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Abstract 

In this era of precision medicine, understanding the epigenetic differences in lung cancer subtypes could lead to 

personalized therapies by possibly reversing these alterations. Traditional methods for analyzing microarray data 

rely on the use of known pathways. We propose a novel workflow, called Junction trees to Knowledge (J2K) 

framework, for creating interpretable graphical representations that can be derived directly from in silico analysis of 

microarray data. Our workflow has three steps, preprocessing (discretization and feature selection), construction of a 

Bayesian network and, its subsequent transformation into a Junction tree. We used data from the Cancer Genome 

Atlas to perform preliminary analyses of this J2K framework. We found relevant cliques of methylated sites that are 

junctions of the network along with potential methylation biomarkers in the lung cancer pathogenesis. 

Introduction and Background 

Lung cancer is the leading cause of human cancer death in the United States, with estimated yearly casualties of 

over 160,000 [1]. Among all lung cancers the most frequent subtypes are adenocarcinoma (ADC) and squamous cell 

carcinoma (SCC), accounting for 38.5% and 20% of all cases respectively [2]. Identifying molecular differences 

between these two subtypes is important to enable clinicians to select patients who will likely benefit from a given 

drug regimen, and also in selecting those patients who will avoid toxicity from the treatment [3]. It has been 

suggested that the ADC and SCC develop through distinct pathogenetic pathways, resulting in epigenetic alterations 

[4]. 

DNA methylation is an epigenetic alteration that creates molecular changes to the environment of the DNA. This 

alteration occurs when a methyl group is attached to a specific location of the DNA, typically in sites where the 

sequence cytosine-phosphate-guanine (CpG) is abundant. This epigenetic alteration has the effect of silencing gene 

transcription, potentially removing important functions in the protein pathways. Recent studies have found that 

DNA methylation can have an effect on the progression [5], and recurrence [6], of the cancer into a more aggressive 

form. 

Distinct DNA methylation signatures between ADC and SCC have been found in studies targeting candidate genes 

in lung cancer [7]. However, there is still a need for understanding the mechanisms of DNA methylation for future 

epigenetic therapies, such as reversal of DNA methylation. This therapy has shown promising results using a 

technique called active demethylation that promotes DNA repair [8]. 

Traditional methods for analysis of DNA methylation microarray technology often investigate open research 

questions such as: How do differentially methylated sites interact among one another? Is there a network topology 

that might help discover differences between lung cancer subtypes? Balbin et al. [9] recently proposed a framework 

for the reconstruction of gene network topology in lung cancer combining multiple ‘omic’ data and then identifying 

functional networks associated with them. This framework relies on the identification of differentially expressed 

pathways from the ‘omic’ data. To achieve this task they use SPIA [10], an algorithm that combines the evidence of 

enrichment analysis (log-fold change differential expression) from the ‘omic’ data and the perturbation it has on the 

known pathways in KEGG [11]. Martini et al. [12] proposed an algorithm for the reconstruction of relevant network 

topologies. They start with known pathways found in KEGG which they transform into Junction trees[13] for human 

interpretation. Pradhan et al. [14] used microarray data to select the differentially expressed genes and then used the 

known interactions in the BioGrid [15] platform to reconstruct the network topology. 

This paper describes a novel workflow, called Junction trees to Knowledge (J2K), for performing in silico analysis 

of DNA methylation datasets. It addresses the post-classification problem of characterizing biomarkers that are 

responsible for disease classification at the sub-clinical level. It makes use of Bayesian networks (BNs) [16], which 

traditionally have been used in other domains to perform probabilistic inference; and Junction trees (JTs) [13], 

which have been vastly applied to propagate belief over a network and compute exact posterior probabilities [17]. 
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While there are many computational algorithms that can assist in the creation of JTs, their application to modeling 

‘omic’ data is relatively new.  To our knowledge, the use of junction tree representation to simplify the BN has not 

been explored adequately with biomedical data. While the literature supports their use for efficient identification of 

proteins from tandem mass spectra [18], it is unclear whether a representation that is created for purely 

computational efficiency can also provide biologically relevant results. We believe that our research will help us 

understand this aspect better. 

Materials and Methods 

Our workflow, as shown in Figure 1, first discretizes the features in the data using MDLPC [19], and selects those 

that best distinguish the target class via feature selection with the ReliefF [20] algorithm. Then it builds a BN using 

EBMC [21], and finally it transforms the directed network into a JT [13]. The remaining parts of this section 

describe these algorithms, including the in-house developed JT creation algorithms. 

 
Figure 1. Empirical workflow of TCGA data to directed graph (BN) to undirected graph (JT) to Knowledge (J2K) 

Dataset 

The Cancer Genome Atlas (TCGA) is a public repository of genomic data supervised by the National Cancer 

Institute (NCI) that aims to characterize human cancers. We extracted DNA methylation intensity profiles for 197 

tumor samples (65 ADC and 132 SCC) from the TCGA data portal for lung adenocarcinoma (LUAD) and lung 

squamous cell carcinoma (LUSC, [22]).  The microarray platform used for analysis was the Illumina
®

 Infinium 

HumanMethylation 27k (27,578 variables representing methylation sites).  

Data Preprocessing 

Discretization. The methylation intensity for each methylation site in the microarray data is a continuous value. We 

partitioned this value into intervals using the Fayyad and Irani’s Minimum Description Length Principle Cut 

(MDLPC) [19]. This algorithm selects a cut point that minimizes the joint entropy of the resulting subintervals. It 

then continues to partition recursively until no cut point can be selected. The resulting set of intervals constitutes the 

values for that methylation site. Features refer to variable-value pairs. 

Feature Selection. A subset of the most informative features from the microarray data were selected using the 

ReliefF feature selection algorithm [20]. This is a multivariate filter that sequentially evaluates every instance to 

estimate how well a feature can distinguish the target class given the instances in the same neighborhood. In the end, 

the top scoring features are retrieved. The ordering from this selection is also used in subsequent elements of our 

workflow. 

Bayesian Networks 

A Bayesian network [16] is a probabilistic graphical model that explains a given set of discrete data. It comprises a 

set of nodes (methylation sites) that represent random variables and a set of arcs among the nodes that represent 

probabilistic dependence. The posterior probability of an event (disease) D occurring, given that an event (symptom) 

S is observed is calculated using the well-known Bayes’ formula [23]. 

The Efficient Bayesian Multivariate Classification (EBMC) [21] is a recent method for learning a BN from data. It 

uses a greedy search to find a constrained BN that best predicts a target node, similar to the Bayesian Rule Learning 

(BRL) algorithm [24]. It initially starts with an empty model and then it identifies a set of nodes that are parents of 

the target and predicts it well. EBMC then transforms the temporary network structure into a statistically equivalent 

one (Augmented Naïve Bayes or ANB [25]) where the parents of the target become children of the target with arcs 
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among them. It then iterates the whole process until no set of parents can be added to the target node to improve the 

prequential score [26]. EBMC has been shown to perform well at binary outcome prediction using high-dimensional 

discrete datasets [27]. This method differs from other BN-learning algorithms in at least two ways: (a) no ordering 

of features is required and (b) the representation of the learned BN is an augmented Naïve Bayes structure. 

Junction Trees 

A Junction tree [13] is a tree-structured undirected graph, whose nodes correspond to cliques of features (or 

methylated sites in our case), and whose links connect pairs of cliques that have features in common. A clique is a 

subset of nodes in an undirected graph where any two nodes are connected by an edge. In order to create a JT, three 

steps are needed: 

1. Moralization. Starting from a directed graph, such as a BN, the directionality of the edge is removed by 

connecting or ‘marrying’ the set of nodes that share common children but do not have direct edges between them. 

This yields an undirected moral graph. 

2. Triangulation. In the undirected moral graph, all cycles containing four or more nodes must be triangulated. This 

process involves iteratively adding extra edges to eliminate such cycles of four or more nodes (chord-less cycles). 

There are an exponential number of triangulation possibilities, depending on the number of nodes involved in the 

cycle, which have been solved by using a predefined ordering of nodes to be triangulated. Triangulation is an NP-

hard problem. We order the nodes for this triangulation process based on the ReliefF scoring to make the algorithm 

efficient. The triangulated graph containing cliques is used for node elimination, which creates a JT.  

3. Node Elimination. A new tree-structured undirected graph (empty JT) is first constructed by following the node 

elimination algorithm. Then, a node is selected for elimination, and its containing clique is added to the JT. Next, the 

node and its incident edges are eliminated from the triangulated graph and the process is repeated until no other 

nodes are available.  Node elimination is also an NP-hard problem. Hence, a predefined ordering of nodes has to be 

used. The JT must satisfy a property called the ‘junction property’ (running intersection property), meaning that if a 

feature is contained in two cliques, then it must also be contained in every clique on the path that connects them. The 

order in which the nodes were eliminated is based on the ReliefF scoring. 

Results and Discussion 

The MDLPC [13] algorithm transforms all continuous methylation profiles into discrete binned data containing at 

least two bins for each methylation site. Since MDLPC is a supervised discretization method, it also has the side 

effect of discarding those features with only one bin. For the datasets that we used, the algorithm selected 7,908 

features out of 27,579. 

The ReliefF algorithm [20] ranks all features according to their impact in differentiating between the classes. To 

demonstrate proof of concept, we selected the top ranked 30 methylated sites to create BNs. The area under the 

receiver operating characteristic curve (AUC) when evaluating these BNs over a stratified 10-fold cross-validation is 

0.988. This level of classification performance is reasonable for this problem, because the two subtypes of lung 

cancer are known to be fairly distinct. 

The structure of the BN created using the EBMC algorithms applied to the data is shown in Figure 2. As expected, 

there are multiple connections between the target node (class node) and the rest of the selected nodes. There are two 

fairly distinct clusters of 10 interconnected methylated sites (see Figure 2). The network topology produced by 

EBMC is an augmented naïve Bayes (ANB) structure. The corresponding gene IDs to where those methylation sites 

are located is used after this step (i.e. methylation site cg18515587 is located in gene SELENBP1). 

As a conceptual method, we proposed the use of JTs as way of clarifying the structure of BNs. In Figure 3, we show 

the corresponding JT representation of the BNs seen in Figure 2. In the EBMC-derived JT representation we can 

start to think of new hypothesis with a greater biological relevance. For example, looking at the central clique 

(central circle) it is easy to see that there are key molecules that are worthwhile examining carefully, because a 

perturbation in this clique would have an impact on the entire structure. The central clique has the following genes: 

SELENBP1, AKR1B10, LPP, SH3BP1, BCDIN3, KRTHB4, MAPK8, TCF2. We used the suite NextBio
®

 to test 

the association of this clique to different tissues and diseases in the known literature and curated studies. This suite 

finds that the central clique is associated with the epithelial cells of nasal turbinates, and the epithelial cells of 

bronchial large airways, and that it also correlates with esophageal cancer cell line OE21. The clique (and specially 

SELENBP1) is associated to the Selenium binding protein which is considered to be a tumor suppressor and a 

prognostic marker [28]. 
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The BN shown in this manuscript is a Bayesian network classifier (BNC) created using the EBMC learning 

algorithm. The resulting structure of this BN improves the classification of the target node but does not to capture all 

the probabilistic relationships between features. We plan to use other BN learning algorithms to further explore this 

novel research area. 

 
Figure 2. EBMC-generated BN model for the classification task ADCtumor vs SCCtumor. 

 
Figure 3. EBMC-derived JT, where the squares represent junctions while the circles represent cliques. An example is provided to 

show the importance of the JT to identify central cliques with important genes. 

Conclusion 

In this research, we have tested a novel concept called J2K framework to transform biological data from directed to 

undirected graphs via the application of JT generation algorithms. We applied a series of algorithms for 

transforming epigenomic data of lung cancer into a graphical representation that is interpretable for human 

researchers. Our study can easily be generalized into other types of epigenomic and genomic data, and we plan on 

testing it with other biomedical datasets. Particularly, we have found cliques of methylated sites that are of interest 

for the differentiation of lung cancer subtypes. 
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