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Simple Summary: Organ preservation protocols have become first line therapy for the majority
of advanced laryngeal cancers. Unfortunately, up to one third of patients will develop recurrent
disease requiring salvage surgery. These tumors tend to display aggressive features when compared
to primary disease. The aim of this study is to identify genomic alterations associated with poor
prognosis in the recurrent setting to guide precision therapy and identify potential targetable pathways.
Here we show that mutations in the oxidation pathway, specifically the KEAP1-NFR2 pathway,
predict survival in a cohort of patients undergoing salvage laryngectomy.

Abstract: Organ preservation protocols are commonly used as first line therapy for advanced
laryngeal cancer. Recurrence thereafter is associated with poor survival. The aim of this study is to
identify genetic alterations associated with survival among patients with recurrent laryngeal cancer
undergoing salvage laryngectomy. Sixty-two patients were sequenced using a targeted panel, of
which twenty-two also underwent transcriptome sequencing. Alterations were grouped based on
biologic pathways and survival outcomes were assessed using Kaplan-Meier analysis and multivariate
cox regression. Select pathways were evaluated against The Cancer Genome Atlas (TCGA) data.
Patients with mutations in the Oxidation pathway had significantly worse five-year disease specific
survival (1% vs. 76%, p = 0.02), while mutations in the HN-Immunity pathway were associated
with improved five-year disease specific survival (100% vs. 62%, p = 0.02). Multivariate analysis
showed mutations in the Oxidation pathway remained an independent predictor of disease specific
survival (HR 3.2, 95% CI 1.1–9.2, p = 0.03). Transcriptome analysis of recurrent tumors demonstrated
that alterations in the Oxidation pathway were associated a positive Ragnum hypoxia signature
score, consistent with enhanced pathway activity. Further, TCGA analyses demonstrated the
prognostic value of oxidation pathway alterations in previously untreated disease. Alterations in
the Oxidation pathway are associated with survival among patients with recurrent laryngeal cancer.
These prognostic genetic biomarkers may inform precision medicine protocols and identify putatively
targetable pathways to improve survival in this cohort.

Cancers 2020, 12, 3081; doi:10.3390/cancers12113081 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0003-3238-1111
http://dx.doi.org/10.3390/cancers12113081
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/11/3081?type=check_update&version=3


Cancers 2020, 12, 3081 2 of 19

Keywords: HNSCC; larynx; Nrf2/Keap1; oxidation

1. Introduction

In the era after the VA larynx and RTOG 91-11 trials, organ preservation protocols with radiation
(RT) or chemoradiation (CRT) have become first line therapy for many patients with locoregionally
advanced laryngeal squamous cell carcinoma (LSCC) [1,2]. Despite the benefit of laryngeal preservation,
disease free survival rates range between 27–70%, and up to one third of patients will require subsequent
salvage laryngectomy [1,3,4]. Even when recurrence is operable, survival rates among patients
undergoing salvage surgery is approximately 50% and around 30% patients will develop a second
recurrence [5–8].

Currently, the majority of prognostic factors in recurrent LSCC have been clinical (recurrent nodal
status, comorbidity scores, perineural and lymphovascular invasion, and positive margins) [5,9–12].
Work by our group aiming to illuminate the genomic landscape of recurrent LSCC led to targeted
sequencing of a small subset of patients with recurrent laryngeal carcinoma after primary surgery or
CRT [13]. When compared to primary laryngeal tumors in the Tumor Genome Atlas (TCGA), there was
an increased frequency of alterations in multiple genes critical in tumorigenesis including CDKN2A,
MTOR, PIK3CA, TET2, and TP53 among others. A study by Lee et al. further identified alterations in
p53 expression between previously untreated LSCC and matched recurrent tumors after radiation [14].
While these data offer some insight into the nature of recurrent laryngeal disease, clinically actionable
implications remain aspirational [15–17].

In the era of precision medicine, an understanding of genomic alterations that underlie recurrent
LSCC may shed light on the mechanism of their recalcitrant nature, affording the potential for better
patient selection, individualized treatment and targeted therapies. Herein, we investigate the potential
prognostic significance of highly recurrent genomic alterations identified in the HNSCC TCGA project
in a cohort of patients with recurrent LSCC after primary RT or CRT undergoing salvage laryngectomy
and confirm these findings using TCGA.

2. Results

2.1. Cohort Demographics and Clinical Variables Predictive of Survival

Clinical and oncologic characteristics for this recurrent cancer cohort are presented in Table 1.
The majority of patients were Caucasian males with a history of tobacco use and a median age
of 59 years (range 39–85 years). Seventy-three percent of patients received RT and 27% received
CRT for primary treatment. The most common tumor subsites included the supraglottis and glottis.
The median time between completion of primary treatment and salvage surgery was 14 months (range
2mo–13yrs). A larger proportion of patients presented with advanced stage recurrent disease compared
to primary disease. Median follow up time was 45 months with a range of 1 month to 18 years.
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Table 1. Demographics.

Variable Count (%), n = 62

Age (yrs) 59 (range 39–85)

Gender
Male 53 (85)

Female 9 (15)

Race
Caucasian 52 (84)

Black 3 (5)
Other 7 (11)

Primary Subsite
Supraglottis 36 (58)

Glottis 25 (40)
Subglottis 1 (2)

Primary Overall Stage

I 16 (26)
II 23 (37)
III 13 (21)
IV 7 (11)

Primary T Stage

I 16 (26)
II 27 (44)
III 11 (18)
IV 4 (6)

Primary N Stage N0 51 (82)
N+ 8 (13)

Treatment
Radiation 45 (73)

C/RT 17 (27)

Time to recurrence (mo) 14 (2–158)

Recurrent Overall Stage

I 2 (3)
II 24 (39)
III 14 (23)
IV 22 (35)

Recurrent T Stage

I 2 (3)
II 28 (45)
III 15 (24)
IV 17 (27)

Recurrent N Stage N0 52 (84)
N+ 10 (16)

Recurrent Subsite

Hypopharynx 1 (20)
Supraglottis 28 (45)

Glottis 32 (52)
Subglottis 1 (2)

Tobacco
Never 2 (3)

Current 35 (56)
Former 25 (40)

The five-year overall survival (OS) for the cohort was 45% (95% CI 32–57%) and the five-year
disease specific survival (DSS) was 70% (95% CI 55–80%). Stratification by initial overall stage, initial T
stage, time to recurrence, recurrent subsite, recurrent T stage, recurrent nodal status, and tobacco use
was performed. Patients with positive recurrent nodal disease (cN+) had significantly worse five-year
DSS compared to patients without nodal disease (cN0) [39% (95% CI 9–69%) vs. 75% (95% CI 60–86%),
p = 0.03]. cN+ patients trended to lower five-year OS compared to cN0 patients [20% (95% CI 3–47%) vs.
50% (95% CI 36–64%), p = 0.08). None of the remaining clinical variables were significantly associated
with either DSS or OS in this cohort.
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2.2. Characterization of High Frequency Genomic Alterations

To test genetic alterations that may be associated with differential prognoses in this cohort,
we focused on a list of candidate genes that were altered at >2% frequency in the original Head and
Neck TCGA project [18], which included 226 candidate gene biomarkers, ranging from high frequency
alterations such as TP53 and PIK3CA, to low frequency alterations such as HRAS and MDM2. We also
included known actionable genes such as BRAF and PDL1 (CD274) in the analysis. Thus, we performed
library preparation, targeted capture with our custom library, and next generation sequencing to an
average sequencing depth >3000X for our 62 patient cohort. Sequencing and quality control data are
shown in Supplementary Materials Tables S1–S3. Of the 226 genes tested in each patient, our analysis
identified an average of 4 somatic alterations per tumor, with a range of 0 to 19 alterations identified
across the cohort. We then assigned pathogenicity scores to each of the alterations, and noted that
many of the alterations (e.g., CDKN2A, FAT1, PIK3CA and/or TP53) were highly likely to have a
pathogenic role in the tumor (Table S4). CDKN2A, KMT2C and KMT2D, LRP1B, NOTCH1, NSD1,
PDE4DIP, PIK3CA, TGFBR2, and TP53 were altered at high frequencies in our cohort, consistent with
findings in laryngeal tumors in TCGA [19,20]. Interestingly, three patients (4.8%) had mutations in AR,
all of which were comprised of missense mutations. Additionally, TGFBR2 was mutated at a higher
frequency in our cohort (12.9%) compared to primary laryngeal tumors in TCGA (2.8%). Half of these
TGFRB2 alterations are predicted to result in loss of function (LOF) with 3/4 of these representing
Lys128Serfs*35 and the other Gln166Ter. Copy number variations (CNV) were also determined and are
depicted for each pathway using unsupervised clustering (Figure 1, and shown in Table S5). Similar to
findings in TCGA, multiple focal amplifications in tyrosine kinase were seen in our cohort (ERBB2,
FGFR1/3, and EGFR) [18]. In contrast to laryngeal tumors in TCGA, our cohort contained recurrent
focal copy loss in genes associated with DNA damage repair (ATM, ATR, and BRCA2). There were no
significant associations between copy number variation and survival when assessed by individual
gene or grouped by pathway.
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Figure 1. Copy Number Variation (CNV) Analysis. Heat map illustrating unsupervised clustering of
CNV analysis grouped by pathway. Disease and Overall Survival status depicted across the top.
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2.3. Predictive Pathways: Mutational Signatures

To assess the relationship between pathway mutation signatures and survival outcomes,
we performed a Kaplan-Meier survival analysis stratifying by the presence or absence of specific
pathway mutations. Genes were grouped based on pathways as described in the methods and Table 2,
(RTK/PI3K/RAS, NOTCH, DNA Damage, WNT/Differentiation, Head and Neck Immunity, Cell Cycle,
Cell Death, TP53, Differentiation/Stem/Epigenetic, Other Kinases, and Oxidation). Oncoplots for
overall pathway analysis and for breakdown of gene mutations for select highlighted pathway
are shown in Figure 2A–C and Figure S1. Patients with mutations in the Oxidation pathway
had significantly worse five-year DSS [31% (95% CI 5–64%) vs. 76% (95% CI 61–86%), p = 0.02]
and five-year OS [13% (95% CI 1–42%) vs. 51% (95% CI 36–63%), p = 0.01] compared to those patients
without mutations in this pathway (Figure 3).

Similarly, patients with mutations in the Differentiation/Stem/Epigenetic pathway had a significantly
lower five-year DSS [47% (95% CI 25–67%) vs. 84% (95% CI 66%–93%), p = 0.005] and
five-year OS [23% (95% CI 8–42%) vs. 59% (95% CI 41–73%), p = 0.007] compared to patients without
mutations in this pathway. Patients with mutations in both the Differentiation/Stem/Epigenetic and
the Oxidation pathways performed the worst with significantly lower DSS [29% (95% CI 4–61)
vs. 76% (95% CI 61–86%), p = 0.009] and OS [14% (95% CI 1–46%) vs. 50% (95% CI 35–62%), p = 0.03]
compared to patients with either no mutations in these pathways or with a mutation in just one of
these pathways. The presence of mutations within the HN-immunity pathway was associated with
improved survival. Patients with mutations in the HN-immunity pathways had significantly higher
DSS [100% vs. 62% (95% CI 46–75%), p =0.02] compared to those patients without a mutation in this
pathway. Mutations in the HN-immunity pathway were not significantly associated with OS.

Multivariate analysis was then performed to identify independent predictors of DSS and OS.
As recurrent nodal status was the only significant pre-operative clinical predictor in this cohort, it was
included for multivariate analysis. The rate of Differentiation/Stem/Epigenetic pathways mutations was
higher in the group of patients without mutations in the HN-immunity pathway (41%) compared to
the rate in patients with mutations HN-immunity pathway (18%), suggesting these mutations may be
less likely to occur together. Therefore, each of these pathways were compared in separate models.
In a multivariate analysis, the presence of mutations in the Oxidation pathway remained a significant
predictor of DSS (HR 3.2, 95% CI 1.1–9.2, p = 0.03) and OS (HR 2.6, 95% CI 1.2–5.9, p = 0.02).
The Differentiation/Stem/Epigenetic pathway also remained a significant predictor of DSS (HR 3.8,
95% CI 1.4–10, p = 0.009) and OS (HR 2.4, 95% CI 1.2–4.5, p = 0.009). As no disease related deaths
occurred in the cohort of patients with mutations in the HN-immunity pathway, no hazard ratio
is available. In comparing the multivariate model containing only recurrent nodal status to the model
with recurrent nodal status and HN-Immunity mutation status, the inclusion of HN-Immunity status
did not significantly improve the accuracy of the model (p = 0.3).
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Table 2. Pathway definitions.

RTK/PI3K/RAS Other Kinase NOTCH DNA Damage WNT/
Diff. Immune Oxidation Cell Cycle Cell Death TP53

Differentiation/
Stem/

Epigenetic

AKT1 IGF1R ABL1 DTX1 ATM MSH2 APC SMAD2 CUL3 AURKA MYC BCL2 HPV16 AR KMT2C
AKT2 JAK2 ABL2 FBXW7 ATR MSH6 AXIN2 TGFA HIF1A CCND1 MYCL BCOR MDM2 ARID1A KMT2D
AKT3 JAK3 ALK HES1 ATRX PALB2 CDH1 TGFBR2 IDH1 CDC7 MYCN BIRC2 MDM4 ARID1B LAD1
BRAF KDR DDR1 HES5 BAP1 PARP1 CTNNB1 TGIF1 IDH2 CDKN1A NPM1 CASP8 TP53 ASXL1 MEN1
EGFR KRAS KIT HEY1 BRCA1 PMS2 FAT1 TNF KEAP1 CDKN1B POLA1 CASP9 BMI1 NSD1
ERBB2 MET MAP2K1 HEYL BRCA2 RPA2 RICTOR ADA NRF2 CDKN2A POLB FADD BRD1 RARA
ERBB3 NRAS MAP2K2 MAML1 CHEK1 TET1 SMO CD274 PTGS2 CDKN2B RB1 IKBKE BRD4 RUNX1
ERBB4 PIK3CA MAP2K4 MAML2 CHEK2 TET2 SOX2 HLA-A VHL E2F1 RRM1 MCL1 CIC RUNX1T1
FGFR1 PIK3CB NTRK1 NOTCH1 DNMT1 TOP1 SRC HLA-B E2F2 TERT NFKB1 EZH2 RXRB
FGFR2 PIK3CD NTRK2 NOTCH2 ERCC1 TOP2A TP63 HLA-DRA KNSTRN TERT_Prom NFKB2 HDAC1 SMARCA4
FGFR3 PIK3CG NTRK3 NOTCH3 FANCA TOP2B TWIST1 ICOS MCM10 TK1 PTCH1 KMT2A
FGFR4 PIK3R1 PTPN11 NOTCH4 FANCB TRAF3 VIM LAG3 MCM2 TYMS KMT2B
FLT1 PTEN MLH1 UBE2B YAP1 MS4A1 MIRLET7C
FLT3 RAC1 ZNF750 NCAM1
FLT4 RAF1 PTPRCAP

HRAS RET SOCS1
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Figure 2. Mutation frequency by pathway and by gene. Oncoplots demonstrating mutations grouped 
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= dead of disease vs. alive) along the top. (C) Schematic of mutation location for key genes in 
Oxidation pathway (NRF2, KEAP1, and CUL3) in our samples relative to mutations from primary 
laryngeal tumor specimens from TCGA. 
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Figure 2. Mutation frequency by pathway and by gene. Oncoplots demonstrating mutations grouped
by pathway (A) and by gene for Oxidation pathways (B). Mutations are clustered by survival
(DOD = dead of disease vs. alive) along the top. (C) Schematic of mutation location for key genes in
Oxidation pathway (NRF2, KEAP1, and CUL3) in our samples relative to mutations from primary
laryngeal tumor specimens from TCGA.
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Figure 3. Five-Year disease specific and overall survival by pathway mutation. Kaplan-Meier survival
curves for disease specific survival (DSS) and overall survival (OS) are depicted stratifying by mutations
in the HN-Immunity pathway (left), Differentiation/Stem/Epigenetic pathway (middle), and Oxidation
pathway (right). Mutations in the HN-Immunity pathway predict improved DSS and OS, while
mutations in the Differentiation/Stem/Epigenetic and Oxidation pathways predict worse DSS and OS.

2.4. Transcriptome Signature Analysis Supports Possible Functional Role of Oxidation Pathway

We found a significantly higher proportion of patients who recurred within one year of initial
treatment harbored a mutation in the oxidation pathway (23%), compared to patients who recurred
after one year (3%), (Chi squared-p = 0.02), further supporting the role of the oxidation pathway in
treatment failure. Given these findings and previous research showing that the oxidation response
plays a critical role in response to radiation and chemoradiation [21,22], we sought to further investigate
the significance of this pathway in our cohort of recurrent larynx tumors. A total of twenty-two
patient samples met our quality control standards (DV200 > 31% and > 300 ng RNA) to undergo
full transcriptome sequencing. We sequenced the 22 libraries to an average depth of 68,019,597.5
uniquely mapped reads per sample (Table S6). FPKM expression data for each of the samples is shown
in Table S7. These expression data were used to build the previously described Ragnum hypoxia
score [23], which has previously been shown to predict oxidation pathway activity. Results are depicted
in the heatmap in Figure 4A. We utilized these data to test for an association between alterations in
the oxidation pathway and oxidation pathway activity as represented by Ragnum hypoxia scores
(Figure 4B). We found a trend towards higher scores in the patients that harbored alterations in the
oxidation pathway (0.3 vs. 0.1, p = 0.6). Further, samples containing mutations in KEAP1, CUL3 or
NFE2L2 were all associated with positive scores. We subsequently evaluated whether hypoxia scores
were predictive of survival in our cohort and found that there is a trend towards worse five-year
disease specific survival in patients with high Ragnum Scores compared to patients with low Ragnum
scores, (67% vs. 100%, p = 0.2, Figure 4C) and likely limited by the low number of samples in the
overall RNAseq cohort.
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Figure 4. Oxidation pathway analysis in salvage larynx samples and primary TCGA samples. (A)
Heat map depicting RNAseq data for 22 salvage laryngeal specimens clustered by DSS, Ragnum
Hypoxia score, and KEAP1 mutation. (B) Ragnum hypoxia score stratified by the presence of absence
of mutations in the Oxidation pathway. (C) Five-year disease specific survival by Ragnum hypoxia score.
(D) Five-year DSS of TCGA samples stratifying by the presence of alterations in the Oxidation pathway.
(E) Ragnum, Buffa, and Winter hypoxia scores stratifying by the presence of alterations in the Oxidation
pathways, p-value < 0.05 considered significant as tested by Chi-squared. (F) Five-year DSS of TCGA
samples stratifying by hypoxia scores.

2.5. High NRF2 Protein Expression in Recurrent Larynx Specimens

Evaluation of the Oxidation pathway revealed that the majority of mutations occurred in genes
involved in the KEAP1/NRF2 pathway. Subsequent evaluation of NRF2 protein expression revealed
a nuclear rather than cytoplasmic staining pattern (Figure S2). Further, we found that the majority
of these recurrent samples were strongly positive (43/52) compared to moderately positive (1/52),
weakly positive (6/52), or no staining (2/52), suggesting that the pathway is activated not just by
mutations, but potentially by other mechanisms as well in these recurrent tumors. Not surprisingly,
given the high level of activity of the pathway in the majority of cases, there was no significant
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correlation between NRF2 protein expression with oxidation mutation status (p = 0.3), NRF2 mutation
status (p = 0.5), or hypoxia score (p = 0.9) (data not shown).

2.6. Validation of Oxidation Pathway in TCGA

We further leveraged sequencing data from TCGA to evaluate the association between oxidation
pathway mutation status and survival (DSS and OS) in a cohort of previously untreated head and neck
cancer patients (all head and neck cancer subsites). Using the TCGA Head and Neck Squamous Cell
(HNSC) data set (https://www.cancer.gov/tcga), we found that the presence of alterations (mutation or
copy number variation) in the oxidation pathway predicted worse five-year DSS (55%, 95% CI 44–66%
vs. 63%, 95% CI 55–71%, p = 0.02), with a trend towards worse OS (40%, 95% CI 29–51% vs. 49%,
95% CI 42–56, p = 0.06), Figure 4D. We hypothesized that oxidation pathway alterations may predict
pathway activity in this cohort, similar to the trend observed in our cohort. We therefore utilized
three hypoxia scores available in TCGA (Buffa, Ragnum, and Winter Hypoxia scores) to investigate
the association between pathway alteration and pathway activity as measured by the hypoxia score
(note that only the Ragnum score could be calculated on our cohort). We found that the presence of
a pathway alteration was significantly associated with higher Buffa (p = 0.01), Ragnum (p = 0.009),
and Winter (p = 0.002) hypoxia scores supporting the hypothesis that alterations predict pathway
activity (Figure 4E). To further support the association between oxidation pathway activity and
survival, we then tested the association of hypoxia score with DSS and OS. As predicted we found
that higher hypoxia scores by all three methods (Buffa, Ragnum, and Winter) were associated with
worse five-year DSS and OS (Figure 4F). Controlling for overall stage and HPV status, we found that
an increase in hypoxia score by one point was associated with a 3.4% (1.5%–5.3%, p < 0.001), 2.7%
(−0.003%–5.9%, p = 0.08), and 2.2% (0.9%–3.5%, p = 0.001) decrease in DSS and a 3.1% (1.7%–4.6%,
p < 0.0001), 2.3% (0.04%–4.7%, p = 0.05), and 2.0% (1.0%–3.0%, p < 0.0001) decrease in OS for Buffa,
Ragnum, and Winter Hypoxia scores respectively.

3. Discussion

Recurrent LSCC in the setting of previous radiation or chemoradiation represents an aggressive
disease with significant treatment related morbidity [8,24–27]. While there has been significant focus
on understanding the genomic landscape of primary laryngeal squamous cell carcinoma [28–34],
few studies have explored molecular signatures of recurrent disease [13,15–17]. Here we present results
from a recurrent laryngeal carcinoma cohort with targeted sequencing and transcriptome data that
identified multiple pathways predictive of survival independent of clinical variables.

We found frequent TP53, CDKN2A, and PIK3CA alterations and copy gain/amplification in
multiple tyrosine kinase receptors, findings which are consistent with data from laryngeal tumors in
TCGA [18]. Notably, our cohort had recurrent loss-of-function (LOF) TGFBR2 alterations occurring at
a higher frequency than previously cited [19,20].

To analyze the correlation between genomic alterations and survival outcomes, mutations were
grouped based on biologic effect. Our data demonstrate that alterations in the Oxidation and
Differentiation/Stem/Epigenetic and pathways are associated with significantly worse disease specific and
overall survival.

As the Oxidation pathway is thought to play a role in treatment resistance [21,22], this pathway was
of particular interest. Evaluation of the Oxidation pathway reveals mutations in two predominant genes
including Kelch Like ECH Associated Protein 1 (KEAP1) and Nuclear Factor, Erythroid 2 Like 2 (NFE2L2
or NRF2). These genes are the key regulators in the KEAP1-NRF2 pathway responsible for responses
to oxidative stress [35]. This pathway has been found to be altered in multiple malignancies [35–38]
KEAP1 is a negative regulator of NRF2 and mutations lead to accumulation of NRF2 in the nucleus
resulting in increased transcription of pro-tumorigenic genes. Conversely, mutations in NRF2 are found
in the binding site to KEAP1 making it resistant to negative regulation by KEAP1 [35]. Mutations in this
pathway are well established in lung cancer occurring in a quarter of squamous cell carcinomas and

https://www.cancer.gov/tcga
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one third of adenocarcinomas [39,40]. More recently, mutations in this pathway have been identified
in breast and head and neck tumors [37,38,41,42]. Kim et al. found a mutation frequency of 13% in
previously untreated laryngeal squamous cell carcinoma [41]. Dysregulation of this pathway is also
thought to result in reduced sensitivity to chemotherapeutics further suggesting this as a rational
biomarker in recurrent populations [35]. Our RNAseq data suggest that mutations in the Oxidation
pathway may predict increased activity as shown by increased hypoxia scores; however, this analysis
was limited by the small number of samples with mutations (n = 3). We also found that the majority
of our recurrent laryngeal cancer specimens displayed strong NRF2 staining suggesting this may
serve as a predictive biomarker in the primary setting to identify patients who are at elevated risk
of failing CRT. To further investigate the role of Oxidation alterations in Head and Neck cancer,
we evaluated sequencing data from TCGA. We found that even in a cohort of previously untreated
HNSCC of varying sites (larynx and oral cavity), alterations in the Oxidation pathway continued
to predict survival. Further we leveraged publicly available hypoxia scores to show an association
between Oxidation alterations and increased pathway activity. Together these data support a role for
altered activation of the Oxidation pathway specifically the KEAP1-NRF2 pathway in not only recurrent
laryngeal tumors, but also in Head and Neck cancers more broadly, and these results warrant further
investigation in additional cohorts.

We were also interested in evaluating for an association between tobacco use and oxidation pathway
mutations given the generation of oxygen radicals with smoking. There were no significant associations
between current or former tobacco use and oxidation pathway mutation status. The two never smokers
were found to have no mutations within genes in the oxidation pathway. Further evaluation of the
two never smoker samples revealed one had no genomic mutations while the other had mutations
within the immune and Tp53 pathways. Copy number evaluation of these rare tumors (recurrent
larynx in never smokers) revealed copy number gain and amplifications in the RTK/PI3K/RAS and
NOTCH pathways.

Additional pathways of interest include Differentiation/Stem/Epigenetic pathway. Evaluation of this
pathway reveals that the predominant mutations are within genes responsible for chromatin regulation
including AT-rich interaction domain 1B (ARID1B), lysine methyltransferase 2C (KMT2C) and lysine
methyltransferase 2D (KMT2D). ARID1B makes up the largest subunit of the BAF complex (mammalian
SWI/SNF) and canonical signaling plays a role in normal cellular development and differentiation [32].
However, alterations within ARID1B and other subunits of the BAF complex also play a role in multiple
malignancies including adenoid cystic, ovarian clear cell, colorectal cancer and, gastric cancer [43–47].
Alterations in ARID1B and other chromatin regulators in hepatocellular carcinoma (HCC) predict
degree of liver fibrosis and hepatic vein invasion, suggesting these genes may drive poor prognosis
in some tumors [48]. ARID1B also serves as a potential therapeutic target as in vitro studies have
demonstrated reduced cell growth, increased radiosensitivity and improved DNA damage repair with
ARID1B inhibition [32,49,50]. Further, these effects are most significant in ARID1B mutant cell lines,
suggesting ARID1B as both a potential biomarker and therapeutic target in our cohort.

Finally, alterations in the HN-immunity pathway predict improved disease specific survival in
Kaplan-Meier analysis. The most common mutations in this pathway were missense mutations in
tumor growth factor beta receptor 2 (TGFBR2). TGFB is a known driver in intestinal, gastric, prostate,
clear cell ovarian, and laryngeal malignancies among others [51–54]. Further, TGFB signaling has been
identified as a key mechanism of tumor immune evasion through inhibition of cytotoxic T cells and
creation of an immunosuppressive mileu [55,56]. In head and neck malignancies immune evasion
is well documented and recent work has established tumor infiltrating lymphocytes as a prognostic
biomarker [57–59]. As such LOF mutations in TGFB may indicate increased anti-tumor immunity and
may serve as a predictive biomarker in in our recurrent larynx cancer cohort. TGFB also serves as an
additional potential therapeutic target as multiple studies have demonstrated improved efficacy of
anti-PDL1 therapy in combination with TGFB inhibition in vitro [60,61].
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4. Materials and Methods

4.1. Cohort Selection

Inclusion criteria stipulated adult patients treated with RT or CRT for primary laryngeal squamous
cell carcinoma with recurrence requiring salvage laryngectomy treated at the University of Michigan.
Clinical data including patient sex, age, race, primary overall and TNM stages, primary treatment
modality, primary and recurrent subsites, time to recurrence, recurrent overall and TNM stages,
tobacco use (defined at the time of salvage surgery), ACE comorbidity scores, and margin status were
maintained in a prospectively collected electronic database [62]. Sixty-two patients had available
pathologic specimens allowing for DNA extraction and targeted exome sequencing as described below.
Access to clinical data and formalin-fixed paraffin embedded (FFPE) specimens was approved by the
University of Michigan Institutional Review Board (IRB HUM00080561).

4.2. DNA Extraction

DNA extraction from FFPE specimens was performed as previously described [13,63]. Areas of
tumor were identified by a board certified head and neck pathologist (J.B.M). Tumor and adjacent
normal tissue cores were collected and genomic DNA was obtained using Qiagen Allprep DNA/RNA
FFPE kit (Qiagen, Hilden, Germany) and quantified using a Qubit as previously described [63].
DNA samples were then submitted to the University of Michigan Advanced Genomics Core for library
preparation and sequencing.

4.3. Targeted DNA Sequencing

A minimum of 100 ng of genomic DNA from matching tumor and adjacent normal isolations
was used for library preparation with the Rubicon DNA Thruplex (Rubicon Genomics, Ann Arbor,
MI, USA) according to manufacturer’s instructions. We then performed targeted capture using our
Nextera custom capture library containing high density probes that cover the coding exons of 226 genes,
(representing 744kb) found to be altered in >2% of tumors from the first HNSCC TCGA data release,
or if noted to be mutated in our internally sequencing data. In total, our custom capture library covers
~0.023% of genome and ~2.47% of the exome. Next generation sequencing was then performed on an
Illumina HiSEQ4000 (Illumina, San Diego, CA, USA) using paired end 150 nt reads.

4.4. Exome Variant Calling

First, we used FastQC v.0.11.5 (Illumina, San Diego, CA) to access the quality of our
sequencing reads. TrimGalore-0.4.5 (Babraham Bioinformatics, Cambridge, UK) was used to trim reads
containing sequencing adapters and it was not deemed necessary to perform further quality trimming.
Next, we used BWA v0.7.15 to align these processed reads to the hg19 reference genome. The mapped
reads were then sorted, de-duplicated and indexed using PicardTools v2.4.1, GATK v3.6 was used to
run base quality score recalibration and generate clean aligned reads for variant calling. Variant calling
was performed using Varscan v2.4.1. First, pileup files were created for each tumor-normal pair in
the set using Samtools v1.9. Then, variants were called from these mpileup files using the somatic
mode of the variant caller. Goldex Helix Varseq v2.1.0 (Golden Helix, Bozeman, MT, USA) was used to
annotate these variant calls and to filter the variants in the introns and intergenic regions. Variants with
a minimum of 5 reads supporting the alternate allele in the tumor samples were considered as
potential positives.

4.5. Copy Number Analysis

Aberration Detection in Tumor Exome (ADTEx) v.2.0 was used to make copy number estimation
calls from the pre-processed tumor-normal BAM files. The software assigns five copy number
states from 0 to 4 based on its estimated copy number. State 0 stands for a homozygous deletion,
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state 1 represents a heterozygous deletion, normal copy number is denoted by state 2, while states
3 and 4 correspond to a copy gain and amplification, respectively. The program was also used to
generate representative Manhattan plots for each chromosome of each tumor-normal pair and an R
script (R v3.4.0) was used to annotate genes associated with each change.

4.6. Transcriptome Sequencing

RNA was isolated from FFPE tissues using the Qiagen All prep kit (Qiagen, Hilden, Germany),
and samples with DV200 > 30% were submit to the University of Michigan DNA sequencing core for
library preparation and sequencing. Briefly, the Illumina TruSeq Stranded Total RNA library prep kit
(Cat#: RS-122-2201/2) was used to prepare libraries according to the manufacturer’s recommendations,
with a modification that 14 cycles of PCR was performed to amplify the library prior to the final bead
purification. The samples were then loaded on to a total of 6 lanes of an Illumina HiSEQ4000 and
paired end sequenced to 75nt length.

4.7. Transcriptome Quantification

We first assessed read quality using FastQC (v0.11.5), and then used a two-step STAR workflow
to map the reads. In step 1, STAR v2.5.3a was used to generate the genome index database against the
reference human genome and annotated transcriptome files. In step 2, read mapping was guided by the
genome index database. Only uniquely mapped reads were retained by using samtools (v1.2). To then
compute FPKM, we used cufflinks (v2.2.1) with default parameters except for “-max-bundle-frags”
which was changed to 100000000 to avoid raising of the HIDATA flag at loci that have more fragments
than the pre-set threshold. To calculate the Ragnum hypoxia score, we used the quantification method
as described [23], and ComplexHeatmap was used to visualize genes from the hypoxia signature.

4.8. TCGA Analysis

Publicly available RNAseq data from the most recent HNSCC TCGA project data release (N = 523)
was downloaded and analyzed according to the standard pipelines available through cBioPortal [19,20].

4.9. Immunohistochemistry

Immunohistochemical staining was performed on the DAKO Autostainer (DAKO, Carpinteria,
CA, USA) using liquid streptavidin biotin (LSAB+) and diaminobenzadine (DAB) as the chromogen as
previously described [57,58]. Previously created tumor microarrays (TMA) containing our samples
were utilized. Each sample had three representative tumor cores included. The de-paraffinized TMA
was labeled with the NRF2 primary antibody (1:200, Nrf2 Antibody (A-10): sc-365949, Santa Cruz
Biotechnology, Dallas, TX, USA) for 60 min at ambient temperature after incubation of the section
with background sniper (BioCare Medical, Pacheco, CA, USA) for 30 min at ambient temperature.
Subsequently 10 mM Tris HCl/1 mM EDTA pH9 epitope retrieval was performed prior to staining.
Appropriate negative (no primary antibody) and positive controls (kidney) were stained in parallel.
Using previously published scoring schema [64] each sample was evaluated by a board certified
head and neck pathologist (J.B.M) and given an intensity score; 0-no staining, 1-minimal staining,
2-moderate staining, 3-strong staining. Each sample was also given a score for percent of total tumor
cells staining positive (1 < 25%, 2 = 26–50%, 3 = 51–75%, and 4 = 76–100%). A final score was calculated
by multiplying the two intensity and percentage scores together. Final scores were defined as no
staining (0), weakly positive (1–4), moderately positive (5–8) and strongly positive (9–12). For statistical
analysis samples were categorized as either no stain/weakly positive (0–4) or moderately to strongly
positive (5–12).
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4.10. Statistics

Genes from our custom capture list were grouped into individual pathways as defined in
Hallmark and Go-lists curated by MSigDB [65,66], or added to our HNSCC mutated pathway sets
by known biological function. The pathways are outlined in Table 2 and include RTK/PI3K/RAS
(HALLMARK_PI3K_AKT_MTOR_SIGNALING), NOTCH (GO_NOTCH_SIGNALING_PATHWAY),
DNA Damage (HALLMARK_DNA_REPAIR), WNT (GO_WNT_SIGNALING), HN-Immunity
(GO_INNATE_IMMUNE_RESPONSE), Cell Cycle, Cell Death (HALLMARK_APOPTOSIS),
TP53, Differentiation/Stem/Epigenetic (GO_REGULATION_OF_GENE_EXPRESSION_EPIGENETIC),
Other Kinases, and Oxidation pathways (GO_OXIDATION_REDUCTION_PROCESS). Somatic
mutations included missense, splice region variants, stopgain, 3′ UTR variants, 5′ UTR variants,
inframe deletions, frameshift variants, inframe insertions, and initiator codon loss. A pathway was
considered to be altered if one or more of the corresponding genes contained a mutation. For CNV
survival analysis, a pathway was considered to have a variation is any of the genes contained a copy
number alteration. CNV and mutation status and survival were considered separately.

Overall survival (OS) and disease specific survival (DSS) were performed using the Kaplan-Meier
method and calculated from the time of salvage surgery to last follow up or death [Prism 8 (GraphPad
Software Inc; San Diego, CA, USA)]. Comparison of survival outcomes were calculated with log rank
analysis and p-values < 0.05 were considered significant. Multivariate analysis was performed using a
backward selected binary logistic regression model including any clinical or genomic variables found
to have a p-value < 0.1 on Kaplan-Meier analysis. Multivariate modeling was performed with SPSS
version 26 software (IBM; Armonk, NY, USA). For individual gene analyses, Bonferroni correction
was utilized.

5. Conclusions

This study provides insight into the mutational signatures of recurrent laryngeal squamous cell
carcinoma and suggests biomarkers that may serve to help stratify patients undergoing recurrent
cancer surgery. Clinical trials are warranted to explore the implications of specific genomic pathway
mutations in patient selection and targeted therapy for patients with recurrent laryngeal cancer.
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