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Introduction
Systemic lupus erythematosus (SLE) is a systemic autoimmune 
disease characterized by multiorgan involvement and tissue dam-
age.1 Although SLE is traditionally recognized as a B-cell-driven 
disease manifested by production of autoantibodies,2 contribu-
tions of T-cells and other immune cell types have also been 
described in SLE.3 A better understanding of the contributions 
of various immune cell types to SLE pathogenesis may aid in 
the development of better therapeutic regimens targeting cell-
type-specific molecular mechanisms of SLE.1

Sequencing technologies are rapidly establishing their 
niche in clinical practice.4 The microarray revolution led to 
the adoption of RNA-seq as a useful tool for assessing an indi-
vidual patient’s gene expression profile.5,6 However, clinical 
samples are often derived from peripheral blood or other het-
erogeneous tissues containing mixed populations of cells. Such 

heterogeneity makes it difficult to compare gene expression 
profiles between samples. Therefore, gene expression analysis 
requires methods that account for cell-type heterogeneity.7–9

Statistical methods developed with the advent of micro
array technologies allow extraction of cell-type-specific expres-
sion profiles from a gene expression matrix obtained from 
heterogeneous tissues.10 The methods for estimating cell-type-
specific gene expression generally use one of three measures: (1) 
sample-specific cell proportions7,9; (2) gene expression profiles 
thought to uniquely define cell types, called cell signatures3,11; 
or (3) inherent properties of heterogeneous gene expression 
mixtures,10 reviewed in Ref. 8  While the second and third 
approaches are highly dependent on the prerequisites, the 
use of the sample-specific cell proportions together with the 
sample-specific gene expression data is a viable approach for  
the cell-type-specific differential expression analysis, as both 
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measures are biologically linked. The use of cell proportions 
is especially applicable to clinical practice, where complete 
blood cell counts are routinely collected and can readily be 
combined with the same patient’s heterogeneous gene expres-
sion data obtained from peripheral blood using microarray 
or RNA-seq.

One of the goals of cell-type-specific gene expression 
analysis is to be able to identify cell-type-specific gene expres-
sion differences in heterogeneous gene expression measures. 
Among other applications, this ability could assist in diag-
nosis or help monitor responses to treatment.3 To date, two 
methods have been developed for cell-type-specific differ-
ential gene expression analysis of microarrays using cell pro-
portions: csSAM7 and DSection.9 While csSAM uses linear 
regression to estimate cell-type-specific gene expression using 
heterogeneous gene expression measures and cell proportions, 
the DSection method uses a Bayesian approach, which incor-
porates uncertainty in the initial proportions into estimating 
cell-type-specific differentially expressed genes. Well tested in 
microarray settings, application of such approaches to omics 
data, such as gene expression data obtained using RNA-seq, 
remains less explored.

This study was designed to apply methods for cell-type-
specific differential gene expression analysis to experimentally 
obtained RNA-seq data and cell proportions to better under-
stand the functional significance of cell-type-specific gene 
expression differences in matched cohorts of European derived 
healthy female subjects and patients diagnosed with SLE. We 
compared the results of cell-type-specific differential expression 
analysis using csSAM and DSection methods as well as the 
results of non-cell-type-specific differential expression analy-
sis using several established methods for differential expression 
analysis in RNA-seq data.12–16 At each step, we validated the 
results of the analysis of experimentally obtained RNA-seq data 
by comparing them with the analyses of a simulated dataset 
generated using negative binomial (NB) distribution14,17,18 to 
capture the properties of experimental data. Finally, we provide 
a brief biological overview of the molecular mechanisms altered 
by cell-type-specific differentially expressed genes in SLE.

Methods
Study population. Experiments were performed in 

accordance with the Declaration of Helsinki and approved 
by the Institutional Review Board (IRB) of the Oklahoma 
Medical Research Foundation. Written informed consent was 
obtained from all subjects upon enrollment under protocols 
approved by the IRB of the Oklahoma Medical Research 
Foundation. The study population included 10 SLE patients, 
defined based on the presence of $4  ACR criteria, and 10 
unrelated, unaffected healthy controls. All participants were 
European American females. The median age at enrollment 
was 41.5 years for controls and 40.5 years for SLE patients. 
The median SLE disease activity index score for SLE patients 
at enrollment was 4, with a range of 0–6.

RNA-seq data. Briefly, peripheral blood was drawn by 
venipuncture into PAXgene tubes (BD Diagnostics), and 
RNA was isolated using standard protocols (Qiagen, Inc.). 
Globin transcripts were removed using GLOBINclear™ kit 
(Life Technologies), and samples were prepared for sequencing 
using the Encore complete kit (NuGEN). Paired-end sequenc-
ing of 100-bp reads was performed using the Illumina HiSeq 
2000 by standard procedures. The quality of sequencing data 
was checked using the FastQC v0.11.2 tool (Supplementary 
Table  7); sequencing adapters were removed using Trimmo-
matic v0.33.19 Short reads were aligned to the GRCh38/hg38 
human genome assembly using TopHat v2.0.9.20 A matrix of 
raw counts per gene was assembled using htseq-count21 and 
Homo_sapiens.GRCh38.80.gtf gene models obtained from 
the Ensembl web site. A matrix of quartile-normalized frag-
ments per kilobase of exons per million reads mapped (FPKM) 
counts was calculated using the cuffnorm v2.2.1 tool.20 To filter 
out low expressed signals, as recommended by several method 
comparison studies,14,22–24 genes having zero FPKM expression 
in at least one sample were removed, keeping 18,697 expressed 
genes out of 65,217 total gene models.

Cell proportions data. The patient-specific cell propor-
tions of four cell types, neutrophils, monocytes, T-cells, and 
B-cells, were obtained by immune phenotyping using flow 
cytometry. Peripheral blood was collected by venipuncture with 
EDTA as the anticoagulant, during the same draw used for 
RNA-seq analysis. Blood was layered over 1:1 Polymorphprep® 
(Accurate Chemical and Scientific Corporation) (1:1) and cen-
trifuged at 650 g for 35 minutes without brakes. The plasma 
was drawn off, and the different layers of cells (mononuclear 
cells and polymorphonuclear leukocytes) were collected. Flow 
staining was carried out on each layer of cells using the fol-
lowing panel of markers: CD16-FITC (BD Pharmingen), 
CD19 PE (eBioscience, Inc.), CD14 PerCP (BD Biosciences), 
CD4 Pacific Blue (BD Biosciences), CD3 V500 (BD Biosci-
ences), and CD8 Qdot605 (Invitrogen). The cells were read 
on an Attune bench top flow cytometer (Life Technologies). 
Analysis of data was carried out using FlowJo.

The number of T-cells, monocytes, neutrophils, and 
B-cell events was obtained from the FlowJo analysis. Cell-
type proportions for each cell type were calculated by divid-
ing the number of cell-type-specific events by the sum of the 
T-cells, monocytes, neutrophils, and B-cell events.

Detecting differential expression in the heterogeneous 
gene expression matrix. To detect non-cell-type-specific gene 
expression, we utilized several extensively benchmarked22–25 
software packages that employ different strategies for detecting 
differentially expressed genes from the matrix of raw counts.

The DESeq2  method13 (v 1.8.1 R package) uses a NB 
model to model the variability of raw counts and Fisher’s 
exact test to estimate differences between the conditions. The 
default settings were used.

The edgeR14 method (v 3.10.2) also models data variability 
using NB distribution, applies empirical Bayes method to 
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moderate the degree of overdispersion across genes, and deter-
mines differential expression using Fisher’s exact test. The 
counts were normalized by the trimmed means of M values 
(TMM),26 and the default settings were used to perform clas-
sical and general linear model (GLM)-based analyses.

The Limma16 approach (v 3.24.15) is based on linear mod-
eling. Originally designed for the analysis of microarray data, 
it has been extended to the analysis of RNA-seq data in the 
form of normalized log2-transformed counts. Limma was used 
in conjunction with voom,27 which weighs the mean–variance 
relationship of the log-counts, needed for accurate modeling. 
The default settings as well as sample quality weights were used 
for the analysis.

The significance analysis of microarray (SAM) method, 
implemented using samr v2.0 R package, is a nonparametric 
method based on Wilcoxon rank statistic and a resampling 
procedure to account for different sequencing depths. The 
resp.type = “Two class unpaired” setting was used to com-
pare heterogeneous gene expression between SLE patients 
and healthy controls. The assay.type  =  “seq” setting was 
used to detect differential expression using the matrix of 
raw counts.

The NOISeq15,18 method (v 2.14.0) is another nonpara-
metric method designed to handle small sample size and 
genes with low expression level by modeling the noise distri-
bution and contrasting fold change and absolute expression 
differences. The counts were normalized by TMM,26 and the 
default settings were used.

Overlap among gene lists identified by different methods 
was identified using Venny tool.28

Detecting cell-type-specific differential expression. 
To detect genes differentially expressed in specific cell types, 
we employed two methods, csSAM7 and DSection,9 imple-
mented in the CellMix8 v 1.6.2 R package. As both methods 
do not apply any type of normalization methods to the raw 
gene expression counts, we utilized the FPKM method29,30 to 
normalize counts to gene length.

Multiple testing correction. Throughout the study, we 
used statistical measures adjusted for multiple testing. As dif-
ferent packages use specific metrics for reporting them, the 
results they provide should be interpreted accordingly. The 
DESeq2,13 DSection,9 Limma,16 and edgeR14 packages report 
Benjamini–Hochberg (BH)-adjusted P-values,31 while csSAM 
outputs false discovery rate (FDR)32 and SAM reports FDR in 
a form of q-values.33

Owing to the limited size of our cohort, we often used 
less significant cutoffs for measures corrected for multiple test-
ing, at risk of selecting less reliable signals. Our rationale for 
this was that the downstream functional enrichment analysis 
would prioritize biologically relevant signal even in the pres-
ence of noise, or fail to identify functional enrichments if the 
noise level is too high. Thus, our reported gene lists should be 
considered as a proxy to identify and compare functional pro-
cesses represented by them.

Simulated dataset of gene expression. Although all 
methods used in our study report significance measures 
corrected for multiple testing, we performed parallel analyses 
using a simulated gene expression dataset. Using the matrix 
of experimentally obtained FPKM measures, we simulated 
gene-specific expression using NB distribution.14,15,17,18 
The matrix of cell proportions was simulated by random-
izing the patient-specific proportions. This approach 
randomizes the order, ie, biological measures, of the pro-
portions while keeping the total proportions at 100%. The 
vector of sample assignment to either healthy controls or 
SLE patients was permuted. In summary, these approaches 
allow preserving statistical properties of the experimen-
tal RNA-seq and cell proportion datasets while removing 
biological relationships.34

Functional enrichment analysis. Gene-centric func-
tional and canonical pathway enrichment analyses were 
performed using the ToppGene Suite.35 Gene symbols were 
supplied for the analysis.

Implementation and availability. All RNA-seq data  
processing steps were performed in CentOS 6.6 high-
performance cluster computing environment. All analyses 
were conducted in R/Bioconductor environment v 3.2.0.36,37 
All analytical scripts are available at https://github.com/
mdozmorov/deconvolution.

Results
Cell proportions of CD3+ T-cells, monocytes, neutro-

phils, and B-cells are stable between healthy controls and 
SLE patients. To assess whether the proportions of cell types 
(Supplementary Table 1) were significantly different in SLE, 
we used the Wilcoxon test to compare proportions of cell types 
between healthy controls and SLE patients. Although SLE 
patients showed slight increases in the average proportions of 
CD3+ T- and B-cells, concurrent with decreases in the pro-
portions of monocytes and neutrophils, these differences were 
not statistically significant between SLE patients and healthy 
controls (Table 1) in the limited number of subjects tested in 
this study.

Detection of differentially expressed genes is limited 
in heterogeneous cell populations. In order to identify genes 
differentially expressed in whole peripheral blood from SLE 
patients as compared with healthy controls, we quantified 
gene expression as raw counts (Supplementary Table 2A) and 
as counts normalized to gene length (FPKM; Supplementary 
Table 2B). The number of raw counts ranged from 0 to 17 for 
the first to third quantiles, while some genes, such as hemo-
globin beta (HBB), had up to one million counts. The FPKM 
gene expression values ranged from 0 to 24.21 FPKM for 
the first to third quartiles, with several outliers, such as beta-
2-microglobulin (B2M), expressing up to 17,330.00 FPKM 
(Supplementary Fig.  1). These observations illustrate a wide 
dynamic range of average expression and variability of both 
raw counts and FPKM measures in the heterogeneous gene 
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expression data, suggesting potential difficulties in detecting 
differentially expressed genes.

We applied several methods for detecting differentially 
expressed genes in RNA-seq data, keeping FDR ,25% or 
nonadjusted P-values ,0.01. Both classical and GLM-based 
edgeR analyses identified nearly overlapping lists of differen-
tially expressed genes, with 154 genes detected by both meth-
ods (Supplementary Table  3A and B). The Limma–Voom 
approach with and without using sample weights identified 
163 and 125 differentially expressed genes, respectively, with 
94  genes being detected by both methods (Supplementary 
Table 3C and D). Only 10 genes were detected by the NOISeq 

method (Supplementary Table  3E), while only four and one 
genes were detected by SAM and DESeq2 methods (Supple-
mentary Table 3F and G, respectively). These results highlight 
the fact that the selection of data analysis tools markedly affects 
the outcome of the analysis.24

To identify potential functions affected by differentially 
expressed genes, we evaluated the intersection of gene lists iden-
tified by different methods.24 A total of 55 genes were detected 
by at least two methods (Fig. 1 and Supplementary Table 3H). 
Although we observed several immune system-related genes, eg, 
interferon-induced protein 44 (IFI44), these genes did not show 
any statistically significant functional enrichments (data not 
shown). These results further stress difficulty in detecting dif-
ferentially expressed genes in heterogeneous cell populations.

csSAM method detects cell-type-specific differential 
gene expression in B-cells and monocytes. To define dif-
ferentially expressed genes in specific cell types, we applied 
the csSAM method to the matrices of FPKM measures and 
cell-type proportions. Owing to the limited cohort size, the 
detection of cell-type-specific differentially expressed genes 
was underpowered. Therefore, instead of focusing on the most 
significant genes, we used minimally calculated significance 
thresholds and focused on comparing functional processes rep-
resented by cell-type-specific differentially expressed genes.

Expectedly, csSAM did not detect differentially expressed 
genes in heterogeneous cell populations (Fig.  2). However, 

Figure 1. Overlap among lists of differentially expressed genes detected in heterogeneous dataset using different methods. Limma and edgeR lists 
represent genes detected independent of method-specific settings, eg, Limma genes were detected using both default settings and sample weights 
(Supplementary Table 3).

Table 1. Experimentally obtained cell proportions and the difference 
in cell proportions between healthy controls and SLE cases. 
Control/case cells contain average cell proportions per cell type ± 
standard deviation. Difference cells contain % change in average 
cell proportions between cases and controls and, in parentheses, 
Wilcoxon P-value of the differences.

Controls Cases Difference

CD3+ Tcells 61.19% ± 8.34 64.07% ± 14.85 2.88% (0.48)

Monocytes 13.67% ± 9.75 10.98% ± 7.49 −2.70% (0.58)

Neutrophils 9.51% ± 3.45 6.97% ± 4.42 −2.53% (0.22)

Bcells 15.63% ± 3.10 17.99% ± 11.70 2.35% (0.68)
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68  genes were detected as differentially expressed in B-cells at 
FDR ranging from 0.35 to 0.48 (Supplementary Table  4A). 
In addition, 800 genes were detected as differentially expressed 
in monocytes at FDR ranging from 0.66 to 0.67 (Supplemen-
tary Table 4B). As a negative control, we applied csSAM to the 
simulated dataset of random gene expression measures and did 
not observe any cell-type-specific differentially expressed genes 
(Supplementary Fig. 2). We noted that the cell-type-specific dif-
ferentially expressed genes were highly expressed (average expres-
sion level 83.55 FPKM), as compared with 35.29 FPKM average 
expression level of all genes (P-value = 2.09E–14, Wilcoxon test). 
These results suggest that highly expressed B-cell-specific and, 
potentially, monocyte-specific differentially expressed genes can be 
detected from heterogeneous gene expression in SLE population.

DSection method confirms B-cell- and monocyte-
specific gene expression signatures. In order to corroborate 
the cell-type-specific differentially expressed genes, we 
applied the DSection method to the FPKM data and 

cell-type proportions. This method identified 7 B-cell-specific 
differentially expressed genes, 15 neutrophil-specific genes, 
and 28 monocyte-specific genes (Supplementary Table 4C–E). 
Using the simulated dataset, between zero and three cell-type-
specific differentially expressed genes were identified. These 
observations further strengthen the role of gene expression 
differences in B-cells and monocytes in SLE.

B-cell-specific differentially expressed genes in SLE 
influence antigen binding and the adaptive immune response. 
The seven B-cell-specific differentially expressed genes identi-
fied by the DSection method did not overlap with the list of 
genes identified by the csSAM method. Yet, both lists included 
genes relevant to SLE, including those encoding major his-
tocompatibility complex class I types A, C, and F. Therefore, 
although the DSection and csSAM methods were underpow-
ered to detect overlapping gene lists, they may have identified 
different parts of the same molecular mechanisms affected by 
B-cell-specific differentially expressed genes in SLE.
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Figure 2. Cell-type-specific differential expression analysis results using csSAM. Each graph shows the dependence between the number of differentially 
expressed genes (X-axis) and FDR (Y-axis), eg, 68 genes can be detected as differentially expressed in B-cells of SLE patients at FDR ,0.5. (A) SAM 
analysis of differentially expressed genes in heterogeneous matrix; (B) CD3+ T-cell-specific differential expression analysis; (C) monocyte-specific 
differential expression analysis; (D) neutrophil-specific differential expression analysis; and (E) B-cell-specific differential expression analysis.
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To test this hypothesis, we performed separate functional 
enrichment analyses of the two lists using the ToppGene 
Suite.35 Expectedly, genes in both lists were similarly enriched 
for several functional categories, including antigen binding 
(p.adjcsSAM = 2.23E–6, p.adjDSection = 5.89E–5), lymphocyte mediated 
immunity (p.adjcsSAM = 1.96E–4, p.adjDSection = 8.04E–6), adap-
tive immune response (p.adjcsSAM  =  2.10E–4, p.adjDSection  =  
6.57E–6), and others. These results are consistent with the 
hypothesis that the csSAM and DSection methods identified 
different genetic components of the same functional mechanisms 
altered by B-cell-specific differentially expressed genes in SLE.

To better understand the mechanisms altered by B-cell-
specific differentially expressed genes in SLE, we performed 
a combined functional enrichment analysis of differentially 
expressed genes identified by csSAM and DSection. The com-
bined list was enriched in a set of processes similar to those 
enriched in the individual lists (Table 2). A set of 19 genes 
from the immunoglobulins gene family (p.adj  =  4.72E–14) 
was enriched in a variety of immune-related processes, rang-
ing from antigen binding (p.adj  =  1.08E–10) and trans-
porter associated with antigen processing (TAP) binding 
(p.adj = 1.23E–4) to immunoregulatory interactions between 
a lymphoid and a non-lymphoid cell Reactome pathway 
(p.adj = 3.28E–8; Table 2 and Supplementary Table 5). These 
results outline immunological processes altered by B-cell- 
specific differentially expressed genes in SLE.

Monocyte-specific differentially expressed genes com-
prise a ribosomal signature in SLE. The csSAM and DSection 
methods identified vastly different numbers of differentially 
expressed monocyte-specific genes (800 and 28, respectively). 
Twenty-four genes were detected by both methods. For rea-
sons previously described,22 we focused our subsequent func-
tional enrichment analysis on the 24 monocyte-specific genes 
identified by both methods. A total of 16 of the 24 monocyte- 
specific differentially expressed genes encoded ribosomal 
proteins. They were nearly exclusively enriched in ribosome-
related functions, such as structural constituent of ribosome 
(p.adj = 2.71E–26), translational elongation (p.adj = 1.26E–
29), and the like processes (Supplementary Table  6). These 
results suggest that the well-known altered ribosomal signa-
ture in SLE38 may be monocyte specific.

Neutrophil-specific differentially expressed genes in 
SLE show no functional enrichments. While the DSection 
method identified 15 genes as differentially expressed in neu-
trophils (Supplementary Table  4D), the csSAM method did 
not identify neutrophil-specific gene expression differences 
(Fig. 1). To test whether the DSection method was able to detect 
additional molecular mechanisms driven by neutrophil-specific 
differentially expressed genes in SLE, we performed functional 
enrichment analysis of these genes. Surprisingly, we did not 
observe any functional enrichment of the neutrophil-specific 
differentially expressed genes (data not shown). Combined 
with the lack of neutrophil-specific differences identified by 
the csSAM method, these results suggest a relatively minor 

contribution of neutrophil-specific differentially expressed 
genes to the pathogenesis of SLE in the cohort tested.

Discussion
We performed cell-type-specific differential gene expression 
analysis, implemented by the csSAM and DSection methods, 
to characterize the functional significance of cell-type-specific 
gene expression differences in SLE. Both csSAM and DSection 
methods were able to identify B-cell- and monocyte-specific 
genes differentially expressed in SLE. The B-cell-specific 
functional signature included immunoglobulins and major 
histocompatibility complex genes, enriched in antigen bind-
ing molecular function. In contrast, the monocyte-specific 
functional signature comprised ribosomal genes enriched in 
ribosomal-related functions, such as translational elongation. In 
summary, our results suggest that cell-type-specific differential 
gene expression analysis may provide additional insights into 
the cell-type specificity of gene expression changes in SLE.

The main limitation of the current study is its small sam-
ple size. Although some software methods, such as edgeR14 
and NOISeq,15,18 have been specifically designed to deal with 
minimal or no replicates, the majority of the studies agree 
on the need for increasing the number of samples to improve 
detection power of differentially expressed genes.23,25

Despite insufficient sample size, analysis of the heterogeneous 
gene expression matrix was able to identify several genes previously 
associated with SLE activity and autoantibody production, such as 
genes encoding MER receptor tyrosine kinase and CD163, IRF2, 
IL1R2, and IFI44. For example, ribosomal RNA genes are dif-
ferentially methylated and differentially expressed in monozygotic 
twins who are discordant for SLE.39 In addition, levels of CD163 
and soluble MER receptor tyrosine kinase correlate with mono-
cyte/macrophage activation, autoantibody specificities, and disease 
activity.40 IRF2, part of the interferon regulatory pathway, contains 
two SLE-associated single nucleotide polymorphisms that increase 
IRF2 transcription upon interferon stimulation.41 Whole-genome 
methylation analysis has identified associations between ILIR2 pro-
moter hypomethylation and SLE risk as well as disease activity.42 
Finally, the interferon-inducible gene IFI44 is known to be associ-
ated with the type I interferon signature in lupus, which in turn 
correlates with levels of anti-RNA binding protein autoantibod-
ies.43 Therefore, the functional enrichments observed here support 
previous studies, implicating ribosomal genes, immunoglobulins, 
and major histocompatibility complex genes in SLE pathogenesis.

Although we expected to detect cell-type-specific dif-
ferentially expressed genes across the whole range of average 
gene expression levels, our results appeared biased toward 
detecting cell-type-specific differential expression of highly 
expressed genes. Thus, many important genes with lower 
expression, such as those encoding transcription factors44 or 
noncoding transcripts,45 may have been missed. For exam-
ple, a recent study demonstrated dysregulation of interferon 
signature genes in the neutrophils of lupus patients, but no 
neutrophil-specific functional enrichment was observed in the 
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Table 2. Top functional categories enriched in B-cell-specific differential expressed genes in SLE. Category – category name; ID – function-
specific ID; description – name of a function; gene counts – number of differentially expressed genes enriched in a function; q-value – significant 
P-value corrected for multiple testing.

Category ID Description Gene 
Counts

Gene Names q-value

GO: Molecular 
function

GO:0003823 Antigen binding 10 HLA-A, HLA-C, IGHA1, IGHG1, IGKC,  
HLA-F, IGLC1, IGLC2, IGKV4-1, IGKV3-20

1.08E-10

GO:0046977 TAP binding 3 HLA-A, HLA-C, HLA-F 1.23E-04

GO:0005506 Iron ion binding 6 FECH, LTF, LCN2, SNCA, HBA2, HBM 1.10E-03

GO:0031720 Haptoglobin binding 2 HBA1, HBA2 1.83E-03

GO:0070051 Fibrinogen binding 2 ITGA2B, ITGB3 2.92E-03

GO: Biological 
process

GO:0002449 Lymphocyte mediated immunity 11 HLA-A, HLA-C, IGHG1, B2M, IGKC, HLA-F, 
HPX, IGLC1, IGLC2, IGKV4-1, IGKV3-20

1.27E-07

GO:0002460 Adaptive immune response based 
on somatic recombination of 
immune receptors built from immu-
noglobulin superfamily domains

11 HLA-A, HLA-C, IGHG1, B2M, IGKC, HLA-F, 
HPX, IGLC1, IGLC2, IGKV4-1, IGKV3-20

1.27E-07

GO:0006959 Humoral immune response 10 DEFA4, IGHA1, IGHG1, IGKC, HPX, IGLC1, 
IGLC2, LTF, IGKV4-1, IGKV3-20

1.27E-07

GO:0002250 Adaptive immune response 11 HLA-A, HLA-C, IGHG1, B2M, IGKC, HLA-F, 
HPX, IGLC1, IGLC2, IGKV4-1, IGKV3-20

3.65E-07

GO:0002443 Leukocyte mediated immunity 11 HLA-A, HLA-C, IGHG1, B2M, IGKC, HLA-F, 
HPX, IGLC1, IGLC2, IGKV4-1, IGKV3-20

3.65E-07

Human 
phenotype

HP:0010973 Abnormality of erythroid lineage cell 12 GLRX5, BPGM, HLA-A, FECH, GPX1, 
CYB5R3, ALAS2, ITGA2B, HBA1, HBA2, 
ITGB3, SLC4A1

2.60E-06

HP:0001877 Abnormality of erythrocytes 12 GLRX5, BPGM, HLA-A, FECH, GPX1, 
CYB5R3, ALAS2, ITGA2B, HBA1, HBA2, 
ITGB3, SLC4A1

2.60E-06

HP:0001903 Anemia 11 GLRX5, BPGM, HLA-A, FECH, GPX1, ALAS2, 
ITGA2B, HBA1, HBA2, ITGB3, SLC4A1

8.96E-06

HP:0001930 Nonspherocytic hemolytic anemia 3 BPGM, HBA1, HBA2 3.37E-04

HP:0001878 Hemolytic anemia 6 BPGM, FECH, GPX1, HBA1, HBA2, 
SLC4A1

3.37E-04

Pathway 771600 Scavenging of Heme from Plasma 9 IGHA1, IGKC, HPX, IGLC1, IGLC2, HBA1, 
HBA2, IGKV4-1, IGKV3-20

3.96E-12

771599 Binding and Uptake of Ligands by 
Scavenger Receptors

10 SPARC, IGHA1, IGKC, HPX, IGLC1, IGLC2, 
HBA1, HBA2, IGKV4-1, IGKV3–20

1.53E-11

106413 Immunoregulatory interactions 
between a Lymphoid and a non-
Lymphoid cell

9 HLA-A, HLA-C, B2M, IGKC, HLA-F, IGLC1, 
IGLC2, IGKV4-1, IGKV3-20

3.28E-08

M19553 Hemoglobin’s Chaperone 5 FECH, ALAS2, HBA1, HBA2, AHSP 1.43E-07

106409 Classical antibody-mediated com-
plement activation

6 IGHG1, IGKC, IGLC1, IGLC2, IGKV4-1, 
IGKV3-20

1.43E-07

Gene family IG Immunoglobulins 19 IGLV3-10, IGKV1-17, IGKV1-6, IGLV1-44, 
IGHV3-15, IGHV3-7, IGHA1, IGHV1-69-2, 
IGHG1, IGKC, IGLC1, IGKV2D-29, IGLC2, 
IGHV5-51, IGLV6-57, IGKV4-1, IGKV3-20, 
IGLV3-21, IGLV3-19

4.72E-14

HLA Histocompatibility complex genes 3 HLA-A, HLA-C, HLA-F 3.72E-03

MARCH Membrane-associated ring fingers 2 MARCH8, MARCH2 3.72E-03

CD CD molecules 5 GYPC, CD24, ADGRE2, ITGB3, SLC4A1 2.30E-02

 

present study.46 Furthermore, we noted relatively poor overlap 
between the results produced by both csSAM and DSection 
methods. However, the complementary functional enrichment 
analysis results suggest that both methods were able to capture 

parts of the same molecular mechanisms altered in SLE by 
cell-type-specific SLE gene signatures. The bias toward highly 
expressed genes and differences in the detection of cell-type-
specific differentially expressed genes can be attributed to the 
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need for a larger sample size and/or increased variability in cell 
proportions, which would be expected to have a positive effect 
on linear regression. Our future work will address the rela-
tionship between sample size and the ability of linear regres-
sion to detect cell-type-specific differentially expressed genes 
across the whole spectrum of gene expression levels.

In our study, we considered a commonly used FPKM 
measure of gene expression obtained from RNA-seq data. 
Multiple methods are used for quantifying gene expression, 
such as raw counts of reads per gene through RNA-Seq by 
Expectation Maximization quantification47 and transcripts per 
million,48 reviewed in Ref. 49; however, for the sake of clarity, 
we did not test the performance of all methods for quantify-
ing gene expression. Our future studies will address the effect 
of measuring gene expression levels in RNA-seq data for the 
purpose of cell-type-specific differential expression analysis.

The csSAM and DSection methods were originally 
designed for microarray data, while we have been applying 
them to RNA-seq data. It should be noted that although data 
preprocessing steps for microarray and RNA-seq data dif-
fer, a strong linear relationship between RNA concentration 
and short read counts has been reported.50 On the contrary, 
because of technological limitations, microarrays show less 
linear relationships between RNA concentration and signal 
intensity.51 Therefore, methods for cell-type-specific differ-
ential expression analysis can be expected to perform well in 
RNA-seq settings, as illustrated by our study.

The use of cell-type-specific differential expression analy-
sis goes well beyond gene expression data obtained with micro
array or RNA-seq technologies. Cell-type-specific differential 
expression analysis will ultimately benefit many epigenomics-
oriented sequencing technologies, such as DNA methylation, 
ChIP-seq, and histone modification profiling, thereby provid-
ing a deeper understanding of the molecular mechanisms oper-
ating at the level of specific cell types. Although such work 
has begun,52–55 many issues in detecting cell-type-specific 
epigenomic differences remain unexplored. Our current work 
extends efforts to better understand the contribution of cell-
type-specific differential expression analysis to understand the 
SLE pathogenesis on a cell-specific level.3
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Supplementary Materials
Supplementary Figure 1. Frequency histogram of gene 

expression measured as FPKM measures. X-axis – average 

FPKM measures and Y-axis – frequency of genes at any given 
average FPKM. FPKM range from zero to the third quartile 
is displayed for clarity.

Supplementary Figure 2. Cell-type-specific differential 
expression analysis results using simulated dataset. Each graph 
shows the dependence between the number of differentially 
expressed genes (X-axis) and FDR (Y-axis). For example, no 
genes can be called differentially expressed in any cell-type-
specific analysis at FDR ,1.

Supplementary Table 1. A matrix of patient-specific pro-
portions for four cell types. Each cell represents the propor-
tion of a given cell type in a given sample. Group – disease 
status; control/case – healthy/SLE patients; subject – internal 
sample identifier.

Supplementary Table 2. (A) A matrix of raw counts of 
genes. Group – disease status; control/case – healthy/SLE 
patients; subject – internal sample identifier. (B) A matrix 
of FPKM measures of genes expressed above zero across all 
samples. Group – disease status; control/case – healthy/SLE 
patients; subject – internal sample identifier.

Supplementary Table 3. Genes differentially expressed 
in heterogeneous group. (A) edgeR classic; (B) edgeR GLM; 
(C) Limma–Voom; (D) Limma–Voom weighted; (E) NOISeq; 
(F) SAM; and (G) DESeq2  methods. logFC – log2 fold 
change between SLE patients and healthy controls; P.value/
adj.p.val – noncorrected/corrected for multiple testing signifi-
cant P-value (H) Genes differentially expressed in heteroge-
neous group, identified by at least two methods (Fig. 1).

Supplementary Table 4. (A) Genes differentially expressed 
in B-cells, csSAM method. Gene.Name – Ensembl ID; 
FDR – false discovery rate; AVEXP/SD – average gene expres-
sion/standard deviation; hgnc_symbol/description – gene sym-
bol/description. (B) Genes differentially expressed in monocytes, 
csSAM method. Gene.Name – Ensembl ID; FDR – false dis-
covery rate; AVEXP/SD – average gene expression/standard 
deviation; hgnc_symbol/description – gene symbol/description. 
(C) Genes differentially expressed in B-cells, DSection method. 
Gene.Name – Ensembl ID; q-value – significant P-value cor-
rected for multiple testing; AVEXP/SD – average gene expres-
sion/standard deviation; hgnc_symbol/description – gene 
symbol/description. (D) Genes differentially expressed in neu-
trophils, DSection method. Gene.Name – Ensembl ID; q-value – 
significant P-value corrected for multiple testing; AVEXP/SD 
– average gene expression/standard deviation; hgnc_symbol/
description – gene symbol/description. (E) Genes differen-
tially expressed in monocytes, DSection method. Gene.Name – 
Ensembl ID; q-value – significant P-value corrected for multiple 
testing; AVEXP/SD – average gene expression/standard devia-
tion; hgnc_symbol/description – gene symbol/description.

Supplementary Table  5. Functional enrichment analy-
sis of the B-cell-specific differentially expressed genes in 
SLE. Category – category name; ID – function-specific 
ID; description – name of a function; P-value/q-value – 
noncorrected/corrected for multiple testing significant P-value; 
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hit count in query list – number of differentially expressed genes 
enriched in a function; hit count in genome – total number of 
genes in a function; hit in query list – names of differentially 
expressed genes enriched in a function.

Supplementary Table 6. Functional enrichment analy-
sis of the monocyte-specific differentially expressed genes in 
SLE. Category – category name; ID – function-specific ID; 
description – name of a function; P-value/q-value – noncor-
rected/corrected for multiple testing significance P-value; hit 
count in query list – number of differentially expressed genes 
enriched in a function; hit count in genome – total number of 
genes in a function; hit in query list – names of differentially 
expressed genes enriched in a function.

Supplementary Table  7. Quality metrics of RNA-seq 
data, obtained with FastQC tool.
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