and require the
researcher to specify states of interest. For this reason, the focus
of the present analysis was on the behavior relevance of aver-
age, modal, and boundary controllability, which do not require
such researcher input.

A second limitation is in the method we used to measure
structural connectivity, which was based on DTI data. DTI may
under-sample some white matter fibers, particularly those linking
hemispheres or those that cross paths with other fibers (Wedeen
et al., 2008). This can also partially account for the weak corre-
lations, albeit significant, found in our data. Future efforts should
apply diffusion spectrum imaging to improve estimates of
structural network architecture.

Third, our boundary controllability analysis was based on an
independent a priori brain modularity partition, which was in
turn based on a modularity analysis of resting-state functional
imaging data (Mišić et al., 2015). This partition was chosen as an
objective initial template for the analysis and also based on the
relation between structural connectivity networks and resting-
state data (Cole et al., 2016; Hermundstad et al., 2014). However,
the partition we chose may partially bias our results. Future
research is needed to establish independent a priori partitions
based on structural networks, which will increase the reliability
and validity of the boundary controllability analysis.

Finally, recently the ability of specific nodes in a network (such
as anatomical brain networks) to drive the system into a specific
state has been questioned (Menara, Gu, Bassett, & Pasqualetti,
2017; Tu et al., 2018). In the current study, we were interested in
investigating the theoretical notion of NCT and individual dif-
ferences in depressive symptoms, without committing to linking
between cognitive control processes and network controllability.

In conclusion, while rumination and atypical inhibition are
considered indicators of atypical cognitive control process in
depression, they are far from understood. We propose a method
to computationally quantify the role of different brain regions in
theoretically “controlling” the brain as related to subclinical levels
of depression symptoms. Our results provide unique and novel
evidence on how individual differences in controllability measures
across the brain correlate with behavioral measures of depression
symptoms. Thus, our results demonstrate the feasibility of
applying NCT to advance our understanding of different drivers
of neural dynamics relate to subclinical levels of depression.
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