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ABSTRACT
In a recent paper in Science, Fidelle et al. unravel a gut immune checkpoint that is subverted by 
antibiotic treatment. Post-antibiotic dysbiosis of the ileum causes an increase in bile acids that 
downregulate MAdCAM−1, thereby triggering the exodus of immunosuppressive T cells from gut- 
associated lymphoid tissues toward tumors.

ARTICLE HISTORY 
Received 29 May 2023  
Revised 9 June 2023  
Accepted 9 June 2023 

KEYWORDS 
Cancer immunotherapy; 
microbiota; 
immunosuppression; 
MAdCAM-1; bile acids; 
Enterocloster; gut

Over the past few years, it has become increasingly recognized 
that cancer is more than a disease caused by malignant cells. 
Rather, cancer results from a disequilibrium of the bodywide 
ecosystem with its metabolic, neuroendocrine and immune cir-
cuitries that also implies the microbiota.1 Intestinal dysbiosis is 
a general feature of poor health and aging.2 Dysbiosis also 
participates to carcinogenesis, tumor progression and oncother-
apeutic failure, not only in gastrointestinal but also in distal 
cancers. This latter point has been particularly well documented 
for immunotherapy targeting the PD−1/PD-L1 interaction, 
where the prolonged (≥7 days) use of broad-spectrum antibiotics 
during the 2 months before and 1 month after initiation of the 
treatment is associated with poor outcome.3

In mechanistic terms, gut dysbiosis may be expected to result 
in an increase in the abundance of noxious (immunosuppressive 
and proinflammatory) microbes or – alternatively or in addition – 
the depletion of beneficial (immunostimulatory and anti- 
inflammatory) microbes.3 In a recent Science paper,4 we reported 
the finding that treatment with broad-spectrum antibiotics, fol-
lowed by their discontinuation, leads to the recolonization of the 
gut by harmful bacteria from the Enterocloster genus including 
E. clostridioformis, both in mice and in cancer patients. Indeed, 
oral gavage of tumor-bearing mice with E. clostridioformis is 
sufficient to block the therapeutic response to PD−1 blockade.4 

Intrigued by this finding, we engaged in a combination of hypoth-
esis-driven and systematic studies to understand how transient 
treatment with antibiotics subverts therapeutically induced 
immunosurveillance.

We emitted the hypothesis that dysbiosis caused by anti-
biotics might affect the long-range trafficking of immune cells 

from the gut through the lymphatic and cardiovascular sys-
tems. Indeed, we observed in mice that administration of anti-
biotics causes an increase in the trafficking of a particular 
immunosuppressive T cell subpopulation from the lamina 
propria of the ileum through the mesenteric lymph node to 
the tumor microenvironment and the tumor-draining lymph 
node. Extensive phenotyping of this T cell subset revealed that 
they bear both characteristics of regulatory T cells and proin-
flammatory T helper 17 cells (with the simultaneous expression 
of two master transcription factors, Foxp3 and Rorγt) leading 
to their designation as Treg17 cells. In addition, the mechan-
isms through which such Treg17 cells are released from the gut 
was unraveled. Indeed, high endothelial cells present in the 
ileum normally express mucosal addressin cell adhesion mole-
cule−1 (MAdCAM−1), which interacts with a specific integrin 
heterodimer (α4β7) that is expressed on some immune cell 
types present in the gut including Treg17 cells, hence retaining 
them locally. However, dysbiosis is linked to the downregula-
tion of MAdCAM−1, thus unleashing α4+β7+ Treg17 cells from 
their local confinement and allowing them to travel to tumors. 
Indeed, knockout of the genes coding for MAdCAM−1 or the 
integrin β7, as well antibodies blocking MAdCAM−1 or the 
α4β7 heterodimer, are sufficient to cause the translocation of 
α4+β7+ Treg17 cells from the gut to tumors, and to compromise 
the efficacy of PD−1 blockade in vivo. These observations led 
us to the conclusion that the downregulation of ileal MAdCAM 
−1 expression explains why gut dysbiosis compromises immu-
nosurveillance. In favor of this hypothesis, oral gavage of 
E. clostridioformis caused the downregulation of ileal 
MAdCAM−1.4
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The gavage with E. clostridioformis was accompanied by 
major shifts in the ileal abundance of bile acids.4, which collec-
tively may affect MAdCAM−1 expression5 and mediate systemic 
immunosuppression.6 To identify which particular bile acid 
species regulate MAdCAM−1, we engineered two distinct 
mouse endothelial cell lines to express green fluorescent protein 
(GFP) under the control of the Madcam1 promoter. These cell 
lines downregulated GFP (indicative of the inhibition of the 
Madcam1 promoter) in response to E. clostridioformis in vitro. 
Moreover, they upregulated GFP in response to two inflamma-
tory cytokines (interleukin−1β and tumor necrosis factor-α), and 
this upregulation was inhibited by individual bile acids, in parti-
cular lithocholic acid (LCA), and ursodeoxycholic acid (UDCA). 
Subsequent in vivo experiments confirmed that gavage with 
either LCA and UDCA is sufficient to trigger the reduction of 
Madcam1 mRNA expression in vivo, in the ileum, Peyer’s 
patches and mesenteric lymph nodes.7 However, at this point, 
it remains to be clarified how these effects of LCA and UDCA are 
achieved at the mechanistic level, likely through an action on one 
or several bile acid receptors.8 Moreover, it will be interesting to 
explore the possibility that dietary fibers mediate their reported 
immunotherapy-stimulatory effects9 through effects on toxic 
bile acids.10

Of note among these two bile acids, UDCA is clinically used 
for the treatment of primary biliary cholangitis, an autoimmune 
disease affecting cholangiocytes.11, as well as for the avoidance of 
biliary complications after liver transplantation.12 It will be 
interesting to explore the possibility that this liver-specific 

immunosuppressive effect is achieved through the UDCA- 
induced downregulation of ileal MAdCAM−1, followed by the 
homing of Treg17 cells from the gut-associated lymphoid tissue 
into the inflamed liver, where MAdCAM−1 is expressed on 
endothelial cells.13 Irrespective of this conjecture, we found 
that transgene-enforced expression of MAdCAM−1 in the liver 
(mostly on hepatocytes) increased the local infiltration by Treg17 
cells in mice subjected to transient antibiotic treatment and 
simultaneously reduced the frequency of Treg17 cells in the 
tumor bed.7 Thus, MAdCAM−1 expression by the liver can 
lead to the interception of Treg17 cells during their voyage 
from the gut to the cancer.

Clinically, the dosage in the serum of the soluble form of 
MAdCAM−1 (sMAdCAM−1) helped to evaluate its expression 
in the gut. Indeed, we found that patients who took antibiotics 
showed a significant decrease in sMAdCAM−1, in accordance 
with the decrease of Madcam1 expression assessed on ileal 
biopsies from antibiotics-treated patients.7 Furthermore, 
sMAdCAM−1 was a strong prognostic factor in cancer patients 
treated with immunotherapies. Low levels of sMAdCAM−1 
before starting the immunotherapy were associated with poor 
clinical outcome, in lung, renal and bladder cancer patients.7 

Also, patients with low sMAdCAM−1 showed an enrichment 
of their gut microbiota with E. clostridioformis.7

Altogether, the aforementioned results plead in favor of 
a scenario in which gut dysbiosis causes the expansion of 
E. clostridioformis, which downregulates ileal expression of 
MAdCAM−1, thus allowing α4+β7+ Treg17 cells to travel from 
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Figure 1. Summary of the pathogenic cascade linking antibiotherapy to deficient anticancer immunotherapy responses. The central pathogenic pathway can be 
mimicked by experimental interventions (red) or interrupted by countermeasures (green).
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the gut to the mesenteric lymph node and then to tumors to 
cause local immunosuppression (Figure 1).

It should be noted that dysbiosis is difficult to be defined in 
global terms due to major geographic differences in the com-
position of the normal microbiota across continents, countries 
and regions.14 For this reason, it would not be surprising that 
other bacterial species than E. clostridioformis would mediate 
similar effects as those observed in our (French and Canadian) 
cohorts. Indeed, it is our intuition that, cancer- and immune- 
relevant products of the microbiota, including metabolites and 
ligands of pattern recognition receptors, should be more easily 
discernible biomarkers of dysbiosis than shifts in the metage-
nomic characteristics of the microbiota. As a caveat, however, 
such functional products should not be investigated in feces 
but rather at their major site of action, most likely the ileum.
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