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ABSTRACT High-throughput sequencing (HTS) of reduced representation genomic libraries has ushered in an era
of genotyping-by-sequencing (GBS), where genome-wide genotype data can be obtained for nearly any species.
However, there remains a need for imputation-free GBS methods for genotyping large samples taken from
heterogeneous populations of heterozygous individuals. This requires that a number of issues encountered with GBS
be considered, including the sequencing of nonoverlapping sets of loci across multiple GBS libraries, a common
missing data problem that results in low call rates for markers per individual, and a tendency for applicability only in
inbred line samples with sufficient linkage disequilibrium for accurate imputation. We addressed these issues while
developing and validating a new, comprehensive platform for GBS. This study supports the notion that GBS can be
tailored to particular aims, and using Zea mays our results indicate that large samples of unknown pedigree can be
genotyped to obtain complete and accurate GBS data. Optimizing size selection to sequence a high proportion of
shared loci among individuals in different libraries and using simple in silico filters, a GBS procedure was established
that produces high call rates per marker (.85%) with accuracy exceeding 99.4%. Furthermore, by capitalizing on the
sequence-read structure of GBS data (stacks of reads), a new tool for resolving local haplotypes and scoring phased
genotypes was developed, a feature that is not available in many GBS pipelines. Using local haplotypes reduces the
marker dimensionality of the genotype matrix while increasing the informativeness of the data. Phased GBS in maize
also revealed the existence of reproducibly inaccurate (apparent accuracy) genotypes that were due to divergent copy
number variants (CNVs) unobservable in the underlying single nucleotide polymorphism (SNP) data.
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Genome-wide genotyping of population samples is fundamental to a
range of studies in genetics and genomics, and GBS of multiplexedHTS

libraries has emerged as a cost-effective strategy for obtaining this
information.GBSofmultiple samples relies on a reduced representation
sequencing strategy that restricts sequencingacrosswhat is hoped tobe a
common subspace of the genome in different samples. A prevalent
technique used for this involves the ligation of barcoded adapters to
DNA digested with restriction enzymes, followed by sequencing of
fragments within a restricted size range. In principle, this leads to stacks
of sequences anchored at the restriction cut sites across the genomes of
different individuals. Following initial publications on restriction
enzyme-mediated GBS (e.g., Baird et al. 2008; Andolfatto et al. 2011;
Elshire et al. 2011), the approach has continued to be extended and
optimized, such as fine-tuning the number of loci sequenced by using
different restriction enzymes and size selectionwindows (Peterson et al.
2012) or selective primers (Sonah et al. 2013),minimizing the front-end
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cost by using enzymes that create blunt-end fragments for universal
adapters (Heffelfinger et al. 2014), and increasing the scalability for
large samples by including a sequence capture step (Ali et al. 2016).
Methods and applications of GBS continue to develop at a rapid rate.

With the mass of data produced by HTS, even low sequencing error
rates can lead to an abundance of inaccurate genotype calls. Moreover,
errors accumulate along steps in the GBS pipeline from library prep-
aration to data processing. As a reflection of the amount of noise inGBS
data, it is not unusual tofindpublications (aswell as ourownexperience)
where as much as�50% of the rawHTS data are filtered after mapping
(e.g., Beissinger et al. 2013) and as much as �95% of the discovered
variants are filtered after variant calling (e.g., Hyma et al. 2015). Typ-
ically, statistically or biologically informed criteria for filtering are used
to enrich for more accurate GBS data, or a model is fitted to the data to
remove genotypes that do not conform to expectations (e.g., tests for
independent assortment and cosegregation in genetic mapping pop-
ulations and Hardy–Weinberg equilibrium in other population
samples). However, estimates of genotyping accuracy for a given
protocol, pipeline, and application of GBS (under all of its flavors:
e.g., RAD, GBS, ddRAD, and Rapture, etc.) are rarely reported. One
recent study compared different bioinformatic pipelines and found
that genotyping accuracy for one GBS dataset ranged from 76 to
99%, depending on the bioinformatic pipeline used to score geno-
types (Torkamaneh et al. 2016). Accuracy estimates based on rese-
quencing of GBS loci have ranged from 51% (Rocher et al. 2015) to
99% (Torkamaneh et al. 2016). Given the wide range in accuracy
and method- and study-specific nature of GBS, establishing controls
or approaches that allow accuracy to be estimated is important when
embarking on GBS studies.

GBS tends to have amissing data problemdue to two primary issues:
(i) for libraries with low sequence coverage per sample, the amount of
missing genotype data can behigh, resulting in a lowcall rate permarker
(as low as 10%; Fu and Peterson 2011); and (ii) for large population
samples where many libraries need to be sequenced, the number of
shared loci in different libraries may be low, resulting in low call rates
per sample. The latter issue has not been fully addressed in the literature
on GBS. We are aware of one study in which the consistency of gen-
otyping the same loci in different libraries with the same samples was
assessed, and in this study, overlap of loci among libraries ranged from
12 to 98% (DaCosta and Sorenson 2014). The results of that study
suggested an impractical (costly) solution for genotyping large samples,
where greater consistency would be achieved by pooling samples later
in the protocol. This would require individual samples to be processed
through size selection and PCR amplification independently, which
increases the cost for reagents and time for library preparation. A so-
lution to the GBS missing data problem has been imputation, whereby
the genotype for a missing SNP is inferred from the state of nearby
SNPs. However, imputation is not always possible and may not be
sufficiently accurate, in which case both of the above issues compromise
the effectiveness of GBS in studies where sample sizes exceed the mul-
tiplex depth of a single sequencing library. While the former issue may
be addressed by reducing the sequence space (e.g., Peterson et al. 2012;
Sonah et al. 2013) or deeper sequencing, the latter issue requires tech-
niques that provide reproducible enrichment of shared loci (e.g., Ali
et al. 2016).

Despite the shortcomings mentioned above, GBS has been effective
in several settings. There is now a growing interest in using GBS for a
wider range of studies (Andrews et al. 2016), many of which could
benefit from or be advanced with phased genotype data. The standard
approach when performing GBS involves scoring SNPs. However, in
GBS data, locally phased haplotypes exist as stacks of reads for each

locus. If these contain more than one SNP, then multi-nucleotide poly-
morphisms (MNPs) can be genotyped. The use of MNPs has not been
widely exploited in GBS due to the lack of tools for scoring phased
genotypes. The software STACKS (Catchen et al. 2013) and Haplotag
(Tinker et al. 2016) do have functions embedded within their pipelines
for extracting MNP haplotypes from GBS data, but the pipeline-
dependency of these functions limits their use more generally, and
the algorithms rely on population-specific filtering criteria rather
than statistical evaluation of the likelihood that each haplotype in
an individual is real. Because HTS data are imperfect and the quality
of sequenced bases and read mappings are quantitatively encoded,
scoring MNPs at a locus within an individual is not straightforward
if one considers this information relevant. A local haplotyping tool,
LocHap, which uses community-standard file formats, offers a more
generalized solution for phased genotyping. LocHap was developed
under a probabilistic framework that uses the quality metrics of base
calls and mapping results as well as sampling effects to phase MNPs
in HTS data (Sengupta et al. 2015). LocHap was designed to identify
distinct haplotypes in heterogeneous populations of cells (somatic
mosaicism) irrespective of homology, such that the outputted hap-
lotypes at a single locus can vary in length and are not necessarily
alignable within and across individuals. Consequently, LocHap does
not produce data in a format that is compatible with population or
quantitative genetic studies. In our study, LocHap was extended to
perform phased genotyping with GBS data on individual samples,
which we call LocHap-GBS.

Phased genotyping is useful for various applications in genetics and
genomics. TypingMNPs can help distinguishmore than two alleles at a
locus, providing greater information content for studying genetic di-
versity (Lu et al. 2011). Phased genotypes can facilitate imputation in
multi-parental populations where SNPs would otherwise conflate an-
cestral alleles (Davies et al. 2016). Haplotype data can also increase the
accuracy of estimated breeding values, thereby increasing the efficiency
of plant and animal breeding (Ferdosi et al. 2016). In our study, while
validating LocHap-GBS, we found that phased genotyping can also
uncover copy number polymorphisms (CNPs).

The aims of this study were to: (i) establish a standardized and
empirically optimized flex-plex GBS protocol with an accompanying
informatics pipeline for genotyping; (ii) evaluate the accuracy and
potential applicability of this procedure for genotyping large samples
from heterogeneous populations of heterozygous individuals; and (iii)
extend theuseofGBS forphasedgenotyping.Weusedmaize,which is an
agriculturally relevant species with an �2.3 Gb completed reference
genome sequence, but where genomic analysis is challenged by large
amounts of repetitive sequence. Genetic trios of pairs of inbred parental
lines and their F1 progeny were used in assessing the accuracy of GBS.
We tested whether simple in silico filters could facilitate highly accurate
scoring of genotypes irrespective of zygosity and knowledge of par-
entage. In addition to developing and validating a method for
phased-GBS, we also examined how SNP and MNP data affect
inference on the relatedness among a set of inbred lines used by
the maize genetics research community.

MATERIALS AND METHODS

Study samples
Detailed information on the samples used in this study is in Supple-
mentary Material (File S1). Briefly, the samples included a synthetic
population created from seven tropical inbred lines (used to evaluate
the consistency of sequenced loci in different GBS libraries), sets of trios
or pairs of inbred lines and their corresponding F1 hybrids (used to
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evaluate the repeatability and accuracy of GBS), an F2 population (used
to examine the transmission of phased MNPs, along with the corre-
sponding parental trio), and parental inbred lines of a maize nested
associationmapping (NAM) population (McMullen et al. 2009; used to
examine phased genotyping for analysis of genetic diversity).

GBS
Wedescribe the design, protocol, and associated software forGBSbased
on a double digestion technique similar to protocols by Poland et al.
(2012) and Peterson et al. (2012). A specific interest of ours was to de-
velop a GBS design for genotyping heterozygous samples of potentially
unknown parentage with little missing data for large sample studies. The
method was optimized, validated, and tested for various applications.

Detailed protocols and other relevant information are provided in
Supplemental Material (File S2 and File S3). Briefly, two separate but
related restriction-associated sequence polymorphism (RASP) adapter
designs were developed: (i) RASP-1.0 was based on Illumina’s “genomic
DNA” adapters (Illumina, Inc., San Diego, CA) modified with appro-
priate overhang sequences for ligation and a six-nucleotide inline
barcode for 48-plex genotyping (RASP-1.0 and RASP-1.1 adapter
oligonucleotides and primers; File S3); (ii) RASP-2.0 was based on
Illumina’s TruSeq adapters modified with appropriate sequence
overhangs for ligation. RASP-2.0 uses variable length inline barco-
des (5–10 nucleotides) for 48-plex genotyping (barcode sequences
were designed using http://www.deenabio.com/gbs-adapters) along
with standard TruSeq indices. The inline barcoded adapters and
TruSeq barcoded adapters can be combined to construct plexes in
multiples of 48 (RASP-2.0 adapter oligos and primers: File S3).

The protocol used for GBS was improved over the course of our
study, including changes to the adapter sets, the size selection method,
and number of reactions used for PCR (Table S1). The general protocol
was as follows. Purified and normalized DNA (200 ng) was digested
using two restriction endonucleases, NgoMIV and Csp6I, for 30 min at
37�. The NgoMIV/Csp6I enzyme pair was chosen because it provided
the highest read output and the lowest variation between samples based
on comparisons between four different enzyme pairs (NgoMIV/Csp6I,
NgoMIV/MseI, PstI/Csp6I, and PstI/MseI; data not shown). Adapters
were ligated with T4 DNA ligase using temperature-cycle ligation
[Lund et al. 1996; 300 cycles of 30 sec at 10� and 30 sec at 30�; this
was determined to improve ligation efficiency by qPCR (data not
shown)], followed by heat inactivation of the ligase at 65� for 30 min.
An equal volume of each ligate was pooled and then purified using
either AMPure (A63880; Beckman Coulter, Inc., CA) or SPRIselect
(B23317; Beckman Coulter, Inc.) beads following the manufac-
turer’s recommended protocol for standard clean-up (exclusion of
fragments ,100 bp). For all libraries, prior to PCR amplification,
size selection was performed on the pooled ligate using a BluePippin
(Sage Science, MA). Size-selected samples were PCR amplified with
Phusion High Fidelity Master Mix (M0531S; NEB, Inc., MA) using
the universal primer sequences from Illumina’s genomic DNA or
TruSeq sample kit. To reduce PCR bias, a minimum of eight separate
PCR reactions were performed on the size-selected template and the
products were pooled. AMPure or SPRI beads were used to eliminate
excess primers and biproducts (exclusion of fragments,100 bp). The
range and peak of Bioanalyzer size fragment profiles were analyzed for
each library before and after PCR to determine the consistency of the
size profiles. Due to variation in fragment length profiles found follow-
ing pre-PCR size selection, a post-PCR size selection was performed on
some of the libraries, followed by Bioanalyzer analyses to confirm size
profiles. This turned out to be critical for genotyping separate libraries,
and we have since included this change in our standard protocol.

Multiplex libraries were quantified using a Quant-iT PicoGreen
dsDNA assay kit (P7589; Thermo Fisher Scientific, Inc., MA) and
sequenced (1 · 101 cycles) on an Illumina HiSequation 2500 at the
Delaware Biotechnology Institute.

GBS data processing

Computational pipeline: Sequences were processed using a custom
reduced representation “RedRep” computational pipeline with the fol-
lowing basic steps: (1) sequence splitting by barcode; (2) raw sequence
quality control; (3) reference genome mapping; and (4) variant calling
(SNPs). Briefly, sequences are deconvoluted by barcode using custom
logic and the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit).
Novel scripts and the CutAdapt package (Martin 2011) are then used to
remove adapters, trim low quality read ends, and filter out sequences
that do not meet minimum length/quality standards or lack the
expected restriction site and adapter sequence expectations. Quality
reads are mapped to the reference genome using the BWA-MEM al-
gorithm (Li 2013) and SNPs are identified using the multi-sample
discovery mode of the GATK Unified Genotyper (McKenna et al.
2010). The scripts for the pipeline and documentation are available
under the open source MIT license at https://github.com/UD-CBCB/
RedRep. Version 2.0 scripts committed to the repository on December
7, 2016 were used for this manuscript.

Post-vcf filtering: All 64–384 bp loci flanked byNgoMIV (GYCCGGC)
and Csp6I (GYTAC) recognition sites in the B73 v2 reference genome
were identified by in silico digestion. BLASTn was used to perform
genome-wide searches for each in silico-digested sequence starting
from the Csp6I recognition site (starting point for sequence reads)
up to a maximum of 96 nucleotides (longest quality trimmed read
length of our actual data). Sequences that were.4% distant from all
other loci in the reference genome were flagged as “4PD” loci, and
SNPs that occurred within these loci were maintained while the
remaining SNPs were filtered. This excludes the possibility for scor-
ing variants at loci within the reference genome that differ from one
another by,4 nucleotides in 100 bp. In addition, for each individual
and at each SNP site, if the genotype was not based on a minimum
depth of read coverage, it was set to missing: 3· read depth for
scoring inbred samples and 12· read depth for scoring heterozygous
samples. Samples were then removed that had genotype data for, 25%
of the loci for 48-plex libraries and ,10% for 192-plex libraries;
these included problematic samples and negative controls. Finally,
for each SNP, an 85% call rate threshold was used, and SNPs with
more than two nucleotide variants were removed.

In silico characterization of GBS loci: The in silico-digested loci,
along with the SNP sites scored across all samples, were summarized
according their distribution across the B73 v2 reference genome. Using
the closest-features program of BEDOPS v2.4.15 (Neph et al. 2012),
genic and intergenic associations of the digestion loci and SNPs were
determined using gene structures in release-5b (filtered gene set; http://
ftp.maizesequence.org/release-5b/).

Assessing accuracy of GBS
A set of parent–hybrid trios were used to assess scoring accuracy: (i)
CML373, CML341, and CML373 · CML341; (ii) CML341, CML277,
and CML341 · CML277; and (iii) Tzi9, CML258, and Tzi9 · CML258.
One trio involving Tzi8 was excluded from accuracy assessment
because of excess heterogeneity (12.8%) and relatively high residual
heterozygosity (1.3%), as determined in preliminary work using the

Volume 7 July 2017 | Phased Genotyping-by-Sequencing | 2163

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042036/-/DC1/FileS2.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042036/-/DC1/FileS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042036/-/DC1/FileS3.xlsx
http://www.deenabio.com/gbs-adapters
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042036/-/DC1/FileS3.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.042036/-/DC1/TableS1.xlsx
http://hannonlab.cshl.edu/fastx_toolkit
https://github.com/UD-CBCB/RedRep
https://github.com/UD-CBCB/RedRep
http://ftp.maizesequence.org/release-5b/
http://ftp.maizesequence.org/release-5b/


MaizeSNP50 BeadChip (Ganal et al. 2011). The repeatability of
genotyping was estimated from replicate DNA samples of each
member of the trio processed in the same library (except for the
hybrid Tzi9 · CML258 because of quality issues with the replicate).
Using loci with complete and consistent calls (i.e., between repli-
cated DNA samples), genotyping accuracy was measured as the
proportion of loci with the expected genotype in the hybrid given
the genotype of the parents. Because GBS was performed on only
one plant for each member of a trio, loci that were heterozygous in
either parental line were excluded when estimating genotyping ac-
curacy (according to prior data of ours based on the MaizeSNP50
chip, residual heterozygosity and heterogeneity for the parental lines
was ,0.8%). Furthermore, because the one F1 plant genotyped was
taken from bulked seed of progeny from multiple crosses between
the parental lines (such that the genotyped parents may not provide
the exact expectation for the specific F1 plant that was genotyped),
estimates of accuracy are expected to be slightly downward biased.

Genotyping of local haplotypes
BecauseGBS can resolvemultiple variants present within eachposition-
specific stack of sequence reads, phased haplotypes can be extracted. A
local haplotyping program called LocHap (Sengupta et al. 2015) was
extended for use with GBS data, which we refer to as LocHap-GBS
(http://compgenome.org/lochap/GBS/). Figure 1 depicts the workflow
for LocHap-GBS, which requires four input files: the standard bam, bai,
and vcf files, plus a user-specified bed file containing intervals where
haplotypes should be searched. To develop LocHap-GBS, a collection
of modules were created that provide the following functionalities: (i) a
file parser that defines intervals in which to search for haplotypes, (ii)
automation for running multiple samples and merging samples into a
single output file, (iii) outputting of haplotypes that include bases even
if they are homozygous in an individual, and (iv) additional flexibility in
the format of output (either haplotype calling format [hcf] or bed).

While developing LocHap-GBS, some additional improvements
weremade to LocHap that were related to dynamic memory allocation.
Presently, LocHap is limited to calling haplotypes across a maximum of
three heterozygous sites. LocHap-GBS uses a bed file with predefined
intervals of windows in which to search for haplotypes, but these
windows may contain more than three heterozygous sites in some
individuals. Therefore, LocHap-GBS parses windows into subwindows
that include a maximum of three heterozygous SNPs by referencing the
coordinates of each window and the genotypes of SNPs in the vcf file
(Figure 1). In this study, the intervals specified in the bed file were the
4PD loci from the in silico digest (only SNPs at these loci had been
maintained in our vcf outputs, so this was the genotyping space of
interest in this study).

WedefineSNPs,MNPs,andCNPsas thepropertyofa locus (loci that
have variation among individuals) and single nucleotide variants
(SNVs), multi-nucleotide variants (MNVs), and CNVs as the property
of an individual or in reference to a specific form of the polymorphism
(a diploid individual is expected to have a maximum of two SNVs or
MNVs at a locus). To prepare MNP data for analysis, MNVs were split
into separate columns using the df2genind functionwithin the adegenet
package (Jombart 2008) in R (RCore Team 2016). AnMNV containing
one missing SNV was assigned a value of “NA,” and a genotype con-
taining a missing MNV was assigned a value of “NA.”

Analysis of genetic diversity
To examine differences in information content when using SNP vs.
MNP data, genetic distances of the parents of the NAM population
were analyzed. When analyzing the MNP data, we encountered

genotypes with .2 MNVs (implying a ploidy of .2, which is not
possible for orthologous loci in maize). After determining these were
putative CNPs within the genomes of the sequenced samples relative
to the reference genome sample (see Results), we examined the

Figure 1 Phased GBS. A RedRep pipeline is used for SNP typing. The
figure shows the basic flow of RedRep, which begins with a fastq data file
with barcoded sequences. For QC, the “meta” file contains metadata
used for demultiplexing into sample-specific fastq files. A reference ge-
nome sequence file is used for mapping (refmap) and variant calling
(SNPcall). LocHap-GBS is run by editing a generate.py file specifying
the location of the bam files, the filtered vcf file, and a bed file of window
coordinates to search for haplotypes. A LocHap-GBS run file and windows
file are automatically generated. Windows are currently split into subwind-
ows with a maximum of three heterozygous sites within any one individual
in the vcf file. This situation is depicted for reads across a window that has
been delineated into two subwindows where phasing is performed. The
dashed connecting line between reads indicates that a contiguous se-
quence with five SNPs was split into two subwindows. Black-filled bars
represent the reference sequence and yellow squares represent SNVs.
Given stacks of reads across each subwindow, LocHap-GBS uses a prob-
abilistic model to identify haplotypes in the presence of sequence errors
(depicted as one-off instances in the stacks of reads). An hcf file is created
for each sample, which is then merged into a combined hcf file for down-
stream analysis. GBS, genotyping-by-sequencing; MNV, multi-nucleotide
variant; QC, quality control; RedRep, reduced representation; SNP, single
nucleotide polymorphism; SNV, single nucleotide variant.
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impact of including or excluding CNPs in the analysis of genetic di-
versity. The original MNP genotypematrix was split into three datasets
where: (i) all putative CNPs were included for analysis (MNP1); (ii) all
loci that had. 2MNVsweremasked (MNP2); and (iii) loci that had. 2
MNVs or were heterozygous in an inbred line (these are also poten-
tially CNPs) weremasked (MNP3). Pairwise genetic distancematrices
based on shared allele distances (Bowcock et al. 1994) were computed
for each dataset. The distance matrices were compared based on sum-
mary statistics and the Mantel test for correlation between matrices
(Mantel 1967; implemented using the ade4 package in R, Dray and
Dufour 2007). To visualize the relationships between the lines, multi-
dimensional scaling (MDS, Kruskal 1964) was performed using the
cmdscale function in the R package stats. Phylogenetic trees were gen-
erated using the BIONJ algorithm (Gascuel 1997) with the ape package
(Paradis et al. 2004) in R, with 1000 bootstrap replicates performed to
obtain branch support probabilities. Distances between trees were com-
pared using symmetric Robinson–Foulds distances (Robinson and
Foulds 1981) calculated using the Phangorn package in R (Schliep
2011). Cladograms were plotted using FigTree 1.4.2 (http://tree.bio.
ed.ac.uk/software/figtree/) with branches transformed to equal lengths
for displaying topology.

Data availability
Sequence data used in this study was deposited in the NCBI Short Read
Archive under two Bioprojects: PRJNA385842 and PRJNA385849. The
submitted data has been demultiplexed and processed through quality
control using RedRep.

RESULTS

GBS of NgoMIV-Csp6I loci in maize
In silico digestion of the B73 reference genome withNgoMIV andCsp6I
identified 321,927 sequences that were 64–384 bp long and flanked by
the recognition site of each enzyme, of which 78,903 were 4PD loci. A
4PD locus in maize ensures that, in most cases, the distance between
loci within the reference genome is greater than the average distance
within a locus across genomes [on average, SNPs occur every 28 bp in
maize (Tenaillon et al. 2001)]. This was expected to minimize genotyp-
ing errors from ambiguous mapping. A lower PD threshold or a fixed
1 bp difference threshold may be appropriate and result in the identi-
fication of more SNPs, but we did not consider different thresholds in
this study.

For GBS, short-read sequence libraries typically comprise fragments
that fall within a size range of 100 bp. To determine if targeted size
selection could be used to optimize the recovery of fragments from
nonrepetitive loci, we looked at the relative abundance of NgoMIV-
Csp6I loci classified as 4PD vs. repetitive (#4PD) in 100 bp windows
(sliding every 10 bp from 64 to 384 bp). The median number of 4PD
loci among windows was 22,854 (Figure S1), but the distribution was
somewhat skewed where more 4PD loci were present in 100 bp win-
dows of smaller fragment sizes. The ratio of 4PD:repetitive loci in
100 bp windows ranged from �0.3 to 0.4, suggesting size selection
might be used to maximize sequencing resources by avoiding repeti-
tive sequences. However, many restriction endonucleases, including
NgoMIV, are sensitive to certain types of methylation, and SNPs are
not expected to be uniformly distributed across the genome, such that
expectations from in silico analyses are only a proxy for the numbers of
scorable loci for a given choice of enzyme. Moreover, the fragments
enriched by size selection and PCR are not a uniform sample of the
underlying distribution of digested fragments and only a fraction of those
loci will have sufficient read depths for scoring genotypes across samples.

The genic space (defined here as the gene plus 5 kb flanking
sequences) comprises 27% of the B73 v2 genome (genes alone
comprise 8%). Unfiltered NgoMIV-Csp6I loci from in silico diges-
tion were distributed across the genic and intergenic spaces similar
to that expected by chance alone (although significantly different,
coverage of the intergenic space was greater than expected by only
four percentage points). In total, these unfiltered loci encompass 3%
of the genome and are associated with a majority of the gene space,
including 69% (27,641) of all maize genes. Filtering NgoMIV-Csp6I
loci that were ,4% distant from at least one alternative site in the
genome removed loci associated with 7472 genes. The 4PD loci used
to score SNPs were enriched within the gene space by 32 percentage
points (59% for 4PD loci vs. an expected genome distribution of
27%; Figure 2A) and associated with 51% (20,169) of all genes.

A total of 159,994 postfiltered SNPs ($3· read depth at 4PD loci)
were identified across all samples genotyped in this study (File S4,
which also includes coordinates for SNPs identified using more re-
cent assemblies of the maize genome). These were present in 30,239
loci with a median of 4 and mean of 5 SNPs per locus. As were
the loci themselves, these SNPs were more abundant within genes
(Figure 2B) and showed enrichment near start codons (Figure 2C).
The median and mean physical distance between loci was 5.7 and
67.9 kb, respectively, and the median and mean physical distance
between SNPs was 14 and 12,854 bp, respectively. Previous studies,
based on surveys of diverse samples of maize, have cataloged 1230
(MaizeSNP50 BeadChip; Ganal et al. 2011) and 64,662 (HapMap2;
Chia et al. 2012) of the SNPs found here.

Empirical evaluation of the accuracy of GBS on
heterozygous samples
The repeatability and accuracy of GBS was assessed using replicate
samples and parent–hybrid trios, respectively (Table 1). At 12· read
depth, the repeatability of genotyping the same DNA was 99.8% (based
on 265,664 total comparisons). The accuracy of genotyping assessed in
trios (i.e., observed parent genotypes serving as the expectation for
predicting an F1 genotype) was .99.6% across all monomorphic and
polymorphic loci. For expected heterozygotes specifically (i.e., only sites
that were polymorphic between parents of a hybrid), accuracy
was .99.0%. Inspection of incorrectly predicted genotypes revealed
discrepancies from either putative heterogeneity of the lines or appar-
ent mis-scoring by GATK. There were 1, 12, and 0 markers that were
monomorphic between the parents of CML373 · CML341, CML341 ·
CML277, and Tzi9 · CML258, respectively, which were called as het-
erozygotes in the hybrid (putative heterogeneity). There were 26, 52,
and 24 polymorphic SNPs between the corresponding parents that
were called as homozygotes in the hybrid. Among these SNPs, there
were 9, 41, and 10, respectively, that had a skewed SNV read depth
distribution in the hybrid (the minor SNV read depth proportion was
no greater than 6% of the total read count), despite amedian read depth
of 45· at these loci. For the other 17, 11, and 14 SNPs, where the minor
SNV read depth proportion was relatively high (minimum 31%) and
there were.10 reads for the minor SNV, the base-quality score at the
variant sites in many of the reads was too low to be considered in the
genotype call. Thus, considering these latter discrepancies as bona fide
inaccuracies in genotyping, along with the repeatability error rate, the
overall accuracy of GBS as applied in this study was estimated as 99.4%.

Surveying the same loci across GBS libraries
When working with population samples that are larger than the
multiplex size of our GBS design, we found that capturing the same
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SNP loci across independently constructed libraries was a challenge.
This is a critical issue for studies where imputation ofmissing data is not
anoptionorhasunacceptably lowaccuracy.Our initial protocol forGBS
used a single size selection step before PCR amplification and sequenc-
ing. Automated size selection (BluePippin; Sage Science, Inc.), with the
same type of gel cassette and under the same run settings, yielded
differences in the peak and range of the distributions of size-selected
fragments as high as 75 and 41 bp, respectively (Table S1). Introducing a
second size selection step after PCR minimized these differences to
38 and 36 bp, respectively (Table S1). Not surprisingly, libraries with
similar insert size ranges showed greater correspondence in scored
SNPs than those with dissimilar insert size ranges (Table S2). File S5
contains detailed descriptions of all supplemental files.

Read-based haplotyping using LocHap-GBS
Variant calling was performed on 276 samples that included four test
trios (each in duplicate), 23 parents of the maize NAM population,
and 234 F2 individuals derived from the CML373 · CML341 hybrid
(associated with one of the trios). After filtering, there were 29,706
biallelic SNPs (12· read depth) across 9667 digestion loci. In
LocHap-GBS, the loci where reads stack up and searches for phased
MNVs occur are referred to as windows. Currently, phasing in
LocHap-GBS is limited to two to three jointly heterozygous sites
(phasing of more heterozygous sites is under development). Be-
cause individuals may be heterozygous across more than three sites
within a window, LocHap-GBS automates the determination of
subwindows that are delineated based on the nearest sets of three
(or two) SNPs that are found to be jointly heterozygous in any one
individual in the vcf file. However, subwindows and outputted
MNVs can be derived from more than the SNP sites that define a
subwindow. This happens for SNPs within a subwindow that are
found only in the homozygous state across all individuals in the data
set, in which case MNVs can exceed a length of three nucleotides. As
an extreme example, subwindows would correspond to the original
windows for a set of inbred lines where each individual is homozy-
gous for every SNP, such that the length of MNVs would equal the
number of SNP sites within a window. Also, the calling routine

maintains all of the data in the vcf input such that some subwindows
may capture individual SNPs and the hcf output may contain a
mixture of MNPs and SNPs.

In the 9667 digestion loci with SNPs, 10,693 subwindows were
delineated that included 7749 MNPs and 2944 SNPs. The number of
SNPs within MNP subwindows ranged from 2 to 15, with �90% of
them having five or fewer SNPs. For MNPs, three subwindows con-
tained the observed maximum of 14 MNVs among individuals, while
91% of the subwindows had five or fewer MNVs. LocHap-GBS led to
a 3· reduction in the dimensionality of the genotype matrix and a 1.5·
increase in the median number of variants per locus (an increase from
two to three variants per locus).

The trios were used to confirm whether the MNP genotypes scored
by LocHap-GBS were valid. For each trio, subwindows were excluded if
they contained missing data, had inconsistent calls between replicate
samples, or contained heterozygous SNP genotypes in the parents. The
MNVs expected to be observed in the hybrid were determined directly
from the filtered SNP data on the parental lines (not by LocHap-GBS).
These were then compared to MNVs called by LocHap-GBS. Among
25,404 MNVs recorded for the parents of all trios (ignoring whether
MNVs were shared between trios), six were scored differently by
LocHap-GBS in the hybrids. All of these were associated with the
inaccurately scored genotypes noted previously.

When evaluating unique haplotype numbers for each subwindow,
wenoticed someMNPloci in thehybrids thathadmore thantwoMNVs,
which is not expected formaize given that it is diploid. Inspection of the
raw sequence data at these loci revealed no barcode swapping errors.
Examining the transmission of MNVs in the trios and F2 population
allowed us to rule out DNA cross-contamination and deduce that most,
if not all, of these corresponded to divergent paralogs in the sequenced
samples that collapsed onto a single locus from the B73 reference
genome; we refer to these as CNPs. For instance, a CML373 ·
CML341 F1 sample had 21 loci with three or four MNVs that were
consistent in replicate samples. For all of these loci, one or both of
the inbred parents had more than one MNV (this was determined
by maintaining heterozygous SNP genotypes in the inbred parents,
which were filtered when estimating accuracy above) that matched

Figure 2 Genomic distribution of NgoMIV-Csp6I loci and SNPs relative to genes in maize. (A) Nucleotide distance from each NgoMIV-Csp6I in
silico-digested locus to its nearest start codon in the genome (y-axis), relative to the genomic location of the Csp6I cut site (x-axis). Two categories
of percent PD are summarized: “unique” loci (.4%; gray points) are overplotted on “repetitive” loci (#4%; red points). (B) Proportional
distribution of all SNPs discovered in this study with respect to genome annotation categories (�60% fall within genes). (C) Distribution of the
distance between SNPs and the nearest start site of a gene (shown: 80% of all SNPs that were located within 5 kb of a start codon). Negative
values indicate SNPs upstream of the start site or 59-end of the gene. The distribution of in silico-digested 4PD loci is plotted as open black bars.
Proportions were computed separately for SNPs and in silico-digested loci, as a function of their respective totals. chr, chromosome; nt,
nucleotide; PD, percent distance; SNP, single nucleotide polymorphism
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each of the MNVs found in the hybrid. These same MNVs were
found in the F2 population, and tests of cosegregation indicated that
11 of them were genetically linked, but some of these loci included a
mixture of linked and unlinked MNVs (data not shown).

Under the assumption that loci with more than one MNV in an
inbred line represent CNPs, among the 23 inbred parents of the NAM
population therewas an average of 155 (2.0%) total CNPsper individual
(maximumof305CNPs forCML52).Thecumulativenumberof unique
CNPs was recorded with the addition of each inbred line inserted in
order of their estimated genetic distance fromB73 (Figure 3). There was
a median increase of 30 unique CNP-associated loci with exactly two
MNVs, culminating in a total of 1195 such loci among all of the lines
(Figure 3). This is an upper-bound estimate of the number of CNPs,
since CNPs are conflated with heterozygous loci in inbred lines. For a
lower-bound estimate, loci with more than two MNVs per line were
recorded, which showed an average of 2 (0.03%) total CNPs per line
(maximum of 8), a median increase of 2 CNPs with each additional line
added to the dataset, and a cumulative total of 41 unique CNPs. Taken
together, the estimated proportion of CNPs typed in this study among
the 23 parental lines of the NAMpopulation lies between 0.5 and 15.4%
(Figure 3). Excluding the reference line B73, the correlation between
genetic distance and number of unique CNPs per additional line was
not significantly different from zero for both classifications of CNPs.

Genetic diversity based on SNPs vs. MNPs
Results from the analysis of genetic diversity amongparents of theNAM
population were compared using SNP and MNP datasets. Excluding
CNP-associatedgenotypes (MNP2andMNP3datasets) fromtheMNP1
dataset showed no significant difference in the distribution of pairwise
genetic distances, and all three datasets were almost perfectly correlated
(r. 0.999; Mantel test: P = 0.001). Therefore, the following results are
reported only for the SNP and MNP1 datasets. Although the distance
matrices were significantly correlated (r = 0.890;Mantel test: P = 0.001),
the average pairwise distance for SNPs was lower than that for MNPs
(0.28 and 0.37, respectively) and the range in the distances was smaller
for SNPs (0.12) than for MNPs (0.20). Although the mean bootstrap
probabilities were essentially identical for the consensus trees based on
SNPs (79.3%) and MNPs (78.9%), the Robinson–Foulds distance be-
tween those trees was 12 (maximum possible distance was 40). Conse-
quently, MDSwithMNPs produced greater separation among the lines
(Figure 4A) and resulted in differences in their topology (Figure 4B; e.g.,
c.f. CML103, Ky21, and CML52).

DISCUSSION
Many implementations of GBS are not optimal for genotyping of
heterozygous individuals or populations with unknown parentage.
Imputation has proven successful on biparental families of recombinant
inbred lines, but falls short when applied to populations that have low
linkage disequilibrium (median imputation accuracy has been shown
to be between 15 and 80% for markers with a r2 , 0.3; He et al. 2015).
The few approaches that have been developed for genotyping hetero-
zygous populations use population-specific filters, and depend on re-
latedness among individuals to score genotypes or require targeted
sequencing to obtain read depths sufficient for calling heterozygotes
(Uitdewilligen et al. 2013; Gardner et al. 2014; Barba et al. 2014; Hyma
et al. 2015). HetMappS (Hyma et al. 2015) was developed specifically
for dense genetic maps, and markers are filtered based on expected
genotype ratios for pseudotest-crossmarkers. Thismethod was success-
ful at increasing marker density, but was designed for use in F1
populations only. Here, we have presented a GBS protocol and bio-
informatic pipeline that, at least for maize, produces highly accurate
genotype data on heterozygous individuals without requiring infor-
mation on parentage or family structure, nor imputation to obtain
high call rates on the typed SNPs or MNPs.

As discussed by Peterson et al. (2012), there is a balancing act in
deciding which enzymes and size selection windows should be used
when implementing GBS. In maize, which has been extensively ex-
plored for SNPs, where the enzyme ApeKI has been used routinely
for GBS, theNgoMIV-Csp6I enzyme combination provided an effective
means for accurate genotyping that led to the discovery of many new
SNPs. Assuming there is a 50% chance of sequencing each allele at a
biallelic marker, a minimum read depth of 12· predicts that the bi-
nomial probability of sequencing each allele at least twice is. 99.6%. In
this study, accuracy was estimated experimentally using parent–hybrid
trios to be.99.4% (Table 1), which fits closely to the expected sampling
probability. Compared to an existing catalog of 52; 340; 265 SNPs
(Ganal et al. 2011; Chia et al. 2012) identified among diverse individuals
of maize that included all but four of the ones used here (excluding:
CML10, CML258, CML373, and Tzi9), this study discovered�100,000
new SNPs that comprised nearly two-thirds of the total SNPs found.
These were enriched near genes, which was in part due to the distribu-
tion of 4PD loci, but may also be attributed to patterns in methylation:
NgoMIV is averse to the CpG methylation that is predominant in the
intergenic repeat space of the maize genome (Antequera and Bird
1988). Enrichment of the typed loci around the start codon of genes

n Table 1 Assessment of typing accuracy for GBS

Description CML373 · CML342 CML341 · CML277 Tzi9 · CML258

A Biallelic SNPs 29,706 29,706 29,706
B Not missing in trio 26,216 24,819 21,927
C Consistent across replicates 26,114 24,729 21,878
D Genotyping error: 1 2 (C / B) 0.004 0.004 0.002
E Not heterozygous in either parent 25,811 24,420 21,555
F Called accurately for SNPs in E 25,784 24,356 21,531
G Genotype accuracy: F / E 0.999 0.997 0.999
H Polymorphic between parents 5698 5004 5373
I Called accurately for loci in H 5672 4952 5349
J Heterozygote genotype accuracy: I / H 0.995 0.990 0.996
K Not called as heterozygote for H: H 2 I 26 52 24
L Low minor allele depth in K 9 41 10
M Approximately equal allele depth in K 17 11 14
N Adjusted genotype accuracy: G 2 D 0.995 0.994 0.997

SNP, single nucleotide polymorphism.
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(Figure 2C) might be because the starts of monocot genes are
GC-rich (Glémin et al. 2015) and NgoMIV recognizes a GC-rich
recognition site.

With the decline in cost for HTS, there is growing opportunity to
apply GBS to thousands of samples for genetic studies. Sequencing the
same lociwithinandacross separateGBS libraries is required for this, but
whether the same loci are sequencedhas not been examinedmuch in the
literature (we are aware of one exception: DaCosta and Sorenson 2014),
perhaps because GBS studies tend to rely on imputation of missing
data. It has been reasoned that size selection would play an important
role in sequencing shared loci (Ali et al. 2016). Peterson et al. (2012)
showed that narrower size selection windows increased the sequencing
depth of shared loci in a library. As a cautionary note, some size
selection windows may contain an abundance of repetitive loci (e.g.,
Figure S1). Here, we addressed the issue of sampling shared loci across
different libraries, reaching the conclusion that two size selection steps
were needed to maximize the number of shared loci sequenced. Im-
portantly, our results led us to the realization that the standard
Y-adapters used for HTS libraries may form structures that migrate
slower than fully dsDNA in dye-free agarose gels. This can lead to
inconsistent size selection when using automated size selection instru-
mentation (S. Hoda, Sage Science, Inc., personal communication). Be-
cause of the inconsistency in the size selection of libraries with
Y-adaptors, we had to reduce the pre-PCR size selection window and
introduce a post-PCR size selection on the dsDNA created by PCR
amplification. This minimized the variation in size selection between
libraries and maximized the recovery of shared GBS loci.

This study expands the usefulness of GBS data, allowing for phased
genotyping of MNPs, which enhances the information available for
genetic studies. For example, founder haplotypes that are resolved for
multi-parental populations can be used to impute missing data in the
progeny (Gatti et al. 2014) or to initialize imputation (Davies et al.
2016). Also, the use of haplotypes may prove useful in uncovering
regions associated with adaptive traits in both model and nonmodel
species (Lorenz et al. 2010). The extension of LocHap for GBS was
developed as a new tool for phased genotyping using standard file
formats produced by most mapping and variant calling software.
LocHap-GBS may be advantageous over other current tools capable
of scoring haplotypes, such as STACKS and Haplotag, in that sta-
tistically vetted MNVs can be scored by LocHap-GBS on individuals
without population filters only definable for specific types of sam-
ples. However, LocHap-GBS may not be readily integrated by tools
that use customized data formats, though the algorithm developed
for local haplotyping could be (Sengupta et al. 2015). Finally, the
software GATK used to score SNPs can also generate phased geno-
types (McKenna et al. 2010). RedRep (Figure 1) was developed using
the GATK UnifiedGenotyper, which does not have MNP phasing
functionality (GATK HaplotypeCaller does). We have not experi-
mented with the current phasing tool of GATK, but we note some
unique features of LocHap-GBS. It uses a distinct algorithm for iden-
tifying MNVs, can be run independently with standard input files,
reports phased genotypes in a different format (which we consider
more appropriate for direct downstream analysis), and can score more
than two haplotypes at a locus; this led to our finding of CNPs inmaize.

Figure 3 CNP-associated loci in the NAM inbred
parents. From left-to-right, each bar indicates the
cumulative number of unique CNPs (loci containing
more than one MNV) in each individual compared to its
preceding set of lines, with the lines ordered by their
MNP1-based genetic distance from B73. The gray
portion of the bar is the number of loci that had exactly
two MNVs and the orange portion of the bar is the
number of loci that had more than two MNVs. CNP,
copy number polymorphism; MNP, multi-nucleotide
polymorphism; MNV, multi-nucleotide variant; NAM,
nested association mapping.

Figure 4 Analysis of genetic diversity with SNP and MNP
data. (A) MDS plots based on shared allele distance for
SNP (top) and MNP1 (bottom) data on 23 maize inbred
lines. (B) Corresponding BIONJ trees (branches trans-
formed to equal lengths). Colors represent previously
assigned population structure (Liu et al. 2003). MDS,
multi-dimensional scaling; MNP, multi-nucleotide poly-
morphism; SNP, single nucleotide polymorphism.
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Phasedgenotypedata,whiledecreasing themarkerdimensionalityof
the genotype matrix, was more informative than SNP data. Previously
characterized lines of maize were more differentiated and showed some
differences in relatednesswhenanalyzedusingMNPscompared toSNPs
(Figure 4). In addition, phased-GBS revealed CNPs that were validated
by genetic transmission yet undetectable in the underlying SNP data.
These can be explained as divergent paralogs within the sample ge-
nomes that are present as only one copy in the reference genome.
Because the SNP data were filtered to examine only 4PD loci, it seems
unlikely that the CNPs were a result of mapping to sequences that have
been collapsed in the assembly of the B73 reference genome, but this is a
possibility that could result in reproducibly inaccurateCNPs. Neverthe-
less, having included B73 in our set of sequenced individuals, which is
the same line used to sequence the reference genome, we determined
that our B73 sample harbored no GBS loci with more than two MNVs,
while other inbred lines did (Figure 3). However, there were nearly
100 GBS loci that were heterozygous in the B73 sample. These may
be attributed to residual heterozygosity in the line, errors in the
assembly, or CNPs that had arisen during seed increases of the stock.
Inspecting the genomic distribution of these loci showed no pattern
of clustering, as one might expect for residual heterozygosity, sug-
gesting one or both of the latter two explanations.

Althoughour studywas not designed for CNPdiscovery, it led to the
identification of at least 41 CNP-associated loci (potentially �1000)
among 23 inbred lines of maize. The average read depth at CNP-
associated loci was 77, which was about the average read depth of non-
CNP associated loci. However, the read depth range for CNP-associated
loci was 1480 (max: 1492 reads) compared to 755 for non-CNP associated
loci (max: 767 reads), which is expected if there are multiple paralogous
loci mapping to the same place in the reference genome. Moreover,
despite an average depth of sequence coverage that gives a high likeli-
hood for detecting at least 10 CNVs, nomore than four CNVs at a locus
were found within an individual. There was no relationship between
genome-wide estimates of genetic distance and the number of unique
CNP-associated loci (Figure 3), suggesting the evolution of these puta-
tive CNPs may be different from SNPs and MNPs. This study demon-
strates the potential of extending GBS for phased genotyping. As
applications of GBS expand beyond biparental mapping popula-
tions, we foresee numerous benefits to typingMNPs by phased-GBS.
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