
1356 Proteomics 2015, 15, 1356–1374DOI 10.1002/pmic.201400377

REVIEW

Open source libraries and frameworks for biological data

visualisation: A guide for developers

Rui Wang∗, Yasset Perez-Riverol∗, Henning Hermjakob and Juan Antonio Vizcaı́no

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome
Campus, Hinxton, Cambridge, UK

Received: August 7, 2014
Revised: October 21, 2014

Accepted: November 26, 2014

Recent advances in high-throughput experimental techniques have led to an exponential in-
crease in both the size and the complexity of the data sets commonly studied in biology. Data
visualisation is increasingly used as the key to unlock this data, going from hypothesis gener-
ation to model evaluation and tool implementation. It is becoming more and more the heart
of bioinformatics workflows, enabling scientists to reason and communicate more effectively.
In parallel, there has been a corresponding trend towards the development of related software,
which has triggered the maturation of different visualisation libraries and frameworks. For
bioinformaticians, scientific programmers and software developers, the main challenge is to
pick out the most fitting one(s) to create clear, meaningful and integrated data visualisation
for their particular use cases. In this review, we introduce a collection of open source or free to
use libraries and frameworks for creating data visualisation, covering the generation of a wide
variety of charts and graphs. We will focus on software written in Java, JavaScript or Python. We
truly believe this software offers the potential to turn tedious data into exciting visual stories.

Keywords:

Bioinformatics / Chart / Hierarchy / Network / Software library

� Additional supporting information may be found in the online version of this article at
the publisher’s web-site

Correspondence: Dr. Juan Antonio Vizcaı́no, European Molecu-
lar Biology Laboratory, European Bioinformatics Institute (EMBL-
EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge,
CB10 1SD, UK
E-mail: juan@ebi.ac.uk
Fax: +44-1223-494-484

Abbreviations: API, application programming interface; AWT,
abstract window toolkit; CATH, class, architecture, topology, ho-
mology (classification); CSS, CSS3, cascading style sheets; DOT,
graph description language; EBI, European Bioinformatics Insti-
tute; ENA, European Nucleotide Archive; GO, Gene Ontology;
GPU, Graphics Processing Unit; GRAL, GRAphing Library; GUI,
graphical user interface; HTML, HTML5, hyper text markup lan-
guage; JSON, javascript object notation; JSP, java server pages;
JUNG, java universal network/graph (framework); PIES, protein
interaction extraction system; SCOP, Structural Classification Of
Proteins; SNP, Single Nucleotide Polymorphism; SVG, scalable
vector graphics; SWT, standard widget toolkit; UI, user interface;
URI, uniform resource identifier; VML, vector markup language;
WebGL, Web Graphics Library

1 Introduction

Data visualisation can be defined as the graphical display of
abstract information for two main purposes: data analysis and
communication. Data visualisation has long been an integral
tool for scientific research, constituting a powerful means
to discover and understand the information available in the
data and to present them to others [1]. As we currently are in
the ‘Big Data’ era, it becomes more important to expand our
capacity to process information for analysis and communica-
tion purposes [1, 2]. In a life sciences research context, good
visualisation techniques can support the statistical treatment
of data or even become an analysis technique, apart from be-
ing used as a communication tool. The main goal is to benefit
from the natural human pattern recognition ability, and apply
this through interactive software for efficient exploration and
effective communication [3, 4].

∗Both authors contributed equally to this manuscript.
Colour Online: See the article online to view Figs. 1–4 in colour.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0/


Proteomics 2015, 15, 1356–1374 1357

The development of software for data visualisation is a de-
sign process that requires multi-disciplinary skills, like engi-
neering, statistics and graphical design. Ever since the intro-
duction of high-throughput experimental approaches, there
has been a growing appetite for the visual display of the in-
formation to help in the study of biological processes [5]. Bi-
ological researchers are constantly looking for fresh ways of
drawing conclusions from complex data sets and combining
them to generate new insights [6]. As a result, we are witness-
ing a rapid increase in data visualisation tools and software
libraries developed in the context of genomics [7–11], tran-
scriptomics [12, 13], proteomics [14–16] and systems biology
approaches [5, 17], among other ‘omics’ fields. These tools
can be broadly classified in two main categories:

(i) Specialised tools, where the focus is put on answering
a specific or a group of related questions. For example,
BioJS [18] is a recent initiative aiming to create a registry
of graphical components that are easy to reuse, to repre-
sent biological information. Each component in the BioJS
registry is designed to perform a particular visualisation
task, such as ‘browse chromosome’ or ‘view protein 3D
structure’, among many others.

(ii) Integration tools, where the focus is to incorporate multi-
ple data types, organize and integrate them under one sin-
gle framework. An exemplary case is Cytocape [19,20], an
open source software platform for integrating bimolec-
ular interaction networks. It allows experimentalists to
overlay annotations, gene expression profiles and other
data types into these networks, enabling them to per-
form large-scale analysis without much informatics and
programming expertise.

In parallel to biology, the field of data visualisation is con-
stantly evolving and considerable progress has been made in
integrating and displaying highly complex data [2,6]. Coupled
with the development of high-performance web browsers and
interactive visualisation [21] using JavaScript and HTML5
[22], a diverse range of high-quality visualisation tools and
libraries are being created, developed and continuously en-
hanced. However, despite the vast improvement in biological
data visualisation tools and libraries, two major challenges
remain at present:

(i) How to benefit from this multi-scale complex data with-
out being overwhelmed [23]. Clear objectives are needed
to drive the design process in order to truly benefit from
the visualisation.

(ii) The advances in visualisation are not adequately de-
scribed and shared within the biological scientific com-
munity [24,25]. Without the help of the visualisation prac-
titioners, it can be a daunting task for scientists to deter-
mine the best visualisation option among the vast range
of choices.

In fact, due to the lack of understanding of what is available
and the lack of standardisation in biological data visualisa-
tion, scientists often decide to develop their own customised
solutions. However, as regularly happens in software devel-
opment, this is often the most costly route [26]. To achieve
meaningful and efficient data visualisation requires substan-
tial investment in, e.g. biological expertise, user feedback and
development time. In most cases, this is beyond the capacity
of most research groups. Beyond the obvious need to try and
practice, we first need to know and understand well the tools
and libraries available [26].

Taking this into account, in this review we will try to
bridge the existing gap between the ever-increasing require-
ments for biological data visualisation and the overwhelming
range of open source or free to use visualisation libraries
and frameworks currently available. We will focus our ef-
forts in three key areas: (i) Charts, the most frequently used
visualisation techniques; (ii) Networks, widely used in sys-
tems biology and ‘omics’ data integration and (iii) Hierar-
chies, which employ tree structures for visualising hierarchi-
cal data. We will cover software written in Java, JavaScript or
Python. Of course, there is software written in other program-
ming languages. For instance, the R programming language
(http://www.r-project.org/) related software is explained in
detail in another manuscript in this special issue.

Another important consideration is that the field of data vi-
sualisation is evolving very rapidly. It is important to highlight
that this manuscript is aimed at bioinformaticians, scientific
programmers and/or software developers. As such, we want
to make the reader aware that a certain technical background
is needed to follow and fully understand the text. We hope this
manuscript will help them to find the right software for their
purposes. The source code and the corresponding data to all
the original figures generated are available at https://github.
com/ypriverol/visualisation-manuscript-examples.

2 Data visualisation in life sciences

The design of visualisation techniques is a process guided by
three different stages: (i) determine which questions to ask;
(ii) identify the appropriate relevant data and (iii) select effec-
tive visual encodings to map data values to graphical features
(e.g. position, size, shape and colour). One of the main chal-
lenges is that, for any given data set, the number of visual en-
codings (and thus the space of possible visualisation designs)
is extremely large. To guide this process, computer scientists,
psychologists and statisticians have studied how well different
data encodings facilitate the comprehension of different data
types such as numbers, categories and networks. This process
has led to the emergence of new mathematical models and
algorithms such as principal component analysis, clustering,
self-organized maps or hierarchical aggregation algorithms.
At the same time, selecting the right set of visual compo-
nents must be done in combination with the data compres-
sion and encoding processed. For instance, to represent a tree

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.r-project.org/
https://github.com/ypriverol/visualisation-manuscript-examples
https://github.com/ypriverol/visualisation-manuscript-examples


1358 R. Wang et al. Proteomics 2015, 15, 1356–1374

Figure 1. General comparison of features among the different libraries described in the main text: (A) charts, (B) networks, and
(C) hierarchical representations. The figure was generated using the D3.js library.

structure, the data must be encoded in hierarchical data struc-
tures using different algorithms like for instance, k-means,
fuzzy or k-nearest neighbours. For that reason, the evolution
of both fields: data visualisation and computer algorithms has
gone in parallel in recent years [2, 23].

Different taxonomies or classifications of data visualisa-
tion methods and techniques have been proposed [27–29].
Figure 1 shows different data visualisation techniques, the
software libraries that implement and develop those con-
cepts, and the charts and plots used in the implementation.
The seven categories proposed in the Shneiderman classifi-
cation [29] were condensed to three main categories in our
classification:

(i) Charts: Multidimensional charts and plots are data in
which items with n attributes become points in an n-
dimensional space.

(ii) Networks: Structures where items are linked to an arbi-
trary number of other items.

(iii) Hierarchies: Collections of items in which each item has
a link to one parent or child item.

This conceptual chart (Fig. 1) will guide the readers
throughout the contents of this review.

3 Charts

Multi-dimensional [29] visualisation methods can be used to
represent and plot data. Among the possible choices, charts
comprise probably the most popular techniques, since they
are very effective in presenting 2- or 3D data. There are many
types of charts: x–y (and -z) plots, line graphs, bar and col-
umn charts, area charts, stacked bars and column graphs,
histograms, pie charts, doughnut charts, box plots and many
more.

In this section, we will focus on five libraries and will also
comment on several packages that support the generation of
generic charts and plots for displaying multidimensional data
(Table 1). A list of the most common charts is described in the
Supporting Information Table 1. In addition, a short descrip-
tion about the meaning of each chart and the corresponding
software is also included there.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com



Proteomics 2015, 15, 1356–1374 1359

T
a

b
le

1
.

Li
b

ra
ri

es
an

d
fr

am
ew

o
rk

s
fo

r
d

at
a

vi
su

al
iz

at
io

n
sp

lit
in

th
re

e
d

iff
er

en
t

ca
te

g
o

ri
es

:c
h

ar
ts

,n
et

w
o

rk
s

an
d

h
ie

ra
rc

h
ie

s

N
am

e
La

n
g

u
ag

e
P

la
tf

o
rm

Ty
p

e
D

es
cr

ip
ti

o
n

S
u

p
p

o
rt

ed
C

at
eg

o
ri

es
U

R
L

D
3.

js
Ja

va
S

cr
ip

t
W

eb
O

p
en

so
u

rc
e

Ja
va

S
cr

ip
t

vi
su

al
is

at
io

n
fr

am
ew

o
rk

d
es

ig
n

ed
to

u
ti

lis
e

th
e

ca
p

ab
ili

ti
es

o
f

C
S

S
3,

H
T

M
L5

an
d

S
V

G
C

h
ar

ts
/H

ie
ra

rc
h

ie
s

h
tt

p
://

d
3j

s.
o

rg
/

JF
re

eC
h

ar
t

O
rs

o
n

C
h

ar
ts

Ja
va

D
es

kt
o

p
W

eb
Fr

ee
Ja

va
w

el
l-

kn
o

w
n

lib
ra

ry
to

g
en

er
at

e
ch

ar
ts

in
2D

an
d

3D
C

h
ar

ts
h

tt
p

://
w

w
w

.jf
re

e.
o

rg
/jf

re
ec

h
ar

t/

G
o

o
g

le
C

h
ar

ts
Ja

va
S

cr
ip

t
W

eb
Fr

ee
G

o
o

g
le

p
ro

je
ct

to
em

b
ed

m
an

y
d

iff
er

en
t

ki
n

d
s

o
f

ch
ar

ts
an

d
m

ap
s

in
w

eb
p

ag
es

C
h

ar
ts

/H
ie

ra
rc

h
ie

s
h

tt
p

://
co

d
e.

g
o

o
g

le
.c

o
m

/a
p

is
/c

h
ar

tt
o

o
ls

m
at

p
lo

tl
ib

P
yt

h
o

n
D

es
kt

o
p

O
p

en
so

u
rc

e
D

es
kt

o
p

p
lo

tt
in

g
lib

ra
ry

w
ri

tt
en

in
P

yt
h

o
n

fo
r

cr
ea

ti
n

g
q

u
al

it
y

p
lo

ts
(p

ri
m

ar
ily

in
2D

)
C

h
ar

ts
/H

ie
ra

rc
h

ie
s

h
tt

p
://

m
at

p
lo

tl
ib

.o
rg

/

M
P

LD
3

P
yt

h
o

n
W

eb
O

p
en

so
u

rc
e

P
yt

h
o

n
p

ac
ka

g
e

th
at

p
ro

vi
d

es
a

D
3.

js
b

as
ed

vi
ew

er
fo

r
m

at
p

lo
tl

ib
C

h
ar

ts
h

tt
p

://
m

p
ld

3.
g

it
h

u
b

.io
/

G
R

A
L

Ja
va

D
es

kt
o

p
O

p
en

so
u

rc
e

Ja
va

lib
ra

ry
fo

r
d

is
p

la
yi

n
g

p
lo

ts
C

h
ar

ts
h

tt
p

://
tr

ac
.e

ri
ch

se
if

er
t.

d
e/

g
ra

l/
Jz

y3
d

Ja
va

D
es

kt
o

p
O

p
en

so
u

rc
e

Li
b

ra
ry

to
ea

si
ly

d
ra

w
3D

sc
ie

n
ti

fi
c

d
at

a
C

h
ar

ts
h

tt
p

://
w

w
w

.jz
y3

d
.o

rg
/

X
C

h
ar

t
Ja

va
D

es
kt

o
p

O
p

en
so

u
rc

e
Li

g
h

tw
ei

g
h

t
Ja

va
lib

ra
ry

fo
r

p
lo

tt
in

g
d

at
a

C
h

ar
ts

h
tt

p
://

w
w

w
.x

ei
am

.c
o

m
/x

ch
ar

t
Fl

o
t

Ja
va

S
cr

ip
t

W
eb

O
p

en
so

u
rc

e
P

lo
tt

in
g

lib
ra

ry
fo

r
jQ

u
er

y
C

h
ar

ts
h

tt
p

://
w

w
w

.fl
o

tc
h

ar
ts

.o
rg

/
B

o
ke

h
P

yt
h

o
n

W
eb

O
p

en
so

u
rc

e
P

yt
h

o
n

in
te

ra
ct

iv
e

vi
su

al
iz

at
io

n
lib

ra
ry

th
at

ta
rg

et
s

m
o

d
er

n
w

eb
b

ro
w

se
rs

C
h

ar
ts

h
tt

p
://

b
o

ke
h

.p
yd

at
a.

o
rg

/

C
yt

o
sc

ap
e

Ja
va

D
es

kt
o

p
O

p
en

so
u

rc
e

Fr
am

ew
o

rk
fo

r
in

te
g

ra
ti

n
g

,v
is

u
al

is
in

g
an

d
an

al
ys

in
g

d
at

a
in

th
e

co
n

te
xt

o
f

b
io

lo
g

ic
al

n
et

w
o

rk
s

N
et

w
o

rk
s/

H
ie

ra
rc

h
ie

s
h

tt
p

://
w

w
w

.c
yt

o
sc

ap
e.

o
rg

/

C
yt

o
sc

ap
e.

js
Ja

va
S

cr
ip

t
W

eb
O

p
en

so
u

rc
e

Fr
am

ew
o

rk
fo

r
in

te
g

ra
ti

n
g

,v
is

u
al

is
in

g
an

d
an

al
ys

in
g

d
at

a
in

th
e

co
n

te
xt

o
f

b
io

lo
g

ic
al

n
et

w
o

rk
s

N
et

w
o

rk
s/

H
ie

ra
rc

h
ie

s
h

tt
p

://
cy

to
sc

ap
e.

g
it

h
u

b
.io

/c
yt

o
sc

ap
e.

js

G
ep

h
i

Ja
va

D
es

kt
o

p
O

p
en

so
u

rc
e

P
la

tf
o

rm
w

ri
tt

en
in

Ja
va

fo
r

vi
su

al
is

in
g

an
d

m
an

ip
u

la
ti

n
g

la
rg

e
g

ra
p

h
s

N
et

w
o

rk
s/

H
ie

ra
rc

h
ie

s
h

tt
p

://
g

ep
h

i.g
it

h
u

b
.io

/

G
ra

p
h

vi
z

D
O

T,
Ja

va
,

P
yt

h
o

n
,C

,
C

++

D
es

kt
o

p
/W

eb
O

p
en

so
u

rc
e

G
ra

p
h

V
is

u
al

iz
at

io
n

Fr
am

ew
o

rk
fo

r
d

ra
w

in
g

g
ra

p
h

s
sp

ec
ifi

ed
in

D
O

T
la

n
g

u
ag

e
sc

ri
p

ts
N

et
w

o
rk

s/
H

ie
ra

rc
h

ie
s

h
tt

p
://

w
w

w
.g

ra
p

h
vi

z.
o

rg
/

S
ig

m
a.

js
Ja

va
S

cr
ip

t
W

eb
O

p
en

so
u

rc
e

Ja
va

S
cr

ip
t

lib
ra

ry
d

ed
ic

at
ed

to
g

ra
p

h
d

ra
w

in
g

,u
si

n
g

ei
th

er
th

e
H

T
M

L
ca

nv
as

el
em

en
t

o
r

W
eb

G
L

N
et

w
o

rk
s

h
tt

p
://

si
g

m
aj

s.
o

rg
/

m
xG

ra
p

h
Ja

va
S

cr
ip

t
W

eb
C

o
m

m
er

ci
al

C
o

m
m

er
ci

al
Ja

va
S

cr
ip

t
lib

ra
ry

N
et

w
o

rk
s/

H
ie

ra
rc

h
ie

s
h

tt
p

://
w

w
w

.jg
ra

p
h

.c
o

m
/m

xg
ra

p
h

.h
tm

l
JG

ra
p

h
X

Ja
va

D
es

kt
o

p
O

p
en

so
u

rc
e

O
p

en
-s

o
u

rc
e

Ja
va

S
w

in
g

g
ra

p
h

vi
su

al
iz

at
io

n
N

et
w

o
rk

s/
H

ie
ra

rc
h

ie
s

h
tt

p
s:

//g
it

h
u

b
.c

o
m

/jg
ra

p
h

/jg
ra

p
h

x
JU

N
G

Ja
va

D
es

kt
o

p
O

p
en

so
u

rc
e

A
lib

ra
ry

th
at

p
ro

vi
d

es
a

co
m

m
o

n
an

d
ex

te
n

d
ib

le
la

n
g

u
ag

e
fo

r
g

ra
p

h
vi

su
al

iz
at

io
n

N
et

w
o

rk
s/

H
ie

ra
rc

h
ie

s
h

tt
p

://
ju

n
g

.s
o

u
rc

ef
o

rg
e.

n
et

/

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://d3js.org/
http://www.jfree.org/jfreechart/
http://code.google.com/apis/charttools
http://matplotlib.org/
http://mpld3.github.io/
http://trac.erichseifert.de/gral/
http://www.jzy3d.org/
http://www.xeiam.com/xchart
http://www.flotcharts.org/
http://bokeh.pydata.org/
http://www.cytoscape.org/
http://cytoscape.github.io/cytoscape.js
http://gephi.github.io/
http://www.graphviz.org/
http://sigmajs.org/
http://www.jgraph.com/mxgraph.html
https://github.com/jgraph/jgraphx
http://jung.sourceforge.net/


1360 R. Wang et al. Proteomics 2015, 15, 1356–1374

3.1 D3.js

The open source library D3.js [30] (http://d3js.org/) is
JavaScript-based and designed to utilise the capabilities of
widely used web standards such as CSS3 (Cascading Style
Sheets), HTML5 and SVG (Scalable Vector Graphics). It was
created and is maintained by researchers from Stanford Uni-
versity’s Stanford Visualisation Group. It is also known as
the successor of the Protovis visualisation library [31]. D3.js
targets animations, interactions and complex and dynamic
visualisations trying to address the challenges derived from
visualisation in the web by putting an emphasis in the effi-
cient manipulation of HTML elements. At its kernel, it uses
pre-built JavaScript functions to select elements, create SVG
objects, style them or add transitions and dynamic effects to
them. This approach minimizes the conceptual stack of the
library and makes possible the creation of custom complex
visualisations.

In addition to its kernel, D3.js offers four main optional
modules to encapsulate reusable solutions: (i) Shapes, in-
cluding a number of built-in simple shapes, such as axis-
aligned rectangles and circles. These visual abstractions rep-
resent the foundations in the creation of useful charts and
graphs; (ii) Scales, which contains quantitative scales for con-
tinuous input domains such as numbers, and ordinal scales
for discrete input domains (for instance names or categories
and time scales); (iii) Layouts, including a large selection
of commonly used layouts such as the force-directed lay-
out and (iv) Behaviours, which encapsulates common in-
teraction techniques on use input, such as zooming and
dragging.

By default, D3.js does not generate predefined visualisa-
tions for the end users. Its functionality can be extended
using many available plugins (https://github.com/d3/d3-
plugins). Many of them are aimed at creating charts:
for instance, the ‘box plugin’ (for creating box plots,
https://github.com/d3/d3-plugins/tree/master/box) and the
‘bullet plugin’ (for bullet charts, Fig. 2A, https://github.com/
d3/d3-plugins/tree/master/bullet).

In addition to these extensions, there are a number of li-
braries for charting that have been built using D3.js. Among
them (i) Dimple (http://dimplejs.org/) provides an object-
oriented API (Application Programming Interface) for busi-
ness analytics; (ii) NVD3 (http://nvd3.org/), a project attempt-
ing to build re-usable charts and chart components and (iii)
Crossfilter (http://square.github.io/crossfilter/), a library for
exploring large multivariate data sets in web browsers.

In the context of biological data visualisation, D3.js has
already been used for the creation of charts in several bioin-
formatics projects. Recent examples include: (i) PIQMIe
[32] (http://piqmie.semiqprot-emc.cloudlet.sara.nl/), a
web server for performing semi-quantitative proteomics
data management and analysis; (ii) Genome3D [33], a
UK collaborative project created to annotate genomic
sequences with predicted 3D structures based on the
SCOP (Structural Classification of Proteins) and CATH

(Class, Architecture, Topology, Homology) classifications;
(iii) the BioJS [18] components ‘DNAContentViewer’
(http://www.ebi.ac.uk/Tools/biojs/registry/Biojs.
DNAContentViewer.html) and ‘wigExplorer’ (http://www.
ebi.ac.uk/Tools/biojs/registry/Biojs.wigExplorer.html)
and (iv) the TGAC Browser (http://www.tgac.ac.uk/
tgac-browser/), a new web-based genome browser with novel
rendering and annotation capabilities. It uses D3.js and the
jQuery library (http://jquery.com/).

3.2 JFreeChart

JFreeChart [34] (http://www.jfree.org/jfreechart/) is a free
to use (not open-source) Java library that enables devel-
opers to easily generate graphs and charts. David Gilbert
started the project in 2000 and it is arguably the most
widely used chart library in Java. Many products use
it such as Paralog (http://www.paralog.net/) and qStudio
(http://www.timestored.com/qstudio/). The library can be
used to generate the most common chart types including pies
(2D and 3D), bars, bubbles, scatters (2D and 3D), histograms
(Fig. 2C) and Gantt charts. In addition, the API supports
many interactive drawing features such as tool tips, colour
gradients, drop-shadows and zooming.

JFreeChart provides an excellent choice for Java Swing-
based applications. The main data structure in the library is
the Data set object, which contains the data to be displayed
in the charts. JFreeChart features many different Data set ob-
jects, which implement the Data set interface and can be used
to create different types of charts such as XYBarDataset (Bar
plot) or DefaultPieDataset (Pie chart). The chart can be cus-
tomised on attributes like zooming, labels, colours or tool
tips. The main strengths of JFreeChart are the extensive doc-
umentation, example code available, few dependencies and
flexible customisability. Furthermore, it is capable of export-
ing to various common formats such as JPEG, PNG and PDF,
and it can be used in JSP (Java Server Pages)/servlet-based
applications to dynamically stream charts to web pages. Re-
cently, the JFreeChart development team created the Orson
Charts (http://www.object-refinery.com/orsoncharts/), a 3D
chart library in Java that can generate a wide variety of 3D
charts in client-side (Java FX and Java Swing) and server-side
applications.

In bioinformatics projects, a number of tools have been
developed using JFreeChart [35,36]. For instance, SimBoolNet
draws the changes of network nodes in a time series chart,
and a scatter plot [35]. JProGO is a tool for functional inter-
pretation of prokaryotic microarray data that uses JFreeChart
to draw the expression profile of the genes belonging to a
specific GO node. In proteomics, the PRIDE Inspector [14]
tool was designed for data analysis and visualisation of MS
results. PRIDE Inspector provides a set of charts than can
be used to evaluate some aspects related to the experimen-
tal data. Similar to PRIDE Inspector, different tools such as
Rover [37], FragmentationAnalyzer [38] and PeptideShaker

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://d3js.org/
https://github.com/d3/d3-plugins
https://github.com/d3/d3-plugins
https://github.com/d3/d3-plugins/tree/master/box
https://github.com/d3/d3-plugins/tree/master/bullet
https://github.com/d3/d3-plugins/tree/master/bullet
http://dimplejs.org/
http://nvd3.org/
http://square.github.io/crossfilter/
http://piqmie.semiqprot-emc.cloudlet.sara.nl/
http://www.ebi.ac.uk/Tools/biojs/registry/Biojs.DNAContentViewer.html
http://www.ebi.ac.uk/Tools/biojs/registry/Biojs.DNAContentViewer.html
http://www.ebi.ac.uk/Tools/biojs/registry/Biojs.wigExplorer.html
http://www.ebi.ac.uk/Tools/biojs/registry/Biojs.wigExplorer.html
http://www.tgac.ac.uk/tgac-browser/
http://www.tgac.ac.uk/tgac-browser/
http://jquery.com/
http://www.jfree.org/jfreechart/
http://www.paralog.net/
http://www.timestored.com/qstudio/
http://www.object-refinery.com/orsoncharts/


Proteomics 2015, 15, 1356–1374 1361

Figure 2. Examples of charts: (A) bullet plots of identified proteins in different MS proteomics resources (original data published
in [75]); (B) box plots of theoretical isoelectric point (x-axis) for seven experimental fractions (original data published in [39, 40]);
(C) histograms of gravy index of proteins non-identified in protein expression resources (original data published in Ref. 75); (D) scat-
ter plot matrix charts; and (E) volcano plot. (A) was generated using Google Charts, and (B) was generated using D3.js bullet plugin
(https://github.com/d3/d3-plugins/tree/master/bullet), respectively; (C) and (D) were generated using JFreeChart and D3.js, respectively;
(E) was generated using matplotlib.

(https://peptide-shaker.googlecode.com/) have been devel-
oped to analyze MS proteomics results and are also using
the JFreeChart library.

3.3 Google charts

Google Charts (http://code.google.com/apis/charttools/) is a
free to use (not open source) JavaScript-based visualisation
tool developed by Google. It allows both non-expert users and
developers to embed many different kinds of charts and maps
in web pages. Going from simple line charts to complex hi-
erarchical tree maps, the selection includes a large number
of ready-to-use chart types. The most common way to use
Google Charts is by placing JavaScript snippets embedded in
web pages. The charts can read data directly from a web page,
retrieved from a backend database or stored in Google Spread-
sheets. Charts are rendered using HTML5/SVG technology
to provide cross-browser compatibility including VML (Vec-
tor Markup Language) for older Internet Explorer R© versions

and cross-platform portability to iOS and Android devices.
Supporting Information Table 1 contains a list of the charts
supported by Google Charts in the July 2014 version.

Google Charts requires data to be uploaded in a JavaScript
class called DataTable, a 2D table containing rows and
columns where each column has a data type. Devel-
opers should organize the DataTable in a format re-
quired by the chart (for instance both the bar and pie
charts require a two-column table where each row rep-
resents a slice or bar). Developers can also query a web
site that supports the ‘Chart Tools Data Source Proto-
col’, e.g. a Google Spreadsheet page (https://developers.
google.com/chart/interactive/docs/queries). One of the key
features of Google Charts is that all the chart types can be pop-
ulated with data using the DataTable class, making it easy to
switch between chart types as the developer experiments to
find the ideal chart. It also provides methods for sorting, mod-
ifying and filtering data. Every chart has many customisable
options including title, colours and different options for lines
and background fills. Figure 2B shows a box plot generated

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

https://github.com/d3/d3-plugins/tree/master/bullet
https://peptide-shaker.googlecode.com/
http://code.google.com/apis/charttools/
https://developers.google.com/chart/interactive/docs/queries
https://developers.google.com/chart/interactive/docs/queries


1362 R. Wang et al. Proteomics 2015, 15, 1356–1374

by Google Charts containing the theoretical isoelectric points
of seven fractions of an off-gel electrophoresis [39, 40].

Google Charts has been used in genomics and
proteomics related tools as a platform to generate
plots and charts [41–44]. For example, EpiExplorer [41]
(http://epiexplorer.mpi-inf.mpg.de/) is web application
for exploring genome and epigenome data that uses
Google Charts for interactive data visualisation. CircaDB
(http://circadb.org) [44] is a well-structured database of circa-
dian transcriptional profiles from time-course mouse and hu-
man expression experiments, where data visualisation is ac-
complished by using pre-formatted URI (Uniform Resource
Identifier) requests to Google Charts. Another example is
the EMBL-EBI (European Bioinformatics Institute) Metage-
nomics portal (http://www.ebi.ac.uk/metagenomics/) [42]
which allows biologists to submit raw nucleotide reads
for functional and taxonomic analysis by a state-of-the-art
pipeline, and store them in the European Nucleotide Archive
(ENA). The ‘taxonomy analysis’ tab in this resource uses
Google Charts to display information in a simple pie, bar or a
stacked bar chart.

3.4 matplotlib

The open source library matplotlib [45]
(http://matplotlib.org/) is written in Python and is
aimed at creating publication quality plots (primarily in
2D). This project was started by John Hunting in 2002,
originally as a package to emulate the MATLAB [46]
(http://www.mathworks.co.uk/products/matlab/) graphics
commands. The idea was to address the limitations involved
in writing complex interactive applications in MATLAB by
taking advantage of Python as the programming language.
Its most important feature is the ability to produce quality
2D plots easily. In addition, these plots are embeddable in a
graphical user interface (GUI) for application development,
and its code is generally easy to understand and to extend.
Another key aspect of matplotlib is its ability to support many
operating systems and different graphics data backends.
This has led to a large user community and to a powerful
collection of scientific tools.

matplotlib consists of three parts: (i) the pylab interface, a
collection of functions that allow users to create plots using
code which is quite similar to the MATLAB figure generating
code syntax; (ii) the frontend, a collection of classes that per-
forms the actual plot creation, including managing figures,
text, lines, etc. and (iii) the backend, which provides device-
dependent handles that transform the front-end representa-
tion to a device specific output. For instance, it supports the
creation of SVG graphics, PDF documents or PNG images.

matplotlib is often regarded as Python’s equivalent of ggplot
[47] for the R programing language. It performs well in cre-
ating various types of static images due to its cross-platform
and multi-backend design approach. In addition to writing
Python scripts, developers can use matplotlib in an interactive

Python shell such as ipython (http://ipython.org/) to dynam-
ically update the plots.

The package MPLD3 (http://mpld3.github.io/), also writ-
ten in Python, provides a D3.js based viewer for matplotlib.
The main motivation behind MPLD3 is to bring interactive
matplotlib graphics to the web browser by exporting matplotlib
to HTML code. It contains a Python module and a stand-
alone JavaScript library built on D3.js, known as mpld3.js.
The Python module contains a set of routines that can parse
the matplotlib plot and output it into JSON (JavaScript Ob-
ject Notation) descriptions. This JSON representation of the
plots can then be parsed by mpld3.js and visualised in a web
browser. Many of the core features of matplotlib are supported
by MPLD3 and additional interactivity for the plots can be
extended using MPLD3’s own plugin framework. It also pro-
vides several plugins by default, such as the reset, zoom and
the box zoom ones.

matplotlib found early institutional support from as-
tronomers at the Space Telescope Science Institute
(http://www.stsci.edu/portal/) and NASA’s Jet Propulsion
Laboratory (http://www.jpl.nasa.gov/). It is now also widely
used for plotting in a number of bioinformatics projects. For
instance, Biopython [48] (http://biopython.org/) provides a set
of freely available tools for biological computation and mat-
plotlib can be executed as part of the library. matplotlib has
also been used in CING [49], which is an integrated residue-
based structure validation program suite. Recently, matplotlib
has been successfully used [50] to represent the demographic
history of multiple populations using multidimensional SNP
(Single Nucleotide Polymorphism) frequency data sets.

3.5 Other libraries

Many other libraries are also available for generating
charts. For instance, written in Java, GRAL (GRAphing
Library, http://trac.erichseifert.de/gral/) is a free to use
and lightweight library for displaying plots (graphs, dia-
grams and charts), implementing most of the charts in-
cluded in JFreeChart. Other example is the Java library Jzy3d
(http://www.jzy3d.org/), which allows drawing scientific data
in 3D including surfaces, scatter plots, bar charts and a lot
of other 3D primitives. The API provides support for rich in-
teractive charts with colour bars, tooltips and overlays. Rely-
ing on JOGL2 (http://jogamp.org/jogl/), developers can eas-
ily deploy native OpenGL (http://www.opengl.org/) charts on
Windows, Unix, Mac OS and integrate them into Java Swing,
AWT (Abstract Window Toolkit) or SWT (Standard Widget
Toolkit). This library has been used as a 3D visualisation pack-
age with interactive peak exploration for chromatograms in
Maltcms [51,52], a modular application toolkit for chromatog-
raphy, MS and metabolomics.

XChart (http://www.xeiam.com/xchart) is another
lightweight Java library for plotting data. This library is part
of the ‘AHaH’ project [53], a new approach to computing
where memory and processing are combined. The XChart

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://epiexplorer.mpi-inf.mpg.de/
http://circadb.org
http://www.ebi.ac.uk/metagenomics/
http://matplotlib.org/
http://www.mathworks.co.uk/products/matlab/
http://ipython.org/
http://mpld3.github.io/
http://www.stsci.edu/portal/
http://www.jpl.nasa.gov/
http://biopython.org/
http://trac.erichseifert.de/gral/
http://www.jzy3d.org/
http://jogamp.org/jogl/
http://www.opengl.org/
http://www.xeiam.com/xchart


Proteomics 2015, 15, 1356–1374 1363

library focuses on simplicity and ease-of-use, requiring only
two lines of code to save or display a basic default chart.

Flot (http://www.flotcharts.org/) is a pure JavaScript plot-
ting library based on the jQuery framework, with a focus
on simple usage, attractive looks and interactive features. It
works in all web browsers that support HTML5 canvas (which
means most of the popular ones). Flot is supporting chart
generation in a number of tools such as WholeCellViz [54],
which can perform data visualisation for whole-cell models,
and HapMap-CN [55] a CouchDB-based database which al-
lows automated gene-centric annotations, and provides a web
interface to query copy number variation from three HapMap
data sets.

Bokeh (http://bokeh.pydata.org/) is a Python interactive
visualisation library that targets modern web browsers. Its
main goal is to provide concise construction of novel graph-
ics based on the ideas of the Grammar of Graphics [56], Pro-
tovis and D3.js. It can also deliver this capability with a high-
performance interactivity over very large or streamed data
sets. This functionality is implemented via a declarative data
transformation scheme and is engineered to operate in a
client/server model for the modern web. Recently, Biopython
[48] has started to develop visualisation packages using Bokeh.

3.6 Remarks

With the emergence of multivariable data sets, data scien-
tists are trying to obtain an integrated understanding of data
distributions and investigate the inter-relationships between
different data attributes [57,58]. For instance, matrix (Fig. 2D)
[59, 60] is an extension of a scatter plot for multidimensional
data where a collection of scatter plots is organized in a ma-
trix to provide correlation information among the attributes.
This is particularly effective in pinpointing specific variables
that might have similar correlations to particular genomics
[61], proteomics [62] or metabolomics [63] data. Another type
of scatter plot is the volcano plot [64] (Fig. 2E), which is com-
monly used to quickly identify changes in large data sets com-
posed of replicated data. These plots are increasingly used
in analysing ‘omics’ experiments where many thousands of
replicated data points are represented [65, 66]. Volcano plots
are constructed by plotting the negative log of the p-value in
the y-axis versus the log of the fold change between two con-
ditions. This results in data points with low p-values (highly
significant) appearing towards the top of the plot. The log
of the fold-change is used so that changes in both directions
(up and down) appear equidistant from the centre [64]. Also,
‘parallel coordinates’ charts [67, 68] are a common way of
visualising high-dimensional geometry and analysing multi-
variate data. The main idea is to show a set of points in an
n-dimensional space as n parallel lines, typically vertical and
equally spaced. One point in an n-dimensional space is rep-
resented as a polyline with vertices on the parallel axes. The
position of the vertex on the ith axis corresponds to the ith
coordinate of the point. This visualisation is closely related

to a time series, except in that it is applied to data where the
axes do not correspond to points in time, and therefore do
not have a natural order [68] (Supporting Information Fig. 1).

4 Networks

Node-link diagrams represent a powerful way of understand-
ing entity relationships by showing their overall structure,
the topology of the network [69, 70]. It is a natural human
trait to spot visual similarity and proximity as meaningful.
Node-link diagrams have the advantage of preserving the lo-
cal detail of the relationships. They make easier to identify
the nearest neighbours for a particular node and look for the
shortest path between two nodes. In biology, it is common to
represent molecules or other biological entities as nodes and
their interactions or processes as edges. Typical examples are
protein–protein interaction networks and pathways.

There is already a diverse set of tools for interpreting bi-
ological networks and for curating pathways [71, 72]. These
have been already described in previous reviews [71, 73, 74]
and are out of the scope in this manuscript. Instead, we tar-
get primarily six different libraries/frameworks and discuss
several additional packages that support the generation of net-
works (Table 1). A list of the most common network layouts
together with a short description is included in the Support-
ing Information Table 2.

4.1 Cytoscape

Cytoscape [17] (http://www.cytoscape.org/) is an open source
desktop tool for integrating, visualising and analysing data
in the context of biological networks. Since its initial release
in 2002, it has grown into the de facto tool for visualising
molecular interaction networks and biological pathways. By
July 2014, the release of Cytoscape is the 3.x series. Designed
from ground up using modular software architecture for long-
term maintainability, the new release is aiming to replace the
popular 2.x series. The 3.x series is capable of navigating
large networks with more than 100 000 nodes and edges,
and can layout networks in two dimensions using a variety of
layout algorithms including circular, force-directed and stack
layouts. Figure 3A shows an example of a network graph
using a circle layout containing proteins (data taken from
[75]).

Cytoscape is also a software platform that has at-
tracted a large vibrant community of active contributors.
It consists of two key programming components: the Cy-
toscape App API and cytoscape.js. The Cytoscape App API
(https://github.com/cytoscape) provides a programmatic way
of extending and customising the Cytoscape desktop tool.
Through the API, developers can access directly to its core
data models (which represent networks and tables). Addi-
tionally, they can extend its view model to customise the net-
work visualisation and layout. Moreover, it is possible to take

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.flotcharts.org/
http://bokeh.pydata.org/
http://www.cytoscape.org/
https://github.com/cytoscape


1364 R. Wang et al. Proteomics 2015, 15, 1356–1374

Figure 3. Examples of networks: (A) Network circle layout of a protein network generated with Cytoscape; (B) Hybrid network,
generated using NodeTrix (http://www.aviz.fr/Research/Nodetrix), combining a network with an adjacency matrix; (C) Hive plot
(http://bost.ocks.org/mike/hive/), generated using D3.js; and (D) Arc diagram (http://bl.ocks.org/sjengle/5431779), generated also using
D3.js.

advantage of Cytoscape’s core application framework to pro-
vide a better interoperability within the whole tool.

A large number of Apps have been developed and made
available by the community (http://apps.cytoscape.org/). Sev-
eral of them are well known in the analysis of biological net-
works [17]. For example, BiNGO [76] is frequently used for
GO annotation and related ontology enrichment analyses. It
can calculate overrepresented functions in the network and
display them as GO directed acyclic graphs. Another example
is MCODE [77], used for clustering and graph analysis. It is
capable of locating clusters in highly interconnected regions
of a network on the basis of vertex weighting.

Cytoscape.js (https://github.com/cytoscape/cytoscape.js) is
an open source graph library, written in JavaScript as
a jQuery plugin. It is the successor of Cytoscape Web
(http://cytoscapeweb.cytoscape.org/), which is based on
Adobe R© Flash. At the moment of writing, the developer team
is working actively to port all the features of Cytoscape Web
into Cytoscape.js.

Cytoscape.js shares many design principles of the Cytoscape
App API. For instance, it separates the graph style from

data, provides core functionality and allows extensions adding
functionality on top of the library. Cytoscape.js enables de-
velopers to display and manipulate rich, interactive graphs.
It comprises many useful features including the main ges-
tures, such as pinch-to-zoom, box selection and panning,
and support for different graph theory user cases, includ-
ing among others directed graphs, undirected graphs, mixed
graphs, multi graphs and compound graphs. Cytoscape.js is
intended for programmers, it is therefore not an App for
end-users. Software development is necessary to integrate
it into graph centric web applications. The Cytoscape.js API
uses many JavaScript language idioms and is event-based.
Furthermore, JSON definitions of elements can be used and
also, nodes can be chosen with selectors that are modelled on
CSS selectors and the jQuery API. With the latest release of
the Cytoscape desktop, network data can be exported in JSON
format and visualised in a web page.

Unlike Cytoscape Web, which is currently used in many
bioinformatics projects (e.g. GeneMANIA [78], iRefWeb [79]
and Pathguide [80]), at present Cytoscape.js has not been
widely adopted yet due to its recent development. However,

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.aviz.fr/Research/Nodetrix
http://bost.ocks.org/mike/hive/
http://bl.ocks.org/sjengle/5431779
http://apps.cytoscape.org/
https://github.com/cytoscape/cytoscape.js
http://cytoscapeweb.cytoscape.org/


Proteomics 2015, 15, 1356–1374 1365

it is rapidly gaining momentum and expected to be widely
adopted, like its predecessor [81, 82].

4.2 Gephi

Popular for data journalism and many scientific domains,
Gephi [83] (http://gephi.github.io/) is an open source Java
based platform for visualising and manipulating large graphs.
Originally created at the University of Technology of Com-
piegne (France), it is now maintained by the Gephi Consor-
tium, which also supports the development of future releases.
Gephi is often regarded as the ‘Photoshop R©’ for networks and
graphs. Users can interact with the graph representation and
manipulate its structure, shape and colour. Network statistics
can also be calculated (such as average degree and modularity)
and the results can be overlaid on the original graph. Gephi
has a built-in OpenGL engine. Therefore, it is able to visualise
very large networks of up to a million elements and all the ac-
tions (such as layout, filtering and clustering) can happen in
real-time. Additionally, Gephi’s software architecture is built
on top of the ‘NetBeans’ platform (http://netbeans.org/). This
makes that it can be extended or reused easily through well-
written APIs.

One of the major strengths of Gephi is the availability of
many plugins, which can extend and complement the core
library (https://marketplace.gephi.org/). For instance, at the
moment of writing Gephi offers 19 additional layouts via plug-
ins. Some of them are OpenOrd, Circular, Layered, Force Atlas
3D, Network splitter 3D and the Isometric layouts. In addition,
the exporter plugins are worth highlighting. They provide a
way of bringing Gephi components from a desktop applica-
tion into a web environment. For instance, the Sigma.js plugin
can export the network from Gephi to a predefined Sigma.js
library template. Developers can also choose among many
options including search, group selection or explanatory text.
The entire process is straightforward, as developers do not
have to write any HTML/JavaScript code and only need to
export the graphs from Gephi as HTML files.

Compared to Cytoscape, Gephi is a general network and
graph visualisation tool. This makes it more useful in other
disciplines outside biology. For instance, it has already been
used in research projects such as DyCoNet [84], a Gephi plugin
for identifying the modular organisation of dynamic complex
networks. Another example is ForceAtlas2 [85], a continuous
graph layout algorithm for network visualisation.

4.3 Graphviz

Graphviz [86] (http://www.graphviz.org/) is an open source
software package initiated by AT&T Labs Research
(http://www.research.att.com/) for visualising connectiv-
ity graphs. It provides graph visualisation for tools and
websites in different domains like software engineering
[87], networking [88], knowledge representation [89, 90]

and bioinformatics [91]. The core of GraphViz contains
the implementation of a collection of common types of
graph layouts, which can be used via a programming in-
terface, command line tools, GUIs and web browsers.
Very importantly, GraphViz also has a graph descrip-
tion language called DOT (Graph Description Language,
http://www.graphviz.org/content/dot-language) and a set of
tools that can generate and process DOT files.

In addition, DOT is a scriptable, batch-oriented graphing
tool. Developers can write descriptions of structured informa-
tion in DOT and the GraphViz layout engine can generate the
output graphs in different formats. Some example formats
are SVG (for web pages), PDF or Postscript (for inclusion
in other documents or for display purposes in an interactive
graph browser) [92]. One of key advantages of using Graphviz
is that it can efficiently render large graphs. In fact, graphs
of moderate to very large size (up to 70 000 nodes and half a
million edges) can be drawn using a scalable multilevel force
directed algorithm called sfdp.

Numerous tools and libraries have been created that can
complement Graphviz, including different graph generators,
post processors and interactive viewers. There are also high-
level systems and websites that rely on Graphviz as a visu-
alisation service. For instance, it has modules for content
management systems like Drupal and WordPress. It also
provides a large number of language bindings for Python,
JavaScript, Java, Ruby, Perl and C#, where programmers can
take advantage of the Graphviz features using their favourite
programming language.

Graphviz has already been used in several bioinfor-
matics projects, such as PubGene [93] and the Pro-
tein Interaction Extraction System (PIES) [94]. Another
example is RGraphviz [95] (http://bioconductor.wustl.
edu/bioc/html/Rgraphviz.html), included in BioConductor,
which also incorporates Graphviz as a rendering module,
along with other graph libraries.

4.4 Sigma.js

The open source JavaScript library Sigma.js
(http://sigmajs.org/) is backed by the company ‘Sciences-
Po Medialba’ (http://www.medialab.sciences-po.fr/).
The library is dedicated to graph drawing, using ei-
ther HTML5 canvas or WebGL (Web Graphics Library,
http://www.khronos.org/webgl/). It has been specially
designed to display interactively graphs exported from
external software (like Gephi) and also to display dynamically
graphs that are generated in real time. Sigma.js is lightweight
and does not require any external dependencies. In fact,
it is relatively easy to use and integrate into existing web
applications. The default configuration of Sigma.js provides a
variety of build-in features, like HTML5 canvas and WebGL
renderers, mouse and touch support. At its core, Sigma.js
is a rendering engine and it does not include many graph

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://gephi.github.io/
http://netbeans.org/
https://marketplace.gephi.org/
http://www.graphviz.org/
http://www.research.att.com/
http://www.graphviz.org/content/dot-language
http://bioconductor.wustl.edu/bioc/html/Rgraphviz.html
http://bioconductor.wustl.edu/bioc/html/Rgraphviz.html
http://sigmajs.org/
http://www.medialab.sciences-po.fr/
http://www.khronos.org/webgl/


1366 R. Wang et al. Proteomics 2015, 15, 1356–1374

theory related features ‘out-of-the-box’, such as layout and
clustering.

The Sigma.js API makes it possible to modify and enhance
the data, refresh the rendering and listen to events. For more
complex interactions, like in the case of Cytoscape and Gephi,
it is possible to develop and use plugins that can add features
to the core library. For instance, there are plugins to perform
force-directed layout and enable the dragging of the nodes.
Sigma.js is also scalable, taking advantage of HTML5 canvas
functionality by using frame injection. For displaying large
graphs on the web, Sigma.js does not suffer from freezing
issues as other graph libraries often do. However, developers
should be aware that it might still take some time to draw an
entire large graph.

In our opinion, Sigma.js is best suited for projects where
it is only required to display networks containing some ba-
sic interactions. Different bioinformatics tools have already
used this library. One example is NetworkAnalyst [96], a tool
for protein–protein interaction network analysis and visual
exploration. Another one is NeXO Web [97], the NeXO ontol-
ogy database and related visualisation platform.

4.5 mxGraph

Formally known as jGraph, mxGraph (http://www.jgraph.
com/mxgraph.html) constitutes a family of libraries that pro-
vides features for displaying interactive diagrams and graphs.
mxGraph is not designed specifically to be ready to use in ap-
plications. Instead it provides a range of commonly required
functionalities to draw, interact with and associate a context
with a diagram. Visualisation is one of main strengths of mx-
Graph, since it can represent nodes in shapes, images, vector
drawing and animations. Developers can then interact with
the mxGraph generated diagrams through a series of actions
like for instance dragging and cloning cells, resizing and re-
shaping, connecting and disconnecting, drag and dropping,
or in-place editing. In addition mxGraph offers a flexible API
for developers to program the behaviour of these interactions.
The library provides a basic set of implementations of graph
layout algorithms including trees, force-directed and hierar-
chical layouts. However, graph analysis techniques such as
clustering, decomposition and optimisation have not yet been
implemented in the core mxGraph libraries.

By July 2014, mxGraph is released in two different
packages: a commercial JavaScript library and an open
source Java Swing visualisation library called JGraphX
(https://github.com/jgraph/jgraphx).

The JavaScript commercial version of mxGraph includes
one JavaScript file that contains all the functionality provided
by the library. It mainly supports SVG rendering by utilising
the underlying vector graphics in modern web browsers. It
also includes the feature to render entirely using HTML5 can-
vas, but at the moment of writing this option limits the range
of functionality available and is only suitable for simple dia-
grams. JGraphX is primarily designed to be used in a desktop

environment. It enables developers to produce Java Swing ap-
pellations that feature interactive diagramming functionality.

Example applications for mxGraph include process di-
agrams, workflows, flowcharts and network visualisations.
One recent implementation of mxGraph in a bioinformat-
ics project is the development of a knowledge-based decision
support system to study protein complexes [98].

4.6 JUNG

The Java Universal Network/Graph (JUNG) framework [99]
(http://jung.sourceforge.net/) is an open source library that
provides a common and extendible language for the mod-
elling, analysis and visualisation of data using graphs or net-
works. JUNG’s architecture is designed to support a variety
of representations of entities and their relationships: directed
and undirected graphs, multi-modal graphs, graphs with par-
allel edges and hypergraphs. Also, it provides a mechanism
for annotating graphs, nodes and links with metadata.

By July 2014, the distribution of JUNG (version 2.0) in-
cludes the implementation of a number of algorithms from
graph theory, data mining and social network analysis. Some
examples are routines for clustering, decomposition, opti-
misation, random graph generation, statistical analysis and
calculation of network distances, flows and other measure-
ments (e.g. centrality, PageRank and HITS). Furthermore,
JUNG also provides a visualisation framework that makes
easy the construction of tools for the interactive exploration
of network data.

In the proteomics field, the JUNG’s graph algorithms have
been used by the mzJava library (http://mzjava.expasy.org/),
for the analysis of MS data from large-scale proteomics
and glycomics experiments. In other fields, one example is
GBOOST [100], a GPU (Graphics Processing Unit)-based tool
for detecting gene–gene interactions in genome–wide case
control studies, which makes use of JUNG to visualise the
resulting graphs.

4.7 Other libraries

Several other JavaScript-based libraries are also avail-
able for representing networks. For instance, Arbor.js
(http://arborjs.org/) is a lightweight graph visualisation li-
brary based on jQuery. It provides force-directed layout plus
graph data structure and screen refresh handling. Arbor.js
is not restricted to a specific screen drawing method. This
means that developers are free to choose among HTML5
canvas, SVG or event positioned HTML elements.

VivaGraphJS (https://github.com/anvaka/VivaGraphJS) is
another free to use graph-drawing library based on JavaScript
that supports force-directed layout. Different rendering en-
gines are also supported including WebGL, SVG or CSS
formats. Compared to other alternatives, VivaGraphJS can

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.jgraph.com/mxgraph.html
http://www.jgraph.com/mxgraph.html
https://github.com/jgraph/jgraphx
http://jung.sourceforge.net/
http://mzjava.expasy.org/
http://arborjs.org/
https://github.com/anvaka/VivaGraphJS


Proteomics 2015, 15, 1356–1374 1367

provide a better performance and works well with medium
size networks (of around 5000 nodes).

For dynamic networks, GraphStream [101] (http://
graphstream-project.org/) is a Java-based library whose main
purpose is to address the existing challenges in modelling
entity relationships in an evolving environment. It can han-
dle the evolution of graphs, which can be described as the
changes on the values stored on the edges and nodes of a
graph in time. Its design relies on an event-based engine al-
lowing several event sources. Events can then be generated
from other parts of the application using GraphStream, read
from a file or received from a remote server.

4.8 Remarks

Although node-link diagrams constitute the most familiar
representation of graphs, there are alternative ways of rep-
resenting this type of information. Node-link diagrams are
good for showing the overall structure of a sparse graph but
they can become unreadable in dense networks. In contrast,
adjacency matrix representations are particularly effective for
dense graphs (Supporting Information Fig. 2) and can be
used to highlight various attributes of nodes and their links.
The main drawback of this approach is that it does not show
the topology of the network and is ill-suited for the represen-
tation of pathways [70].

There have been recent attempts to create innovative ways
of visualising networks. For instance, NodeTrix [102, 103]
tried to combine node-link charts with adjacency matrix dia-
grams, to take advantage of both worlds (Fig. 3B). Hive plot
[104] is a new way of generating node-link diagrams (Fig. 3C).
It defines a linear layout for nodes, grouping and arranging
nodes based on their attributes. The goal is to utilise human’s
positional visual channel more effectively. Another example
is PivotPaths [105], which tried to address the need of a filter-
ing functionality in complex networks by introducing faceting
(Supporting Information Fig. 3). It exposes faceted relation-
ships as visual paths and this arrangement enables developers
to navigate in a better way throughout the information space.

It is also worth mentioning here the concept of an Arc di-
agram [106], which is a style of graph drawing in which the
vertices of a graph are placed along a line in the Euclidean
plane with edges being drawn as semicircles in one of the two
half planes bounded by the line or as smooth curves formed
by sequences of semicircles (Fig. 3D). Heer et al. [56] recom-
mended that these representations may not convey the overall
structure of the graph as effectively as a 2D representation,
but that their layout made easy the display of multivariate
data associated with the vertices of the graph.

The underlying data structure to represent networks and
graphs can greatly impact the efficiency and effectiveness
of the front-end visualisation. In biology, it has been ob-
served a rapid increase in data volumes and complex-
ity. In parallel, there is the need to integrate more and
more heterogeneous data sets. Therefore, the traditional

way of storing every node and link in memory or to use
a relational database to do this is often no longer feasi-
ble and more scalable solutions are needed. In this con-
text, high hopes have been deposited in the development
of graph databases such as Neo4j (http://www.neo4j.org/),
FlockDB (https://github.com/twitter/flockdb) and Allegro-
Graph (http://franz.com/agraph/allegrograph/). All of them
use graph structures with nodes, edges and attributes to rep-
resent and store data. Compared with the traditional rela-
tional databases, graph databases can scale more naturally to
large graph data sets. They are particularly good at handling
graph-type queries like for example, computing the shortest
path between two nodes. As a result, there is an increasing
adoption of graph databases as the backend for implementing
network visualisations. For instance, Gephi already provides
a plugin to connect to a Neo4j database (https://marketplace.
gephi.org/plugin/neo4j-graph-database-support/) and an-
other project not mentioned before called Linkurious
(http://linkurio.us/) provides a web-based platform to explore
and visualise networks stored in Neo4j databases.

5 Hierarchies

Visualising hierarchical data has its own objectives and chal-
lenges [107]. Common reasons to use hierarchies are, among
others, to gain insight on the structure of a hierarchy, to un-
derstand the distribution of data within the context of the
structure, or to provide a summary of the data set into aggre-
gated data, in order to avoid information overload.

There is a selection of visualisation techniques that can be
used in hierarchies. They generally fall into two categories:
(i) Node-link diagrams such as trees, dendrograms, radial
trees and hyperbolic trees. They are focused on highlighting
the relationships between data items using visible graphical
edges between the parent and child nodes and (ii) Space-
filling diagrams such as treemaps, where the emphasis is
put on the relative sizes of the nodes within the hierarchy
where areas are recursively subdivided into rectangles. The
adjacency diagrams constitute another example within this
category, where nodes are drawn as solid areas in either arcs
or rectangles. The size of the nodes encodes its quantitative
attribute and their relative position reveals their position in
the hierarchy. This way, the size of any node in the tree is
quickly revealed, which offers a better readability and a size
estimation. In addition, enclosure diagrams use the concept
of containment to represent the hierarchy, since the size of
each leaf node’s circle reveals the quantitative dimension of
each data point and the enclosing circles show the approxi-
mate cumulative size of each sub-tree.

Much of the biological data has a natural hierarchy and
many research projects focus on extracting these representa-
tions. Phylogenetic trees [108] represent one of the best ex-
amples by showing the inferred evolutionary relationships
among various taxonomical entities. Another example is
the application of hierarchies to help solving the protein

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://graphstream-project.org/
http://graphstream-project.org/
http://www.neo4j.org/
https://github.com/twitter/flockdb
http://franz.com/agraph/allegrograph/
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
https://marketplace.gephi.org/plugin/neo4j-graph-database-support/
http://linkurio.us/


1368 R. Wang et al. Proteomics 2015, 15, 1356–1374

inference in proteomics [109], where dendrograms can be
used for interpreting the results.

In this section, we will cover four libraries that support
hierarchical data visualisations (Table 1). A list of the most
common hierarchical layouts together with a short descrip-
tion of each one can be found in the Supporting Information
Table 3.

5.1 D3.js

The D3.js library can treat hierarchical data visualisation as
a layout. In fact, its API implements a number of frequently
used layouts for different types of data, including a group
of them for hierarchical data. These layouts follow the same
basic structure: the input to the layout is the root node of the
hierarchy and the output is an array representing the com-
puted positions of all the nodes. For the node-link diagram
approach, the classic tree layout produces node-link diagrams
using the Reingold-Tilford ‘tidy’ algorithm [110] (Fig. 4A and
Supporting Information Fig. 4) and the cluster layout pro-
duces dendrograms, which cluster and place leaf nodes of
the tree at the same depth.

In the case of the space-filling approach, the pack layout
produces enclosure diagrams (Fig. 4B). In addition, the par-
tition layout produces adjacency diagrams, providing two ori-
entations: the Cartesian orientation is often called ‘Icicle tree’
(Supporting Information Fig. 5), whereas the radial orienta-
tion is called ‘sunburst’ (Fig. 4C). Finally, the treemap layout
produces treemaps (Fig. 4D). The layout algorithms for the
treemaps can be customized: squarify for rectangular subdi-
vision, slice for horizontal subdivision, dice for vertical sub-
division and slice-dice for alternating between horizontal and
vertical subdivisions. These layouts produced by the D3.js li-
brary have been applied to explore large biological data sets.
For instance, VisXplore [111] is a visualisation system for
analysing complex clinical data sets which can use both the
cluster and the treemap layouts.

5.2 Google charts

Google Charts provides two types of charts for hierarchical
data: Org charts and treemap charts. Org charts are node-link
diagrams that are designed to show relationships in a given or-
ganisation. However, they can also be used to show tree struc-
tures such as family trees. The expected input data format for
this chart type is a table containing three string columns. The
first two columns are used for describing parent-child rela-
tionships whereas the last column is used for showing text as
tooltips. The treemaps also expect input data in a predefined
tabular format, containing one additional column that is used
to represent the size of the node.

5.3 matplotlib

As a plotting library, matplotlib focuses on the funda-
mental components needed for constructing high-quality
charts. However, it does not provide charting capabilities
for hierarchical data ‘out-of-the-box’. Instead, developers can
take advantage of other Python packages in its comput-
ing ecosystem. For node-link diagrams, matplotlib can be
used together with networkx [112] (https://networkx.github.
io/), a Python package for creating and manipulating complex
network data structures, for example, circular trees (http://
networkx.lanl.gov/examples/drawing/circular_tree.html).

However, its power lies in the possible integra-
tion with other Python-based software packages used
in mathematics, science and engineering such as
NumPy [113] (http://www.numpy.org/) and SciPy [114]
(http://www.scipy.org/). NumPy provides support for math-
ematical data structures such as arrays and matrices,
along with a collection of other high-level mathemati-
cal functions. SciPy contains additional routines, for ex-
ample, for solving differential equations and sparse ma-
trices. Combining matplotlib with SciPy, which also con-
tains functions for hierarchical clustering, can generate
dendrograms. Space-filling diagrams such as treemaps can
also be generated using matplotlib and SciPy together
(http://wiki.scipy.org/Cookbook/Matplotlib/TreeMap).

5.4 Graphviz

Graphviz supports various layouts for hierarchical data. They
come as a collection of programs that can be run on the com-
mand line. The expected input is composed by hierarchical
data described in the DOT language and the output can be ex-
ported to different formats (e.g. PostScript or SVG). For the
node-link diagram approach, it supports the standard tree
layout and the force directed layout. Also, it provides radial
layouts, where the root node is placed at the centre, whereas
the remaining nodes are placed on a sequence of concentric
circles centred on the root node. In the case of the space-filling
diagram approach, Graphviz can draw the tree as a squarified
treemap [115] or as a packed cluster structure using the pack
layout.

Graphviz has been already used in bioinformatics.
One example is SCOP2 [116], a project focused on
the visualisation of the SCOPs. In particular, SCOP2-
graph (http://scop2.mrc-lmb.cam.ac.uk/graph/index.html)
is a web-based viewer for the display and navigation through
the classifications using Graphviz. Other example is Or-
thoMaM [117], which is a database of orthologous exons
and coding sequences in mammals used for comparative ge-
nomics. It uses Graphviz for visualising the details of the GO
annotations.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

https://networkx.github.io/
https://networkx.github.io/
http://networkx.lanl.gov/examples/drawing/circular_tree.html
http://networkx.lanl.gov/examples/drawing/circular_tree.html
http://www.numpy.org/
http://www.scipy.org/
http://wiki.scipy.org/Cookbook/Matplotlib/TreeMap
http://scop2.mrc-lmb.cam.ac.uk/graph/index.html


Proteomics 2015, 15, 1356–1374 1369

Figure 4. Examples of visualisation for hierarchical data: (A) Tree radial layout, (B) Pack layout, (C) Sunburst partition layout, and (D)
Treemap layout. All the examples were generated using the D3.js library.

5.5 Other libraries

As hierarchies are considered to be a subset of general graphs,
the majority of the libraries mentioned in the networks sec-
tion are capable of displaying hierarchical data as trees. For in-
stance, Cytoscape supports both the tree and the radial layouts,
whereas mxGraph supports a range of hierarchical layouts.

5.6 Remarks

The choice of the layout is critical for the visualisation of hi-
erarchical data. Node-link diagrams are great for showing the
structure of a hierarchy. However, the display is not compact
and the required space increases polynomially as the number
of nodes increases. Space-filling diagrams are effective rep-
resentations of two attributes beyond node-link diagrams by
using colour and area, but they are not as good at representing
structures.

There are alternative layouts to overcome these shortcom-
ings. One popular technique is to display trees in 3D instead
of 2D. The goal is then to utilise the extra dimension to help
easing the problem of displaying large structures. The cone
tree [118] is one of the best known 3D tree layout techniques.
Another technique is the hyperbolic layout [119], which em-

ploys a hyperbolic space that has more room than the Eu-
clidean space, resembling the effect of using fish-eye lenses
on traditional tree layouts. This distorted view makes possible
the interaction with large trees.

6 Future challenges

The on-going explosion of biological data presents a sig-
nificant challenge to existing visualisation libraries. Since
most of the libraries focus on handling data sets of small
or intermediate size, the majority of them are not de-
signed having scalability in mind. The advance of paral-
lel computing and GPU-based computing allows visuali-
sation libraries to tap into the raw computing power of
the hardware. However, this approach often requires do-
main specific knowledge to understand the platform or
the parallelisation mechanism. To overcome these prob-
lems, there are already attempts to make this process more
transparent to developers. For instance, Superconductor
(http://superconductor.github.io/superconductor/) provides
a web framework that automatically compiles and parallelizes
algorithms to support visualisation of hundreds and thou-
sands of data points.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://superconductor.github.io/superconductor/


1370 R. Wang et al. Proteomics 2015, 15, 1356–1374

Additionally, most of the existing visualisation libraries
adopted a ‘Swiss-army knife’ approach, since they tried to
achieve broader adoption by offering a large collection of visu-
alisation solutions by default. For researchers and developers,
the challenge remains on how to pick or create the most suit-
able visualisations for each particular task. Research teams
in academic environments often do not have the in-house
expertise needed. It is therefore paramount to establish a set
of principles and guidelines on data visualisation. A lot of
research has already been performed in systematically cate-
gorising the visualisation background and principles [120],
which are widely accepted and applied in other scientific dis-
ciplines. However, many of them have not been introduced
to biology to the same extent. There have been attempts on
narrowing the existing gap [121] but more needs to be done.

Furthermore, visualisation libraries are greatly influenced
by the underlying technology. Recently, great advances in
web development techniques have taken place. This has led
to a shift from traditional plugin-based frameworks such
as Adobe R© Flash (http://www.adobe.com/) and Silverlight R©

(http://www.microsoft.com/silverlight/) to more browser na-
tive approaches such as HTML5/CSS/JavaScript. While these
technical advances are useful and can help to improve data
visualisation, they can also become a source of confusion
when choosing the library. To make things worse, the rein-
carnations/the new versions of the libraries can sometime
offer completely different APIs containing only a subset of
the original features. This requires tool developers to have
in-depth knowledge of the underlying technology to make an
informed judgement.

Definitely, more could be done in the context of community
support and classification of these libraries. In this context,
we want to highlight the VIZBI initiative (http://vizbi.org/),
which brings together researchers developing and using com-
putational visualisation tools in a broad range of biological
research areas. It has proven to be the ideal environment to
discuss new visualisation techniques and approaches in the
context of bioinformatics and life sciences [6, 122].

7 Conclusion

Visualisation of biological data is rapidly evolving. Its ulti-
mate goal is to generate insights into the processes of the
living organisms. To fulfil this ambition, further develop-
ment of visualisation tools and techniques is needed. Open
source and free-to-use visualisation libraries and frameworks
play an important role in the development of new tools and
the illustration of new research discoveries. They offer the
right balance between innovation and reusability. They can
also streamline the implementation of the common features
needed in the visualisation tools and free up the developers’
time to focus on developing novel solutions.

R.W. is supported by the BBSRC ‘Quantitative Proteomics’
grant [reference BB/I00095X/1]. Y.P.R is supported by the BB-

SRC ‘PROCESS’ grant [reference BB/K01997X/1]. J.A.V. is sup-
ported by the Wellcome Trust [grant number WT101477MA], and
the EU FP7 grants ‘ProteomeXchange’ [grant number 260558]
and PRIME-XS [grant number 262067].

The authors have declared no conflict of interest.

8 References

[1] Fayyad, U. M., Grinstein, G. G., Wierse, A., Information Vi-
sualization in Data Mining and Knowledge Discovery, Mor-
gan Kaufmann Publishers Inc., San Francisco, CA 2002.

[2] Gorban, A. N., Principal Manifolds for Data Visualization
and Dimension Reduction, Springer, New York 2007.

[3] Ware, C., Information Visualization: Perception for Design,
Elsevier, Oxford 2013.

[4] Chen, C., Information Visualization: Beyond the Horizon,
Springer Science & Business, Heidelberg 2006.

[5] Gehlenborg, N., O’Donoghue, S. I., Baliga, N. S., Goes-
mann, A. et al., Visualization of omics data for systems
biology. Nat. Methods 2010, 7, S56–68.

[6] O’Donoghue, S. I., Gavin, A. C., Gehlenborg, N., Goodsell,
D. S. et al., Visualizing biological data-now and in the future.
Nat. Methods 2010, 7, S2–4.

[7] Schroeder, M. P., Gonzalez-Perez, A., Lopez-Bigas, N., Visu-
alizing multidimensional cancer genomics data. Genome
Med. 2013, 5, 9.

[8] Meyer, L. R., Zweig, A. S., Hinrichs, A. S., Karolchik, D. et al.,
The UCSC Genome Browser database: extensions and up-
dates 2013. Nucleic Acids Res. 2013, 41, D64–69.

[9] Karolchik, D., Hinrichs, A. S., Kent, W. J., The UCSC Genome
Browser. Current protocols in bioinformatics 2009, Chapter
1, Unit 1.4.

[10] Stalker, J., Gibbins, B., Meidl, P., Smith, J. et al., The En-
sembl Web site: mechanics of a genome browser. Genome
Res. 2004, 14, 951–955.

[11] Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M. et al.,
The human genome browser at UCSC. Genome Res. 2002,
12, 996–1006.

[12] Risueno, A., Fontanillo, C., Dinger, M. E., De Las Rivas, J.,
GATExplorer: genomic and transcriptomic explorer; map-
ping expression probes to gene loci, transcripts, exons and
ncRNAs. BMC Bioinformatics 2010, 11, 221.

[13] Al-Shahrour, F., Carbonell, J., Minguez, P., Goetz, S. et al.,
Babelomics: advanced functional profiling of transcrip-
tomics, proteomics and genomics experiments. Nucleic
Acids Res. 2008, 36, W341–346.

[14] Wang, R., Fabregat, A., Rios, D., Ovelleiro, D. et al., PRIDE
Inspector: a tool to visualize and validate MS proteomics
data. Nat. Biotechnol. 2012, 30, 135–137.

[15] Searle, B. C., Scaffold: a bioinformatic tool for validat-
ing MS/MS-based proteomic studies. Proteomics 2010, 10,
1265–1269.

[16] Sturm, M., Bertsch, A., Gropl, C., Hildebrandt, A. et al.,
OpenMS – an open-source software framework for mass
spectrometry. BMC Bioinformatics 2008, 9, 163.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.adobe.com/
http://www.microsoft.com/silverlight/
http://vizbi.org/


Proteomics 2015, 15, 1356–1374 1371

[17] Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J. et al., A
travel guide to cytoscape plugins. Nat. Methods 2012, 9,
1069–1076.

[18] Gomez, J., Garcia, L. J., Salazar, G. A., Villaveces, J. et al.,
BioJS: an open source javascript framework for biological
data visualization. Bioinformatics 2013, 29, 1103–1104.

[19] Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., Ideker,
T., Cytoscape 2.8: new features for data integration and
network visualization. Bioinformatics 2011, 27, 431–432.

[20] Goecks, J., Nekrutenko, A., Taylor, J., Galaxy, T., Galaxy: a
comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life
sciences. Genome Biol. 2010, 11, R86.

[21] Chi, E. H., A taxonomy of visualization techniques using the
data state reference model. IEEE Symp. Inf. Visual. 2000,
2000, 69–75.

[22] Pilgrim, M., HTML5: Up and Running, O’Reilly Media, Inc.,
Sebastopol, CA 2010.

[23] Keim, D. A., Mansmann, F., Schneidewind, J., Ziegler, H.,
Challenges in visual data analysis. Information Visual. 2006,
4, 9–14.

[24] Perez-Riverol, Y., Hermjakob, H., Kohlbacher, O., Martens,
L. et al., Computational proteomics pitfalls and challenges:
HavanaBioinfo 2012 workshop report. J. Proteomics 2013,
87, 134–138.

[25] Leprevost, F. V., Barbosa, V. C., Francisco, E. L., Perez-
Riverol, Y., Carvalho, P. C., On best practices in the devel-
opment of bioinformatics software. Front. Genet. 2014, 5,
199.

[26] Perez-Riverol, Y., Wang, R., Hermjakob, H., Muller, M. et al.,
Open source libraries and frameworks for mass spectrom-
etry based proteomics: a developer’s perspective. Biochim-
ica et biophysica acta 2014, 1844, 63–76.

[27] Morse, E., Lewis, M., Olsen, K. A., Evaluating visualizations:
using a taxonomic guide. Int. J. Hum-Comput. St. 2000, 53,
637–662.

[28] Tory, M., Moller, T., Rethinking visualization: a high-level
taxonomy. Proceedings of the IEEE Symposium on Infor-
mation Visualization, Washington, DC 2004, pp. 151–158.

[29] Shneiderman, B., The eyes have it: a task by data type tax-
onomy for information visualizations. Proceedings of the
IEEE Symposium on Visual Languages, Washington, DC
1996, pp. 336–343.

[30] Bostock, M., Ogievetsky, V., Heer, J., D-3: data-driven docu-
ments. IEEE Trans. Visual. Computer Graph. 2011, 17, 2301–
2309.

[31] Bostock, M., Heer, J., Protovis: a graphical toolkit for vi-
sualization. IEEE Trans. Visual. Computer Graph. 2009, 15,
1121–1128.

[32] Kuzniar, A., Kanaar, R., PIQMIe: a web server for semi-
quantitative proteomics data management and analysis.
Nucleic Acids Res. 2014, 42, W100–106.

[33] Lewis, T. E., Sillitoe, I., Andreeva, A., Blundell, T. L. et al.,
Genome3D: a UK collaborative project to annotate genomic
sequences with predicted 3D structures based on SCOP and
CATH domains. Nucleic Acids Res. 2013, 41, D499–507.

[34] Gilbert, D., Morgner, T., JFreeChart, a free Java class library
for generating charts. Publisher Full Text 2007. Available at
http://www.jfree.org.

[35] Zheng, J., Zhang, D., Przytycki, P. F., Zielinski, R. et al.,
SimBoolNet–a Cytoscape plugin for dynamic simulation of
signaling networks. Bioinformatics 2010, 26, 141–142.

[36] Scheer, M., Klawonn, F., Munch, R., Grote, A. et al., JProGO:
a novel tool for the functional interpretation of prokaryotic
microarray data using Gene Ontology information. Nucleic
Acids Res. 2006, 34, W510–515.

[37] Colaert, N., Helsens, K., Impens, F., Vandekerckhove, J.,
Gevaert, K., Rover: a tool to visualize and validate quan-
titative proteomics data from different sources. Proteomics
2010, 10, 1226–1229.

[38] Barsnes, H., Eidhammer, I., Martens, L., FragmentationAna-
lyzer: an open-source tool to analyze MS/MS fragmentation
data. Proteomics 2010, 10, 1087–1090.

[39] Ramos, Y., Garcia, Y., Perez-Riverol, Y., Leyva, A. et al., Pep-
tide fractionation by acid pH SDS-free electrophoresis. Elec-
trophoresis 2011, 32, 1323–1326.

[40] Perez-Riverol, Y., Audain, E., Millan, A., Ramos, Y. et al., Iso-
electric point optimization using peptide descriptors and
support vector machines. J. Proteomics 2012, 75, 2269–
2274.

[41] Halachev, K., Bast, H., Albrecht, F., Lengauer, T., Bock, C.,
EpiExplorer: live exploration and global analysis of large
epigenomic datasets. Genome Biol. 2012, 13, R96.

[42] Hunter, S., Corbett, M., Denise, H., Fraser, M. et al., EBI
metagenomics–a new resource for the analysis and archiv-
ing of metagenomic data. Nucleic Acids Res. 2014, 42,
D600–606.

[43] Nim, T. H., White, J. K., Tucker-Kellogg, L., SPEDRE: a web
server for estimating rate parameters for cell signaling dy-
namics in data-rich environments. Nucleic Acids Res. 2013,
41, W187–191.

[44] Pizarro, A., Hayer, K., Lahens, N. F., Hogenesch, J. B., Cir-
caDB: a database of mammalian circadian gene expression
profiles. Nucleic Acids Res. 2013, 41, D1009–1013.

[45] Hunter, J. D., Matplotlib: a 2D graphics environment. Com-
put. Sci. Eng. 2007, 9, 90–95.

[46] Marchand, P., Graphics and GUIs with MATLAB, CRC Press,
Inc., Boca Raton, FL 1995.

[47] Ginestet, C., ggplot2: elegant graphics for data analysis.
J. R. Stat. Soc. Stat. 2011, 174, 245–245.

[48] Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A. et al.,
Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 2009,
25, 1422–1423.

[49] Doreleijers, J. F., Sousa da Silva, A. W., Krieger, E., Nabuurs,
S. B. et al., CING: an integrated residue-based structure
validation program suite. J. Biomol. NMR 2012, 54, 267–
283.

[50] Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H.,
Bustamante, C. D., Inferring the joint demographic history
of multiple populations from multidimensional SNP fre-
quency data. PLoS Genet. 2009, 5, e1000695.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.jfree.org


1372 R. Wang et al. Proteomics 2015, 15, 1356–1374

[51] Hoffmann, N., Stoye, J., Generic software frameworks for
GC-MS based metabolomics. Metabolomics, IntechOpen,
Viena 2012.

[52] Hoffmann, N., Keck, M., Neuweger, H., Wilhelm, M. et al.,
Combining peak- and chromatogram-based retention time
alignment algorithms for multiple chromatography-mass
spectrometry datasets. BMC Bioinform. 2012, 13, 214.

[53] Nugent, M. A., Molter, T. W., AHaH computing-from
metastable switches to attractors to machine learning. PloS
one 2014, 9, e85175.

[54] Lee, R., Karr, J. R., Covert, M. W., WholeCellViz: data visu-
alization for whole-cell models. BMC Bioinf. 2013, 14, 253.

[55] Manyam, G., Payton, M. A., Roth, J. A., Abruzzo, L. V.,
Coombes, K. R., Relax with CouchDB–into the non-
relational DBMS era of bioinformatics. Genomics 2012, 100,
1–7.

[56] Heer, J., Bostock, M., Ogievetsky, V., A tour through the
Visualization zoo. Commun. Acm. 2010, 53, 59–67.

[57] Wehrend, S., Lewis, C., A problem oriented classification of
visualization techniques. Proceedings of the First IEEE Con-
ference on Visualization – Visualization 90, San Francisco,
CA 1990, pp. 139–143.

[58] Chan, W. W.-Y., A survey on multivariate data visualization.
Department of Computer Science and Engineering. Hong
Kong University of Science and Technology 2006, 8, 1–29.

[59] Elmqvist, N., Dragicevic, P., Fekete, J. D., Rolling the dice:
multidimensional visual exploration using scatterplot ma-
trix navigation. IEEE Trans. Visual. Comp. Graph. 2008, 14,
1141–1148.

[60] Viau, C., McGuffin, M. J., Chiricota, Y., Jurisica, I., The
flowvizmenu and parallel scatterplot matrix: hybrid mul-
tidimensional visualizations for network exploration. IEEE
Trans. Visualization Comp. Graph. 2010, 16, 1100–1108.

[61] Hastie, T., Tibshirani, R., Eisen, M. B., Alizadeh, A. et al.,
‘Gene shaving’ as a method for identifying distinct sets of
genes with similar expression patterns. Genome Biol. 2000,
1, RESEARCH0003.

[62] Hand, D. J., Breast cancer diagnosis from proteomic mass
spectrometry data: a comparative evaluation. Stat. Appl.
Genet. Mol. 2008, 7, Article 15.

[63] Steuer, R., Kurths, J., Fiehn, O., Weckwerth, W., Observ-
ing and interpreting correlations in metabolomic networks.
Bioinformatics 2003, 19, 1019–1026.

[64] Li, W., Volcano plots in analyzing differential expressions
with mRNA microarrays. J. Bioinf. Comput. Biol. 2012, 10,
1231003.

[65] Luber, C. A., Cox, J., Lauterbach, H., Fancke, B. et al., Quan-
titative proteomics reveals subset-specific viral recognition
in dendritic cells. Immunity 2010, 32, 279–289.

[66] Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B.
et al., Quantitative proteomics combined with BAC Trans-
geneOmics reveals in vivo protein interactions. J. Cell Biol.
2010, 189, 739–754.

[67] Inselberg, A., Dimsdale, B., Human-Machine Interactive
Systems, Languages and Information Systems, Plenum
Press, New York 1991, pp. 199–233.

[68] Shima, J. E., McLean, D. J., McCarrey, J. R., Griswold, M. D.,
The murine testicular transcriptome: characterizing gene
expression in the testis during the progression of sper-
matogenesis. Biol. Reprod. 2004, 71, 319–330.

[69] Keller, R., Eckert, C. M., Clarkson, P. J., Matrices or node-link
diagrams: which visual representation is better for visual-
ising connectivity models? Inf. Visual. 2006, 5, 62–76.

[70] Ghoniem, M., Fekete, J. D., Castagliola, P., A comparison of
the readability of graphs using node-link and matrix-based
representations. Proceedings of the IEEE Symposium on
Information Visualization, IEEE Computer Society, Wash-
ington, DC 2004, pp. 17–24.

[71] Barabasi, A. L., Oltvai, Z. N., Network biology: understand-
ing the cell’s functional organization. Nat. Rev. Genet. 2004,
5, 101–U115.

[72] Baitaluk, M., Sedova, M., Ray, A., Gupta, A., BiologicalNet-
works: visualization and analysis tool for systems biology.
Nucleic Acids Res. 2006, 34, W466–W471.

[73] Pavlopoulos, G. A., Wegener, A. L., Schneider, R., A sur-
vey of visualization tools for biological network analysis.
BioData Mining 2008, 1, 12.

[74] Albrecht, M., Kerren, A., Klein, K., Kohlbacher, O. et al.,
On open problems in biological network visualization. Lect.
Notes Comput. Sci. 2010, 5849, 256–267.

[75] Perez-Riverol, Y., Alpi, E., Wang, R., Hermjakob, H., Vizcaino,
J. A., Making proteomics data accessible and reusable: cur-
rent state of proteomics databases and repositories. Pro-
teomics 2015, 15, 930–950.

[76] Maere, S., Heymans, K., Kuiper, M., BiNGO: a Cytoscape
plugin to assess overrepresentation of gene ontology cat-
egories in biological networks. Bioinformatics 2005, 21,
3448–3449.

[77] Bader, G. D., Hogue, C. W., An automated method for find-
ing molecular complexes in large protein interaction net-
works. BMC Bioinf. 2003, 4, 2.

[78] Montojo, J., Zuberi, K., Rodriguez, H., Kazi, F. et al.,
GeneMANIA Cytoscape plugin: fast gene function pre-
dictions on the desktop. Bioinformatics 2010, 26,
2927–2928.

[79] Turner, B., Razick, S., Turinsky, A. L., Vlasblom, J. et al., iRe-
fWeb: interactive analysis of consolidated protein interac-
tion data and their supporting evidence. Database: J. Biol.
Databases Curation 2010, 2010, baq023.

[80] Bockmann, B., Heiden, K., PathGuide – model-based gener-
ation of guideline-compliant pathways for the use in differ-
ent hospital information systems. Studies Health Technol.
Inf. 2013, 192, 1089.

[81] Salazar, G. A., Meintjes, A., Mazandu, G. K., Rapanoel, H. A.
et al., A web-based protein interaction network visualizer.
BMC Bioinf. 2014, 15, 129.

[82] Costanzo, M. C., Engel, S. R., Wong, E. D., Lloyd, P. et al.,
Saccharomyces genome database provides new regulation
data. Nucleic Acids Res. 2014, 42, D717–725.

[83] Bastian, M., Heymann, S., Jacomy, M., Gephi: an open
source software for exploring and manipulating networks.
ICWSM 2009, 8, 361–362.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com



Proteomics 2015, 15, 1356–1374 1373

[84] Kauffman, J., Kittas, A., Bennett, L., Tsoka, S., Dyconet: a
gephi plugin for community detection in dynamic complex
networks. PloS one 2014, 9, e101357.

[85] Jacomy, M., Venturini, T., Heymann, S., Bastian, M.,
ForceAtlas2, a continuous graph layout algorithm for handy
network visualization designed for the gephi software. PloS
one 2014, 9, e98679.

[86] Ellson, J., Gansner, E., Koutsofios, L., North, S. C., Wood-
hull, G., Graphviz – Open Source Graph Drawing Tools,
Lecture Notes in Computer Science, Springer, Berlin 2002,
pp. 483–484.

[87] Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A. et al., A
model-driven traceability framework for software product
lines. Softw. Syst. Model 2010, 9, 427–451.

[88] Mansmann, F., Fischer, F., Keim, D. A., North, S. C., Visual
support for analyzing network traffic and intrusion detec-
tion events using treeMap and graph representations. Pro-
ceedings of the 3rd ACM Symposium on Computer Human
Interaction for the Management of Information Technology
(CHiMiT ’09), ACM, New York 2009, pp. 19–28.

[89] Deligiannidis, L., Sheth, A. P., Aleman-Meza, B., Semantic
analytics visualization. Intelligence Security Inf. Proc., Lec-
ture Notes in Computer Science 2006, 3975, 48–59.

[90] Rubin, D. L., Noy, N. F., Musen, M. A., Protege: a tool for
managing and using terminology in radiology applications.
J. Digit. Imaging 2007, 20, 34–46.

[91] Levy, E. D., Pereira-Leal, J. B., Chothia, C., Teichmann, S.
A., 3D complex: a structural classification of protein com-
plexes. PLoS Comput. Biol. 2006, 2, e155.

[92] Lamport, L., LaTEX, A., Document Preparation System,
Addison-Wesley Reading, MA 1986.

[93] Jenssen, T. K., Laegreid, A., Komorowski, J., Hovig, E., A lit-
erature network of human genes for high-throughput anal-
ysis of gene expression. Nat. Genet. 2001, 28, 21–28.

[94] Wong, L., PIES, a protein interaction extraction system. Pa-
cific Symposium on Biocomputing, Hawaii 2001, 520–531.

[95] Gentry, J., Long, L., Gentleman, R., Falcon, S. et al., Provides
plotting capabilities for R graph objects. R package version
2009, 1.

[96] Xia, J., Benner, M. J., Hancock, R. E., NetworkAnalyst – inte-
grative approaches for protein-protein interaction network
analysis and visual exploration. Nucleic Acids Res. 2014,
42, W167–174.

[97] Dutkowski, J., Ono, K., Kramer, M., Yu, M. et al., NeXO Web:
the NeXO ontology database and visualization platform.
Nucleic Acids Res. 2014, 42, D1269–1274.

[98] Fiannaca, A., La Rosa, M., Urso, A., Rizzo, R., Gaglio, S.,
A knowledge-based decision support system in bioinfor-
matics: an application to protein complex extraction. BMC
Bioinf. 2013, 14(Suppl 1), S5.

[99] O’Madadhain, J., Fisher, D., White, S., Boey, Y., The Jung
(Java Universal Network/Graph) Framework. University of
California, Irvine, California 2003.

[100] Yung, L. S., Yang, C., Wan, X., Yu, W., GBOOST: a GPU-
based tool for detecting gene-gene interactions in genome-

wide case control studies. Bioinformatics 2011, 27, 1309–
1310.

[101] Pigné, Y., Dutot, A., Guinand, F., Olivier, D., Graphstream:
a tool for bridging the gap between complex systems and
dynamic graphs. Preprint 2008. arXiv:0803.2093.

[102] Henry, N., Fekete, J., McGuffin, M. J., NodeTrix: a hybrid vi-
sualization of social networks. Visual. Comput. Graph. IEEE
Trans. 2007, 13, 1302–1309.

[103] Henry, N., Fekete, J.-D., Mcguffin, M., Nodetrix: Hybrid rep-
resentation for analyzing social networks. Preprint 2007
arXiv:0705.0599.

[104] Krzywinski, M., Birol, I., Jones, S. J., Marra, M. A., Hive
plots—rational approach to visualizing networks. Brief.
Bioinf. 2012, 13, 627–644.

[105] Dork, M., Riche, N. H., Ramos, G., Dumais, S., Pivotpaths:
strolling through faceted information spaces. Visual. Com-
put. Graph. IEEE Trans. 2012, 18, 2709–2718.

[106] Wattenberg, M., Arc diagrams: visualizing structure in
strings. Infovis 2002: IEEE Symposium on Information Vi-
sualization, Boston, MA 2002, pp. 110–116.

[107] Tu, Y., Shen, H. W., Visualizing changes of hierarchical data
using treemaps. IEEE Trans. Visual. Comput. Graph. 2007,
13, 1286–1293.

[108] Talevich, E., Invergo, B. M., Cock, P. J., Chapman, B. A.,
Bio.Phylo: a unified toolkit for processing, analyzing and
visualizing phylogenetic trees in Biopython. BMC Bioinfor-
matics 2012, 13, 209.

[109] Koskinen, V. R., Emery, P. A., Creasy, D. M., Cottrell, J. S.,
Hierarchical clustering of shotgun proteomics data. Mol.
Cell. Proteom. MCP 2011, 10, M110 003822.

[110] Reingold, E. M., Tilford, J. S., Tidier drawings of trees.
Softw. Eng. IEEE Trans. 1981, SE-7, 223–228.

[111] Dabek, F., Caban, J. J., VisXplore: flexible visualization sys-
tem for analyzing complex clinical datasets. Proceedings
of the 2013 Workshop on Visual Analytics in Healthcare.
Washington, DC 2013, p. 14.

[112] Hagberg, A., Swart, P., S Chult, D., Exploring network struc-
ture, dynamics, and function using network X. Proceed-
ings of the 7th Python in Science conference (SciPy 2008),
Pasadena, CA 2008, pp. 11–15.

[113] Oliphant, T. E., A Guide to NumPy, Trelgol Publishing, Span-
ish Fork, UT 2006.

[114] Jones, E., Oliphant, T., Peterson, P., SciPy: open source sci-
entific tools for Python. http://www.scipy.org/ 2001.

[115] Bruls, M., Huizing, K., Van Wijk, J. J., Squarified treemaps.
Proceedings of the Joint Eurographics and IEEE TCVG
Symposium on Visualization, Springer, Vienna 2000,
pp. 33–42.

[116] Andreeva, A., Howorth, D., Chothia, C., Kulesha, E., Murzin,
A. G., SCOP2 prototype: a new approach to protein
structure mining. Nucleic Acids Res. 2014, 42, D310–
314.

[117] Douzery, E. J., Scornavacca, C., Romiguier, J., Belkhir, K.
et al., OrthoMaM v8: a database of orthologous exons and

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com

http://www.scipy.org/


1374 R. Wang et al. Proteomics 2015, 15, 1356–1374

coding sequences for comparative genomics in mammals.
Mol. Biol. Evol. 2014, 31, 1923–1928.

[118] Robertson, G. G., Mackinlay, J. D., Card, S. K., Cone trees:
animated 3D visualizations of hierarchical information. Pro-
ceedings of the SIGCHI conference on Human factors in
computing systems, ACM, New York, NY 1991, pp. 189–
194.

[119] Lamping, J., Rao, R., Pirolli, P., A focus+ context technique
based on hyperbolic geometry for visualizing large hier-
archies. Proceedings of the SIGCHI conference on Human

factors in computing systems, ACM Press/Addison-Wesley
Publishing Co., New York, NY 1995, pp. 401–408.

[120] Bertin, J., Semiology of Graphics: Diagrams, Networks,
Maps, University of Wisconsin Press, Madison, WI
1983.

[121] Mehlan, H., Schmidt, F., Weiss, S., Schuler, J. et al., Data vi-
sualization in environmental proteomics. Proteomics 2013,
13, 2805–2821.

[122] Rinaldi, A., More than meets the eye. EMBO Rep. 2012, 13,
895–899.

C© 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com


