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Abstract

The article deals with BB-SPICE (SPICE for Biochemical and Biological Systems), an exten-

sion of the famous Simulation Program with Integrated Circuit Emphasis (SPICE). BB-

SPICE environment is composed of three modules: a new textual and compact description

formalism for biological systems, a converter that handles this description and generates

the SPICE netlist of the equivalent electronic circuit and NGSPICE which is an open-source

SPICE simulator. In addition, the environment provides back and forth interfaces with SBML

(System Biology Markup Language), a very common description language used in systems

biology. BB-SPICE has been developed in order to bridge the gap between the simulation of

biological systems on the one hand and electronics circuits on the other hand. Thus, it is

suitable for applications at the interface between both domains, such as development of

design tools for synthetic biology and for the virtual prototyping of biosensors and lab-on-

chip. Simulation results obtained with BB-SPICE and COPASI (an open-source software

used for the simulation of biochemical systems) have been compared on a benchmark of

models commonly used in systems biology. Results are in accordance from a quantitative

viewpoint but BB-SPICE outclasses COPASI by 1 to 3 orders of magnitude regarding the

computation time. Moreover, as our software is based on NGSPICE, it could take profit of

incoming updates such as the GPU implementation, of the coupling with powerful analysis

and verification tools or of the integration in design automation tools (synthetic biology).

Introduction

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose analog

electronic circuit simulator developed at the Electronics Research Laboratory of the University

of California, Berkeley by Laurence Nagel in 1970 [1]. As its name suggests, SPICE is dedicated

to the design of large scale integrated circuit (IC) and printed circuit boards, to the checking of

circuits integrity and to the prediction of circuits behavior. In the past 40 years, SPICE “evolved
to become the worldwide standard integrated circuit simulator”, as stated in an IEEE Milestone

given to this software in 2011. The first commercial SPICE simulator was released in the 80s.

Nowadays, the most common ones are PSPICE owned by CADENCE Design Systems and
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HSPICE owned by Synopsis. Alternatively, there is also a plenty of open source SPICE distri-

butions that have mostly been developed by and for academic research: XSPICE [2], NGSPICE

[3], LTSpice, TinySPICE [4], etc

The program takes as an input a textual netlist describing the assembly of elementary elec-

tronic devices (resistors, capacitors, voltage and current sources, transistors, etc) connected

together on electrical nodes. It translates this list into a set of ordinary differential equations

(ODE) with respect to the electrical Kirchhoff laws. The netlist is very simple. This is probably

one of the main asset that contributed to the democratization of this language in the industry

of microelectronics. Basically, each line of the netlist corresponds to the instantiation of one

device. For each, a label which first letter determines the type of device, a list of the nodes to

which the device is connected and a list of the parameters of the model are provided [5,6]. For

instance, the line R1 A B 100 means that a 100-ohm resistor between nodes A and B. Thus, a

SPICE netlist is human-readable, can be easily interpreted by a software and can be easily gen-

erated from an electronic schematic or from any other software. Present versions of SPICE

involve many simulation and analysis capabilities including steady state (operating point)

analysis, transient analysis, linear small-signal frequency domain analysis, parametric sweep,

noise analysis, transfer function analysis, pole-zero analysis, stability calculation, etc. SPICE

also allows parameterization of design variables to accelerate design automation of integrated

circuits and their optimization, as shown [7].

Although SPICE was originally a software dedicated to the design of electronic circuits,

it has already been extended to other fields of physics, such as thermal and electro-thermal

simulations [8,9], optics and optoelectronic devices [10,11], mechanical systems [12] and

microfluidics [13]. It has also been used to simulate the dynamics of biological systems whose

description is based on differential equations [14–16]. We propose, in this paper, a way to for-

malize this approach.

In systems biology, description and simulation software tools appeared much more

recently. The first and most successful effort in this domain is probably the System Biology

Markup Language (SBML) [17]. SBML is dedicated to the description of a biochemical system

(such as a gene regulatory network, a metabolic pathway, etc). A SBML description is an XML

file which contains among other a list of parameters, a list of involved chemical species and a

list of reactions with, for each, a rate equation. Most of the time, the XML file is generated

through a graphical user interface such as SBMLEditor or Virtual Cell [18] or picked up from

databases such as BioModels [19]. Nevertheless, due to its relative complexity, SBML models

are not easy to read and edit by a user or a third-party software. This is not very convenient for

applications where the model is extensively manipulated. SBML description can be handled by

dedicated tools to simulate the behavior of the system. COPASI (Complex PAthway Simula-

tor), developed in 2006 by Hoops et al, is becoming the reference in this domain [20].

Recently, we demonstrated an analogy that can be drawn between the behavior of biochem-

ical systems and electronic circuits [21]. This analogy is based on the notion of ‘biological tran-

sistor’. Indeed, an electronic transistor can be seen as a current source (i.e. source of electrons)

controlled by a voltage. These devices are modeled by a variable conductance, or a voltage-con-

trolled current sources (VCCS). Similarly, a chemical reaction can be seen as a source of mole-

cule (positive or negative) controlled by the concentration of other molecules. Consequently,

the analogy between concentration and voltage on the one hand, and molecule flow and elec-

trical current on the other hand makes possible the simulation of biological with SPICE. More

details about this analogy are given in the Method section. This approach is mainly motivated

by two outcomes: the development of design tools for synthetic biology and the virtual proto-

typing of biosensors and lab-on-chip.

Modeling and simulation of biological systems using SPICE language
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First, synthetic biology is a new domain of the biotechnologies which aims at reinvesting sys-

tem’s engineering methods and biological knowledge in order to design new biological function

by assembly of standardized parts [22]. In silico design tends to play a major role in synthetic

biology and since about 10 years, many computer-aided design tools have been developed for

such purpose. Most of the time, they have been developed from scratch [23–27]. An alternative

approach, which have been recently demonstrated, is to use and readapt existing tools from the

domain of microelectronics (Electronic Design Automation or EDA) to synthetic biology

[21,28]. As simulation is at the heart of EDA processesa prerequisite for the adaptation of EDA

tools to biology is the possibility to simulate biological mechanisms with SPICE.

Second, there are more and more applications with a direct coupling between a biological

or biochemical systems and an electronic devices: bio-sensor, lab-on-chip, live cell-based sen-

sor, DNA chips, etc [29]. Design automation of such systems requires a unique description

language and simulation environment that encompasses all the disciplines involved in such

system (electronics, fluidics, mechanics, biology . . .). It has already been shown that SPICE

could be extended to the majority of physical disciplines [8–16]. An extension of SPICE to

biology is the next logical step to go toward this unique environment.

The idea behind BB-SPICE (SPICE for Biology and Biochemistry) is to offer a way to

describe biological functions in a SPICE-like netlist and simulate it with a SPICE distribution.

The other requirements for the targeted tool are: i) to be open-source, ii) to be usable by biolo-

gists without any knowledge on electronics, on the SPICE language or on the associated simu-

lator and iii) to keep upstream and downstream compatibility with SBML (i.e. a SBML model

must be able serve as simulation input file in replacement of the SPICE-like netlist and SBML

model must be generated from a BB-SPICE netlist. This last specification is required in order

to keep benefits of research efforts in SBML and associated tools and databases. For the present

work, the compatibility with SBML tools is also mandatory in order to compare both

approaches in terms of computation time and simulation accuracy.

Methods

BB-SPICE is composed of five modules, as depicted in Fig 1.

• A biological netlist parser which takes as input a text file with the description of the biologi-

cal system in a formalism described hereafter. The parser generates a Python dictionary

which contains the list of species, the list of reactions, the reaction parameters, etc.

• A SBML file reader which also generates a Python dictionary for a given biological system.

• A SBML file generator, which takes as input the Python dictionary described hereabove and

generates an SBML description.

• A SPICE file generator, which takes as input the Python dictionary described hereabove and

generates a SPICE netlist.

• A open-source SPICE circuit simulator, NGSPICE in this particular case [3].

More details on the building blocks are given in the Translators subsection.

Background: Equivalence between biological systems and electronic

circuits

An analogy can be drawn between a biological system and an equivalent electronic circuit

[21]. Basically, this analogy consists in considering molecules as electrons. Thus, a (positive or
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negative) source of molecules is equivalent to a source of electrons (current source) in elec-

tronics. Moreover, the local concentration of a molecule in a point can be seen as an accumula-

tion of molecules at this point, just as electrons in a capacitor. This accumulation of molecules

can be modeled by a capacitor which value depends of the volume in which molecules are

accumulated. From a kinetic viewpoint, any chemical reaction can be considered as a positive

or a negative sources of molecules which value (production/consumption rate) depends on

the concentration of other involved or third-party molecules. According to our analogy, any

chemical reaction can be modeled as a set of current sources controlled by other voltages.

This behavior reminds the behavior of electronic transistor. Thus, the symbol of a BJT transis-

tor is used to depict these sources of molecules in the electronic equivalent representation of a

biochemical system. In practice, these “biological transistors” are modeled by variable conduc-

tances or VCCS which value corresponds to the rate equation of the reaction. The main differ-

ence between electronics and biological circuits is that the information carrier is unique in

electronic and multiple in biology (each species may carry information). As a consequence,

the ports of the models of biological device have to be tagged by the species name. Putting

together all biological equivalent devices leads to an electrical network composed of several

VCCS, possibly resistors which model the natural degradation of the molecule and capacitors

which model the accumulation of molecules at a given point of the space.

The principle of the equivalence is illustrated hereafter on two examples. The first one is a

self-regulated enzymatic reaction. Consider two molecules S and P and two chemical reactions:

i) the constant production of S at a given rate α and ii) an enzymatic reaction inhibited by P

and modeled by a modified Michaelis-Menten’s law [30] including a Hill-like inhibition term

depending of P [31]. The ordinary differential equations (ODE) that govern this system are the

Fig 1. The BB-Spice environment. The software environment is composed of 5 tools: a BB-SPICE netlist parser, a SPICE netlist generator, a SBML-to-

SPICE translator, a SBML model generator and a SPICE simulator, i.e. NGSPICE.

https://doi.org/10.1371/journal.pone.0182385.g001
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following:

d½S�
dt
¼ a �

Vmax � ½S�
Km þ ½S�

�
KP

nB

KP
nB þ ½P�nB

� dS � S½ � ð1Þ

d½P�
dt
¼
Vmax � ½S�
Km þ ½S�

�
KP

nB

KP
nB þ ½P�nB

� dP � P½ � ð2Þ

with Vmax the maximal rate of the enzymatic reaction, Km the Michaelis constant, KP and nP
the Hill constant and the Hill number for the inhibition term and dS and dP the natural degra-

dation rate for S and P. The electronic equivalent circuit for this system is given in Fig 2. On

the one hand, the constant production of S is modeled by a constant current source. On the

other hand, the enzymatic reaction is modeled by two biological transistors T1S and T1P

Fig 2. Electrical equivalent circuit for the self-inhibited enzymatic reaction. The sub-circuit (A) corresponds to the model of the constant

production of the substrate. The sub-circuit (B) is the model of the enzymatic reaction. It is composed of a biological transistor modeling the

synthesis of the product and which depends on the concentration of substrate and product according to Eq (3) and another biological transistor

modeling the consumption of the substrate which also depends on the concentration of the substrate and the product. (C) corresponds to the

complete electrical equivalent circuit obtained by putting together sub-circuits (A) and (B) and adding degradation resistors and capacitors.

https://doi.org/10.1371/journal.pone.0182385.g002
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which conductance is:

GT1P ¼ � GT1S ¼
Vmax � ½S�
Km þ ½S�

�
KP

nB

KP
nB þ ½P�nB

ð3Þ

Putting together both devices and adding degradation resistors and capacitors leads to the

electrical circuit given in Fig 2. Application of Kirchhoff laws to this circuit (with Vx� [x])

leads to the same ODE set as (1) and (2).

The second example is a genetic toggle switch [32] described by Fig 3. This system is com-

posed of 5 reactions and 7 species. Reaction 1 is the production of molecule R2 which can be

inhibited by another molecule R1. Reaction 2 is the production of molecule R1 which, in turn,

can be inhibited by the molecule R2. Reaction 3 is an enzymatic reaction that transforms R2

into X2. It is catalyzed by an enzyme I2. By the same way, Reaction 4 is also an enzymatic reac-

tion catalyzed by I1 that transforms R1 into X1. Finally, Reaction 5 is the production of a green

fluorescent protein (GFP) which is inhibited by R1. The network of interaction associated with

this system is given in Fig 3B. The toggle switch has two stables steady states: the state “1” in

which R2 and GFP are produced and the state “0” in which R1 is produced. Switching from

one state to another is possible by injection of I1 or I2. For instance, if the system is in state “1”

and I1 is injected, R1 is consumed by the enzymatic reaction 4. Thus, the production of R2 is

no longer inhibited and the system reach the state “0”. The electrical equivalent circuit of this

system is composed of 5 nodes and 5 biological transistors (Fig 3C). The concentrations of X1

and X2 have no influence on the behavior of the system. Thus, for simplicity sake, the nodes

X1 and X2, as well as the devices associated with these nodes, are not represented. The model

behind the transistors T1, T2 and T5 corresponds to the constant production with a Hill-like

Fig 3. Electrical equivalent circuit for the toggle switch. (A) is the biological representation of the system as regulated genes. (B) is the

interaction network representation of the toggle switch and (C) is the electronic equivalent circuit. Nodes X1 and X2 as well as associated devices

are not represented in the schematic for simplicity sake.

https://doi.org/10.1371/journal.pone.0182385.g003
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inhibition term [31] whereas the model behind T3 and T4 corresponds to a standard Michae-

lis-Menten equation [30].

ngSPICE

NGSPICE is an open-source circuit simulator based on SPICE 3f5. It includes software tools

for the parsing of netlists and for the computation of steady state, transient and frequency anal-

ysis. Moreover, NGSPICE integrates a simple but efficient scripting language that can be used

to program complex simulation processes for a given system (e.g. computation of the steady

states for different sets of parameters, computation of transient simulation with different

inputs, statistical analysis, etc).

BB-SPICE netlist format

A BB-SPICE file looks like a SPICE netlist but contains the same information as in a SBML

model. It is composed of 4 sections: parameters definition, species definition, reactions defini-

tion and simulation directives. Inside each section, the description of the species, the parame-

ters and the reactions are made according to a SPICE-like format, i.e. a raw text file with one

line per instance and argument separated by blank characters. For parameters, user has to de-

fine a name, a value and an optional comment. For species, user has to define a name followed

by up to two arguments which correspond respectively to the initial concentration (default 0)

and the natural degradation rate (default 0). Finally, for each reaction, as in NGSPICE, user

gives a reaction name followed by 1 to 4 arguments that may have different significations de-

pending on the reaction type. The first letter of the reaction name indicates its type. The last

argument is always the set of parameters to use to parametrize the generic rate equation associ-

ated with the reaction type. The list of the reaction types that are implemented in present ver-

sion of BB-SPICE is described in Table 1. Whatever the argument, when multiple values are

required (e.g. enzymatic reaction requires two parameters, one for Vmax and one for Km), they

should be given as a list separated by comma and between braces. Conversely, if no value is

Table 1. Types of reactions implemented in the current version of BB-SPICE.

First letter Reaction

type

Argument #1 Argument #2 Argument #3 Parameters to providea

B Binding

reaction

Reactants Products kon and koff

C Constant production Products β
D Simple

decay

Degraded Species d

E Enzymatic reaction Substrates Products Enzymes vmax and Km

F Passive diffusion In Species Out Species D

H Hill-like controlled reaction Reactants Products vmax, K and n

L mRNA translation Proteins mRNAs kTL

P Pump In Species Out Species Modifiers vmax and a couple of Hill’s (Kj and nj) per regulating protein

T DNA Transcription mRNAs Activators Repressors kTR, KAj and nAj for activators, KRj and nRj for repressors

X Custom reaction Reactants Products Modifiers The reaction rate between simple quotes

List of the 9 regular reaction that are supported by the current version of BB-SPICE. For each of them, 1 to 4 argument have to be given, depending on the

reaction type. They are described in the third, fourth and fifth column of the table. The last argument to provide is the list of parameters which also depends

on reaction type. These parameters are described in the last column of the table. Finally, the last line is the custom-rate reaction for which, the reactant, the

products, the modifier and the reaction rate have to be provided.
aParameters given in the last column correspond to parameters described in Eqs (4) to (10).

https://doi.org/10.1371/journal.pone.0182385.t001
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required for a given argument (e.g. a transcription which is not regulated), the argument

should be 0. The fourth part of the BB-SPICE netlist concerns the simulation directives. It cor-

responds to pre-defined stimuli (e.g. fixed concentration for a given species, constant, pulsed

or periodic molecule sources, etc), the analysis to perform (transient, steady-state, frequency

analysis, etc) and the results to plot. These directives are translated into devices and/or

NGSPICE control instructions. They are summarized in Table 2.

Associated models

This section describes the models used for the biological mechanisms described in Table 1.

For the binding reaction, a first-order reaction rate is used. Let R1, . . . RN be the reactants and

P1, . . . PM be the products. The reaction rate depends on the stoichiometry coefficient for each

reactant (nRk) and each product (nPk) as well as two parameters: the forward reaction constant

kon and the reverse reaction constant koff which is equal to zero if the reaction is irreversible.

The rate equation is the following:

vB ¼ kon �
QN

k¼1
½Rk�

nRk � kof f �
QM

k¼1
½Pk�

nPk ð4Þ

For enzymatic reactions, a Michaelis-Menten model is used [30]. Let S be the substrate and

E the enzyme. The reaction rate is given by:

vE ¼
vmax � ½E� � ½S�

Km þ ½S�
ð5Þ

where vmax is the maximal reaction rate per enzyme and Km the Michaelis constant.

The passive diffusion of a given species X between two points A and B of the space is based

on a simple linear relationship with the gradient of concentration. It only depends on a diffu-

sion constant D. The species at the point A is consumed with a rate vD whereas the species in B

is produced at this rate.

vD ¼ D � ð½X�A � ½X�BÞ ð6Þ

In practice, the two VCCS in A and B can be replaced by a single resistor between A and B and

with value of 1/D.

Table 2. List of the simulation directives implemented in the current version of BB-SPICE.

Directive Type Interpretation

FIX Stimulus Fixes the concentration of a species to a given value

PULSE Stimulus Defines pulsed source of molecules for a given species. Parameters: delay, pulse length, pulse height, frequency)

WAVEFORM Stimulus Generates a source of molecules composed of piecewise constant values for the given species

TRANSFUNC Stimulus

Analysis

Computes the steady state of the system and plots the Bode diagram of the system around this steady state.

TRUTHTABLE Stimulus

and

Analysis

Generates automatically a set of periodic on-off sources of molecules for several species in order to cover all the

combinations from a Boolean viewpoint.

STEADY Analysis Computes the steady state of a system

SWEEP Analysis Computes the steady state of the system when one input vary in a given range

TIMECOURSE Analysis Computes the transient evolution of a system, starting from the initial condition defined for each species.

PLOT Control Plots the concentration of selected species as a function of the time or another concentration (depending on the analysis).

PLOTALL Control Plots the concentration of all species involved in the system as a function of the time or another concentration (depending

on the analysis).

List of the 10 simulation directives supported by current version of BB-SPICE. They are three kind of directive (second column): stimuli, analysis and

control. They are described in more details in the last column.

https://doi.org/10.1371/journal.pone.0182385.t002
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As its name suggests, the Hill-like controlled reaction is modeled by a Hill equation [31].

Let R be the reactant and P the product of the reaction. The reaction rate depends on the con-

centration of reactant as well as three parameters: the maximal reaction rate vmax, the Hill’s

constant K and the Hill’s number n.

vH ¼
vmax � ½R�

n

Kn þ ½R�n
ð7Þ

mRNA translation rate is modeled by a linear relationship with the mRNA concentration:

vL ¼ kTL � ½mRNA� ð8Þ

Where kTL is the translation rate per mRNA,

A pump transfers a given species X from a point A to a point B. By opposition with the pas-

sive diffusion, the transfer (reaction) rate does not depend on the gradient of concentration

but is regulated by the concentration of X in A and/or B and/or by third-party molecule. Regu-

lations are modeled by Hill’s terms [33]. Let M1, . . . MN be the regulating molecules The reac-

tion rate is given by:

vP ¼ vmax �
QN

j¼1

½Mj�
nj

Knj
j þ ½Mj�

nj
ð9Þ

where vmax is the maximal pumping rate, Kj is the Hill’s constant associated with the regulating

molecule Mj and nj is the Hill’s number for the same regulating molecule.

DNA transcription is also modeled by a maximal transcription rate (kTR) modulated by a Hill-

like regulation term. Let A1, . . . AN be the transcription factors that activate the transcription and

R1, . . ., RM the transcription factors that inhibit it. The regulated transcription rate is given by:

vT ¼ kTR �

PN
j¼1

½Aj�

KAj

� �nAj

1þ
PN

j¼1

½Aj �

KAj

� �nAj
þ
PM

j¼1

½Rj�

KRj

� �nRj
ð10Þ

where KAj and nAj are the Hill’s constant and Hill’s number associated with the activator Aj and

KRj and nRj are the Hill’s constant and Hill’s number associated with the activator Rj.

The models for a constant production and a simple degradation are obvious. Finally, for a

user-defined reaction, the equation rate is directly hardcoded as an argument in the netlist.

Translators

BB-SPICE parser. The BB-SPICE netlist is read by a Python script and converted into a

set of dictionaries that contain all the relevant information about the system. There is one dic-

tionary for the parameters, one for the species and one for each type of reaction. The simula-

tion directives are also listed.

NGSPICE netlist generator. The NGSPICE netlist is generated from the set of dictionar-

ies. First, model parameters are defined as generic parameters (.param) in the NGSPICE

netlist. Parameters may depend on other parameters defined previously. Obviously cyclic

parameters definition has to be avoided and returns errors during the compilation of the gen-

erated NGSPICE netlist.

According to the Figs 2 and 3, the definition of a species in the netlist corresponds to the

definition of an electrical node with a capacitor and a resistor in the electronic equivalent cir-

cuit. The name of the electrical node will be the name of the species. The natural degradation

rate of the species is used to fix the value of the resistor and its initial concentration is used to

Modeling and simulation of biological systems using SPICE language
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fix the initial voltage (ic) across the capacitance. Again, these two arguments may depend on

user-defined parameters.

Each element of the reaction list is transformed into a resistor (Rx), a current source (Ix)

or a custom conductance (Gx) according to rules that depends on the associated reaction.

Generally speaking, a reaction with N reactants and M products is converted into N+M user-

defined non-linear VCCS instantiated between the node corresponding to each species and

the ground. The equation of the VCCS is the reaction rate. The directions of the source are

opposite for a reactant and for a product. The only exception concerns the diffusion which is

modeled by a single resistor, the linear degradation which is modeled by a resistance con-

nected to the ground and the constant production which is modeled by a fixed current source.

Finally, simulation directives are transposed into devices, NGSPICE simulation directives

and control statements. For instance, the FIX directive statement is converted into a fixed

voltage source (Vx). PULSE and TRUTHTABLEdirectives statements leads to the implementa-

tion of pulsed current sources (IPULSEx), etc. TIMECOURSE and TRUTHTABLEdirectives

are transformed in.TRAN simulation directive, SWEEP in.DC simulation directive and

TRANSFUNC in.AC simulation directive. Finally, PLOT and PLOTALL are transformed into

the equivalent NGSPICE control statements.

In addition to predefined features described in Table 2, user may define more sophisticated

stimulus, instantiate extra devices or perform other analysis (e.g. parametric sweep, noise anal-

ysis . . .). Associated code lines have to be written directly in NGSICE language and preceded

by the character $. These lines are echoed in the generated NGSPICE file.

SBML importer. The SBML model importer relies on the Python libSBML module [34].

Relevant information picked out of the model are recorded in dictionaries. First, electrical

devices are implemented according to several rules. Then, the model is translated into elec-

tronic devices (capacitors, VCCS, voltage sources . . .) according to several rules. Basically, a

SBML model is composed of fixed parameters, species and reactions with associated rates.

Translation of parameters is straightforward. Then, as for BB-SPICE model, a capacitor is

instantiated for each species. Finally, for each reaction and each species involved in the reac-

tion, a positive (resp. negative) VCCS is instantiated. The value of the VCCS corresponds to

the formula encoded in MathML inside the SBML model.

Several specific features of SBML language that are supported by the current version of the

translator are the following:

• Parameters which scope is limited to a given reaction rate are not implemented but substi-

tuted by their actual value directly in reaction rate equations.

• Assignment rules are implemented as voltage controlled voltage sources.

• Rate rules are implemented as voltage controlled current sources.

• Compartments are taken into account: the value of the capacitor associated to each species

depends on the size of the compartment.

• User-defined functions are also translated. As NGSPICE does not provide any mechanism

for function definition, a dedicated libSMBL method is used in order to substitute each invo-

cation of the function found in formulas by a in-line copy of the function’s body.

• Events that affect parameters and depend only on time are also implemented. Affected

parameters are transformed in nodes with an associated conditional voltage source.

Conversely, other features such as units, events that depend on species concentration or

modify species concentration and algebraic rules are not yet supported.
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SBML generator. A SBML model can also be generated from the set of dictionaries given

by the BB-SPICE parser, via the the Python libSBML [34] module. Parameters with explicitly

defined value are converted into SBML parameters whereas parameters which values depends

on other parameters are converted into assignment. Translation of species definition with

associated initial concentration is straightforward. Then, each reaction is converted into a

SBML reaction. For each of them, reactant, products and modifiers are deduced from the net-

list and the MathML formula of the equation rate is built from the reaction type and its associ-

ated parameters. Moreover, as degradation is not natively taken into account in SBML, an

extra reactions have to be defined for species with non-zero degradation rate. Finally, SBML

model does not involve generic fields for simulation directive. Thus, they are ignored

Results

Performances of BB-SPICE are evaluated according to two criteria: the simulation accuracy

and the computing time. For both criteria, the reference will be COPASI simulation of an

equivalent SBML model.

Simulation accuracy

First, we compare NGSPICE and COPASI simulations on a benchmark of 20 different biologi-

cal systems, which covers all the mechanisms and the analysis capability of BB-SPICE. They

are given in Table 3. Models have been written in BB-SPICE and converted both in NGSPICE

and SMBL. Results are always in good accordance. To illustrate the purpose, simulation results

Table 3. Benchmark of the biological systems used for the comparison between NGSPICE and COPASI.

Model name Biological mechanisms Analysis Ref

B C D E F H L P T X

Bio AND Gate • • • Pulse + Time Course [38]

AND Feed-forward • Time Waveform [39]

Band Detector (Basu) • • DC sweep [35]

Bistable reaction • Time Course + IC [40]

Ca2+ oscillations • • • Time Course + IC [41]

Circadian clock • • • • Time Course + IC [42]

Cdc2 / cyclin inter. • • • • Time Course + IC [43]

Diffusion • Time Course + IC -

Ca2+ enzyme osc. • • • • Time Course + IC [44]

Birhythmic osc. • • • Time Course + IC [45]

ERK Cascade • • Time Course + IC [36]

Feed Forward • • Pulse + Time Course -

Goldbeter Ca2+ model • • • • Fix + Time Course [33]

Half-adder • • • Truth Table + Time Course [37]

Red. Prey-Predator • • Fix + Time Course [46]

Repressilator • • Time Course + IC [47]

Toggle Switch • • Pulse + Time Course [32]

uRNA amplifier • • • Transfer Function [48]

uRNA logic func. • • • Pulse + Time Course [48]

Enzymatic XOR • • • Truth Table + Time Course [38]

List of the 20 biological systems that form the benchmark used to compare SPICE with COPASI on files generated from a common BB-SPICE netlist. For

each, the type of the biological reaction involved in the model, the type of analysis and the reference in which the model has been published are given.

https://doi.org/10.1371/journal.pone.0182385.t003
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obtained with three of them are given in Fig 4: the band-detector of Basu for which production

of GFP occurs for intermediate concentration of AHL [35], a cascade of three kinase/phospha-

tase monocycle [36] and a mRNA-based half-adder with Erythromycin and Phloretin as input

and YFP (sum) and dsRed (carry) as output [37]. The mean square deviation between results

is very weak: 0.35% for the band detector, 30 ppm for the kinase/phosphatase cascade and

0.04% for the half-adder. The fact that COPASI and NGSPICE do not use the same integration

method can explain this weak deviation.

Fig 4. Comparison of simulation results obtained with a model written in BB-SPICE and, on the one hand, translated and simulated with

NGSPICE and, on the other hand, translated in SBML and simulated with COPASI. The system modeled are a band detector (A), a kinase/

phosphatase cascade (B) and a genetic half-adder (C).

https://doi.org/10.1371/journal.pone.0182385.g004
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Model conversion

The same comparison has been made with SBML models picked up in the BioModels Database

[19] in order to validate the SBML to NGSPICE conversion. A benchmark of 25 models has

been considered. It is described in Table 4 All the features described in the Methods section

are covered by this benchmark. For all of them, simulation results obtained with SBML model

on COPASI and with translated model on NGSPICE are in good accordance.

Computation time

The second criterion used to compare NGSPICE and COPASI is the computation time. Two

artificial benchmarks of large scale models have been generated. The first one, is composed of

large scale oscillating gene regulatory networks (GRN) based on the principle of the repressila-

tor [47]. The networks contains an odd number of genes going from 3 to 4999 genes repressing

each. Taking mRNA into account, such models involves from 8 to 10000 reactions and species;

a DNA transcription that synthesize an mRNA and the translation of this mRNA into the

Table 4. Benchmark of the SBML models picked up from the Biomodels database, used for the validation of the SBML to NGSPICE translator.

BM# Comp Func Para Spec Assi Rules Reac Event Ref

1 Nicotinic acetylcholine receptors 1 0 27 12 0 0 17 1 [49]

3 Mitotic oscillator 1 0 3 3 2 0 7 0 [50]

5 Cell division cycle 1 0 0 7 2 0 9 0 [43]

6 Cell division cycle (reduced model) 1 0 4 4 2 2 3 0 [43]

8 Cell cycle 1 0 3 5 2 0 13 0 [51]

9 MAPK Cascade 1 0 1 22 4 0 20 0 [52]

12 Repressilator 1 0 7 6 9 0 12 0 [47]

13 Calvin Cycle in plants 2 0 1 27 0 0 21 0 [53]

14 MAPK Cascade / Scaffold proteins 1 0 0 86 0 0 300 0 [54]

16 Circadian Clock 3 0 0 7 1 0 10 0 [42]

20 Squid axon 1 0 9 0 14 4 0 0 [55]

21 Circadian Clock 2 0 2 10 2 0 24 0 [56]

35 Genetic Oscillators 1 0 0 10 0 0 16 0 [57]

51 Carbon metabolism 2 0 0 18 7 0 48 0 [58]

55 Circadian Clock 1 1 65 13 0 0 32 0 [59]

60 Ryanodine receptors 1 0 0 4 1 0 3 0 [60]

65 Lac operon 1 0 23 9 0 0 16 0 [61]

73 Circadian clock 1 4 0 16 0 0 48 0 [62]

77 GnRH-induced LH secretion 1 0 2 8 1 0 5 1 [63]

88 Myosine phosphorylation 3 0 0 105 0 0 110 1 [64]

89 Circadian clock 1 1 78 16 0 0 36 0 [65]

120 TCell repectors 1 0 10 5 1 0 10 2 [66]

182 Intercellular signalling control 3 0 9 37 19 0 32 0 [67]

250 Controlled gene expressions 3 56 141 49 0 0 78 0 [68]

318 Rb-E2F switch 1 0 0 7 0 0 17 2 [69]

List of the 25 biological systems that form the benchmark used to compare SPICE with COPASI on files generated from a SBML file from the Biomodels

database. For each of them, the identifier in the Biomodels database, the name of the reaction, the number of SBML structures (compartment, used-defined

function, global parameters, species, assignment, rules, reactions and events) implemented in the model as well as the reference of the paper in which the

model is published are given.

https://doi.org/10.1371/journal.pone.0182385.t004
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transcription factor for each gene + the mRNA and the reporter. Long-time transient simula-

tions are carried out on these models. The simulation result, the compilation time of the model

and the simulation time are monitored for three different tools: COPASI, NGSPICE and a com-

mercial SPICE simulator optimized for multi-core processing, SPECTRE1. Results are given

in the Fig 5A. CPU time for NGSPICE and COPASI are comparable for GRN with up to 500

genes. However, over this value, compilation and simulation time take off with COPASI while it

remains linear with the number of genes with NGSPICE. With 10,000 reactions, the speed up

offered by NGSPICE is about 30. Moreover, a speed-up of 40 can be observed between SPEC-

TRE1 and NGSPICE simulation time for large systems. Computation time for SPECTRE1 is

always dominated by the compilation step, which can hardly benefit from parallelization, unlike

simulation. It should be mentioned that the compilation is only required once when the model

is modified.

The second benchmark is made of models of random metabolic pathways. The pathways

are characterized by two values: the number of involved N and the number of reactions M.

Each pathway is composed of a linear path (i.e. the substrate of the Nth reaction is the Nth

species and its product is the N + 1th species) as well as several randomly drawn feedback

and feedforward (reaction N + 1 to M). In addition, each reaction is catalyzed by one of the

involved species in the pathway (randomly drawn) according to a Michaelis-Menten model.

On each model, the steady state is computed. A comparison of computation time between

NGSPICE and COPASI for linear pathways (N = M) is given in Fig 5B. The nodal analysis

performed by NGSPICE is much more efficient that COPASI algorithm. A speed-up of 50 is

observed for pathways with 50 to1000 species (pathways with more than 1000 species have

not been tested with COPASI because models failed to compile) without any lost in term of

accuracy: the steady state concentration obtained by both tools is comparable with a mean

square error of less than 10 ppm. Second, pathways with 20 species and a variable number

of feedback and feedforward reactions are simulated. Results are given in Fig 5C. The same

tendency is observed, confirming the interest of using SPICE, especially for large systems.

This result was predictable insofar SPICE has emphasis on integrated circuits, which are, by

nature, very large scale systems.

Fig 5. Comparison of computation time obtained with NGSPICE, COPASI and SPECTRE® for two different benchmarks of biological

models. (A) is the transient simulation of gene regulator networks composed of variable number of genes. For SPECTRE® and COPASI,

compilation time and simulation time are distinguished. (B) is the steady state simulation of linear metabolic pathways with a variable number of

involved species. For COPASI, the range of tested value is reduced due to two limitations. First, the resolution of the CPU time measurement is the

second. Thus, at least 50 reactions are required to obtain a significant value. Second, above 1000 reactions, the model is too huge to compilation

failed due to memory errors. Finally, (C) is the steady state of metabolic pathways with 20 species and a variable number of reactions. Again,

computation time measurement is not significant with COPASI under 50 reactions.

https://doi.org/10.1371/journal.pone.0182385.g005
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Models integration:A penicillin biosensor

BB-SPICE paves the way for the modeling and the simulation of biosensors in a single lan-

guage and environment. This purpose is illustrated on a penicillin sensor described by Caras

et al. [70]. It is composed of two ion-sensitive field effect transistor (ISFET) [71]. The gate of

one of them is coated with penicillinase and both are in contact with a reaction chamber

which contains penicillin and a phosphate buffer via a permeable gel. At the surface of the

functionalized ISFET, penicillinase catalyzes the hydrolysis of penicillin, releasing H+ ions that

are sensed by the ISFET. A readout circuit converts the modification of the characteristics of

the ISFET into an exploitable voltage. The building blocks of the model are described in Fig

6A. The biological part is composed of 16 chemical species (only 6 chemical species are

involved in the system but 5 of them are instantiated three time to distinguish the concentra-

tion in the chamber and at the surface of each ISFET), one enzymatic reaction, 10 diffusion

mechanisms through the gel membrane and 3 binding reactions for the phosphate buffer in

the reaction chamber and at the surface of each ISFET. Martinoina’s model is used for the

ISFET [72] and the readout circuit composed of standard electronic device only is the one

described in [73]. Simulation results are given in Fig 6B to Fig 6E. Those results are in accor-

dance with experimental data that can be found in the literature [73,74]. On the output

response with an intermediate concentration of penicillin (Fig 6E) three phases can be identi-

fied. First, several penicillin molecules reach the penicillinase layer due to diffusion. This leads

to the generation of H+ but the phosphate buffer plays its role and the pH variation is weak.

Second, much more H+ ions are accumulated. They saturate the buffer and the pH decreases

quickly. Finally, generated H+ ions diffuse back to the solution and to the reference ISFET. In

the meantime, all the penicillin is consumed. At the equilibrium, pH in the chamber and on

both ISFET is homogenous and the output voltage decrease to 0. If the initial concentration of

penicillin is high, the first stage is too short to be observed. Conversely, if the initial concentra-

tion of penicillin is low, the buffer is never saturated and the pH does not change.

Discussion

BB-SPICE is a powerful alternative to traditional modeling and simulation tools used in sys-

tems biology and synthetic biology (mostly SBML and COPASI). The writing of the model is

less explicit than in SBML but much more faster and efficient, with condensed information

recorded directly in a text file. The results described hereabove show that, in terms of accuracy,

both approaches are equivalent and that the back-and-forth conversion between BB-SPICE

and SBML is efficient. In terms of computation time, there is a significant gap in favor of

NGSPICE in comparison with COPASI for the steady state calculation and for transient simu-

lation of large systems. The speed up is significant enough to allow modeling and simulating

much more complex systems than the one that could be handled by COPASI. Moreover, it

can be pointed out that significant speed up (more than three orders of magnitudes) can be

obtained with a commercial simulator (namely SPECTRE1 from CADENCE1) optimized

for multicore computation of large scale electronic circuits. Again, this speed up makes possi-

ble the study of more complex biological systems.

BB-SPICE and NGSPICE does not cover all COPASI capabilities. For example, it does not

support flux balance analysis [75], elementary modes analysis [76] or stochastic simulations

[77], which are useful tools for the theoretical study of metabolic pathways. Nevertheless, such

analysis remain feasible by using the SBML model generated from the BB-SPICE netlist and

COPASI or by post-processing on NGSPICE results. Conversely, it makes possible alternative

analyzes that are widely used in electronics and may have potential to exploit in biology, e.g.
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small-signal (AC) frequency analysis around a steady state, noise sensitivity analysis or circuit

optimization algorithms [7].

The performances of open-source simulation tools for electronic circuits are likely to

increase over the next few years to adapt to the increasing complexity of the electronic circuits

and devices. One of the most considered improvements is the deployment of simulation algo-

rithms on GPU. CUSPICE already offers a GPU-compatible version of NGSPICE [78]. Unfor-

tunately, this version does not support VCCS, which is widely used in our models. Nevertheless,

there is no mathematical or technological lock against the integration of VCCS in CUSPICE.

Fig 6. Results on the penicillin sensor. (A) is the overview of the building blocks of the model. Green blocks have been described in BB-SPICE

whereas blue ones have been described directly in NGSPICE and integrated in the BB-SPICE netlist preceded by the 9 character. (B) is a drain-

source current vs reference electrode voltage characteristics of the ISFET alone. (C) and (D) are the simulation results for the biological part of the

model alone. (C) is the variation of pH in the solution as a function of concentration of penicillin for two different phosphate buffer concentrations.

(D) is the transient evolution of the pH on the gate of both ISFETs for a penicillin concentration of 0.05 mol/l. Finally, (E) is a transient simulation for

the whole model (biological part, ISFETs, biasing and processing electronics). The evolution of the output voltage is given for different initial

penicillin concentrations.

https://doi.org/10.1371/journal.pone.0182385.g006
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Alternatives to CUSPICE, such as TinySPICE [4], also exists and deserve to be investigated. As

BB-SPICE generates SPICE-compatible netlists, changing SPICE simulator is straightforward.

To optimize further, another outlook is to deploy directly the models of biological mechanisms

as new devices hardcoded in NGSPICE or CUSPICE instead of using VCCS, as it is the case for

electronic devices (diode, BJT transistors, MOSFETs).

Another interest of BB-SPICE standard is to make biological models directly compatible

and connectable with electrical models. This point has been illustrated on the penicillin sensor.

The model is described in a unique text file which contains the BB-SPICE model of biochemi-

cal reaction and a NGSPICE models for the ISFET and the biasing and readout circuit. More-

over, the compatibility of biological and electronic models is of great interest for the reuse of

EDA tools in the field of synthetic biology, as it has been discussed in the introduction of this

article.

As a conclusion, BB-SPICE is open-source and available for the biology community as well

as for emerging engineering discipline at the interface with biology (synthetic biology, meta-

bolic engineering design of biosensors, lab-on-chips etc). In its present version, it supports the

most common biological mechanisms involved in a biological system. We wish to evolve it to

fit as much as possible the needs of the community. In parallel, we hope that BB-SPICE inherit

from future improvements of the open-source NGSPICE simulators both one the side of

computational algorithms and on the side of optimization and parallelization on multi-core

computers or on GPUs.
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