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Abstract: This study evaluated the effect of the delivery of a commercial essential oil blend containing the
phytonutrients star anise, cinnamon, rosemary, and thyme oil (via different routes) on broiler chickens’
ileal and ceca microbiota and liver transcriptome compared to an antibiotic growth promoter. Eggs
were incubated and allocated into three groups: non-injected, in ovo saline, and in ovo essential oil. On
day 18 of incubation, 0.2 mL of essential oil in saline (dilution ratio of 2:1) or saline alone was injected
into the amnion. At hatch, chicks were assigned to post-hatch treatment combinations: (A) a negative
control (corn-wheat-soybean diet), (B) in-feed antibiotics, (C) in-water essential oil (250 mL/1000 L of
drinking water), (D) in ovo saline, (E) in ovo essential oil, and (F) in ovo essential oil plus in-water
essential oil in eight replicate cages (six birds/cage) and raised for 28 days. On days 21 and 28, one and
two birds per cage were slaughtered, respectively, to collect gut content and liver tissues for further
analysis. Alpha and beta diversity differed significantly between ileal and ceca samples but not between
treatment groups. In-feed antibiotic treatment significantly increased the proportion of specific bacteria
in the family Lachnospiraceae while reducing the proportion of bacteria in the genus Christensenellaceae in
the ceca, compared to other treatments. Sex-controlled differential expression of genes related to cell
signaling and tight junctions were recorded. This study provides data that could guide the use of these
feed additives and a foundation for further research.
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1. Introduction

Over the years, the sub-therapeutic supplementation of antibiotic growth promoters
(AGPs) has been used to preserve gut health, intestinal microbiota balance, and growth
performance in the poultry industry [1]. This trend has now triggered both consumer and
public health concerns bordering on the emergence of antibiotic resistance and antibiotic
residues in the food chain [2,3]. Accordingly, a few country-specific restrictions on the
use of AGPs are already in place, including in the EU [4], the US [5], and Canada [6]. The
potential elimination of AGPs could exacerbate the risks of intestinal dysbiosis and bacterial
diseases in poultry [7]. In the post-AGP era, understanding the complex interplay between
the host and its intestinal microbiome signifies a critical step to achieving optimum gut
health and intestinal microbiota balance in poultry.

The gastrointestinal tract (GIT) of poultry, populated by microorganisms in constant
interaction with the host and digesta, is known to play a critical role in the host’s growth and
health. It is now evident that the proliferation of a balanced and beneficial gut microbiota
population is vital to ensuring host protection against pathogenic bacteria and enhancing gut
integrity and immunity [8–10]. Several factors, including environmental stressors [11–13],
bird age [14], and nutrition [15–17] can modify the gut microbiota profile. Of all these factors,
nutrition (including the type of diet and time of feeding) has been regarded as the main factor
influencing poultry gut microbiota dynamics [9]. Given this modulatory role, several feed
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additives, including probiotics, prebiotics, organic acids, exogenous enzymes, and essential
oils, are being investigated as potential alternatives to AGPs in the poultry industry [9].

Essential oils (EOs) are mostly plant extracts with mixtures of phytochemical com-
pounds like thymol, carvacrol, and eugenol [18]. To explore a synergistic effect, commercial
combinations and blends of several EO types are becoming increasingly popular. Sev-
eral in vitro studies have highlighted the antibacterial, antiviral, antifungal, antimycotic,
antiparasitic, antioxidant, anti-inflammatory, anti-toxigenic, and immune-regulating prop-
erties of EOs [19–21]. However, in vivo results on the effect of EO on chicken microbiota
are somewhat inconsistent. While EO blends have been reported to reduce the relative
abundance of pathogenic bacteria like Escherichia coli [22,23], Salmonella [24], and Clostrid-
ium perfringens [25] in broiler chickens, a few studies have equally reported no effect of
EO supplementation on gut commensal bacteria [24,26,27]. These inconsistencies in the
efficacy of EOs could be associated with the limitations that characterize their mode of
delivery [28,29], as most EOs are conventionally supplied via feed or water to poultry birds.
These conventional routes expose EOs to potential thermal instability, especially during
feed milling processes like pelleting [30] and negative interaction with other feed additives
like oligosaccharides and coccidiostats [31,32]. The success of in-water EO supplementation
will depend on the water quality and the quality of the chick watering device. In-water EO
delivery also has the potential to promote wet feather risks and other welfare issues.

The delivery of EO via the in ovo route presents a viable means to overcome the
identified challenges that characterize conventional delivery routes (i.e., in feed and in
water). In ovo delivery of bioactive substances has been defined as “the direct inoculation
of bioactive substances to the developing embryo to elicit superior lifelong effects, while
considering the dynamic physiology of the chicken embryo” [33]. The in ovo delivery route
offers an economic advantage, as low doses of bioactive substances are required to initiate
long-term performance effects in the birds [33,34]. It offers the opportunity to stimulate
the colonization of the embryonic gut with beneficial microbiota very early on, rather than
trying to alter an already established microbiota community in later life [35]. Additionally,
it is yet to be known if an additive benefit exists from the successive delivery of EOs via the
in ovo and continuous in-water delivery routes. This study is thus interested in evaluating
if such an effect exists in the broiler chicken microbiota and liver transcriptome.

Studies have also suggested that microbial community might vary depending on the
segment of the small intestine considered [36–38]. In addition to the reported microbiota
modifying effect, EOs can also influence the expression of several genes involved in de
novo fat synthesis and deposition [39] as well as antioxidant activity [40]. Studies involv-
ing the liver transcriptome of EO-fed birds have also reported the enrichment of Gene
Ontology Consortium (GO) terms associated with performance and metabolism [39], as
well as a higher expression of antioxidant genes [41]. The liver remains a good candidate
tissue to study the transcriptomic effect of EO supplementation, as it is involved in several
metabolic functions, including carbohydrate, protein, and lipid metabolism; bile secre-
tion; and immune defense, among others [42]. Additionally, the combination of modern
molecular biological techniques, such as 16S ribosomal RNA (16S rRNA) gene sequencing
and RNA sequencing (RNA-seq) technology, could help unravel the precise mechanism
underpinning the delivery of EOs. Most studies on EO delivery have mainly focused on low
throughput gene expression analysis and bird performance evaluation [43,44]. Accordingly,
the objective of this study was to evaluate the effect of a commercial EO blend containing
star anise, cinnamon, rosemary, and thyme oil delivered via in-water and in ovo routes on
broiler chickens’ ileal and ceca microbiota, ceca short-chain fatty acid concentration, and
liver transcriptome as compared to an in-feed antibiotic growth promoter.
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2. Materials and Methods
2.1. Ethics Statement

The experiment was carried out at the hatchery facility of the Agricultural Campus
of Dalhousie University and the broiler rearing facility of the Atlantic Poultry Research
Center, Dalhousie Faculty of Agriculture. All experimental procedures were approved by
the Animal Care and Use Committee of Dalhousie University (Protocol number: 2020-035),
in accordance with the guidelines of the Canadian Council on Animal Care [45].

2.2. Egg Incubation and In Ovo Injection Procedure

A total of 670 hatching eggs with an average weight 77.87 ± 2.43 g (mean ± SE) from
41-week-old Cobb 500 broiler breeders were sourced from Synergy hatchery, Nova Scotia,
Canada. Eggs were incubated in a ChickMaster single-stage incubator (ChickMaster G09,
Cresskill, NJ, USA) under standard conditions (37.5 ◦C and 55% relative humidity) from
embryonic days (EDs) 1 to 17, and then to an average of 32 ◦C and 68% from EDs 18 to 21.
Incubators were preheated for 24 h prior to setting eggs to ensure that proper temperature
and humidity were stable. Egg trays were turned on a 90◦ arc four times an hour from the
time of setting until ED 18. Eggs were arranged in 6 replicate trays inside the incubator,
with each tray containing 96 eggs. On ED 12, eggs were candled, and in-fertile eggs were
disposed of, leaving a total of 576 eggs for the trial. The remaining eggs were subsequently
assigned to one of three treatment groups: (1) non-injected eggs (control, 288 eggs), (2) in
ovo saline group (96 eggs, injected with 0.2 mL of physiological saline, i.e., 0.9% NaCl), (3) in
ovo essential oil group (192 eggs, injected with 0.2 mL of a saline and essential oil blend
mixture at a dilution ratio of 2:1). The essential oil utilized in this study is a commercial blend
(Probiotech International Inc., St Hyacinthe, QC, Canada) containing the phytonutrients star
anise, cinnamon, rosemary, and thyme oil. The EO blend is registered by Health Canada as a
veterinary health product (VHP). On ED 18, eggs were injected according to the procedure
described by Oladokun et al. [46] with slight modifications. Briefly, this involved disinfecting
the eggs with 70% ethanol-dipped swabs and using an 18-gauge needle to carefully punch
the shell at the center of the air cell (the blunt end). The injected EO was then delivered to
the amnion using a self-refilling injector (Socorex ultra-1810.2.05005, Ecublens, Switzerland)
equipped with a 22-gauge needle (injection needle length—3 cm) at a 45-degree angle. After
in ovo injection, the injection sites were sealed with sterile paraffin and eggs were placed back
in the incubator. The non-injected eggs were also taken out and returned to the incubator
simultaneously as other injected treatment groups.

2.3. Birds, Housing, and Diets

Hatchlings were weighed and randomly assigned to 6 new treatment groups (Figure 1).
Chicks (straight run) from the initial non-injection group were randomly allocated into 3 new
treatment groups consisting of (A) chicks fed a basal corn-soybean meal-wheat–based diet
(negative control treatment, NC), (B) chicks fed NC + 0.05% bacitracin methylene disalicylate (in-
feed antibiotics), and (C) chicks supplied the same commercial blend of EOs as earlier described
via the water route (in-water essential oil) at the recommended dosage of 250 mL/1000 L
of drinking water. The initial in ovo saline and in ovo essential oil groups were placed on
the control diet to form treatments (D) (in ovo saline treatment) and (E) (in ovo essential oil
treatment), respectively. The last treatment group, (F), consisted of chicks from the in ovo
essential oil treatment group also supplied EO via the water route (in ovo + in-water essential
oil treatment). All treatment groups had 48 birds each. Birds were placed in battery cages
(0.93 m × 2.14 m), there were 6 birds per cage, and 8 replicate cages per treatment. Birds were
reared for 28 d under uniform controlled environmental conditions in line with Cobb Broiler
Management Guide recommendations. The room temperature was set at 31 ◦C on day 0 and
gradually reduced to 23 ◦C on day 28, and relative humidity ranged between 45 and 55%. The
ingredient and nutritional compositions of the basal diet used in the study are available in
Oladokun et al. [47] and Supplementary Table S1. Birds were provided with feed and water
ad libitum and diets were fed as mash throughout the rearing period which included the
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starter (0–14 d) and grower (15–28 d) phases. Diets met or exceeded the NRC [48] nutritional
requirements for broiler chickens.
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2.4. Sample Collection

On day 21, 1 bird per cage (8 replicate birds per treatment group) was randomly
selected, weighed, and euthanized by electrical stunning and exsanguination. After slaugh-
ter, the small intestinal segment—the ileum (1.5-cm length mid-way between Meckel’s
diverticulum and the ileocecal junction)—was longitudinally opened, and digesta con-
tent was collected into microcentrifuge tubes. Aside from being the most studied small
intestinal segments, the ileum microbiota was evaluated because reported trends suggest
increasing microbial density in the distal region of the small intestine compared to the
proximal regions as a result of longer digesta transit times [17,37].

Similarly, on day 28, 2 birds per cage (16 replicate birds per treatment group) were ran-
domly selected and euthanized by electrical stunning and exsanguination. After euthanasia of
the birds, digesta content from the pair of ceca was mixed and divided into two subsamples.
One part was stored in plastic RNase- and DNase-free tubes placed in liquid nitrogen to ana-
lyze gut microbiota. The other part was placed in bio-freeze kits (Alimetric Diagnostics, Espoo,
Finland) for the determination of short-chain fatty acids following published protocols [46].
Liver tissues (50–100 mg) using 1 mL TRIzol™ (Qiagen, Hilden, Germany) from 8 replicate
birds/treatment were also rapidly collected on day 28 and promptly frozen in liquid nitrogen.
All samples were stored at −80 ◦C until further analysis.

2.5. DNA Extraction, Qualification, Library Preparation, and Sequencing

The Qiagen DNeasy® PowerSoil Pro Kit (50) (Cat. No./ID: 47014) was used to ex-
tract DNA from both ileal and ceca digesta contents. Digesta contents were allowed
to thaw briefly at room temperature before subsequent DNA extraction, following the
manufacturer’s protocol. Briefly, 250 mg of digesta content was added to PowerBead
Pro Tubes and then subjected to cell lysing steps involving vortexing and centrifuga-
tion. The retrieved lysate was then captured onto an MB Spin Column, followed by a
series of purification and centrifugation steps. The MB Spin Column was then carefully
placed into the provided 1.5 mL elution tubes from which extracted DNA was recov-
ered. The concentration and purity of extracted DNA were subsequently determined
by spectrophotometry (Nanodrop ND1000, Thermo Scientific, Waltham, MA, USA). Ex-
tracted DNA samples (volume—50 µL, concentration—10–200 ng/µL) were then sent
to the Integrated Microbiome Resource (IMR), located at Dalhousie University in Hal-
ifax, Nova Scotia, for library preparation and sequencing. Libraries of the V4–V5 hy-
pervariable region of the 16S rRNA gene were prepared using universal primers 515 F
(Illumina adapters + 5′GTGYCAGCMGCCGCGGTAA3′) and 926 R (Illumina adapters +
5′CCGYCAATTYMTTTRAGTTT3′) following protocols described by Comeau et al. [49].
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Each sample was amplified with a different combination of index barcodes to allow for
sample identification after multiplex sequencing. Library preparation and sequencing
for all samples were performed with the Illumina MiSeq at the Integrated Microbiome
Resource (http://imr.bio/, accessed on 15 July 2021) of Dalhousie University.

2.6. Short-Chain Fatty Acid Concentration and Total Bacteria Density

Ceca samples were collected using BioFreeze™ sampling kits (Alimetrics Diagnostics
Ltd., Espoo, Finland) following the manufacturer’s protocol. Samples were then sub-
sequently submitted to Alimetrics Diagnostics 20007-1 (Espoo, Finland) for both SCFA
concentration and total bacterial density quantification. The SCFA profiles were analyzed
by gas chromatography (Agilent Technologies, Santa Clara, CA, USA) using pivalic acid as
an internal standard. The acids quantified included acetic, propionic, butyric, valeric, and
lactic acids. To quantify the total bacteria density, submitted samples were initially washed
to remove solid particles and complex polysaccharides that may disturb subsequent DNA
purification processes and downstream qPCR applications. The liquid phase was subjected
to differential centrifugation for collecting the bacterial cells. The cell walls of the micro-
bial cells were disrupted, and the chromosomal DNA was quantitatively extracted and
purified using optimized protocol (Alimetrics Diagnostics 20007-1, Espoo, Finland). All
measurements were performed with 16 replicates per treatment group.

2.7. RNA Extraction, Qualification, Library Preparation, and Sequencing

Total RNA in liver tissues was extracted on a QIAcube Connect using RNeasy Plus
Universal Mini Kit (Qiagen, Cat. No. ID: 73404) following the manufacturer’s instructions
after disruption and homogenization were performed with a TissueLyser system. RNA
elution volume was 30 µL. Total RNA was quantified, and its integrity was assessed on
a LabChip GXII (PerkinElmer). Libraries were generated from 250 ng of total RNA and
mRNA enrichment was performed using the NEBNext Poly(A) Magnetic Isolation Module
(New England BioLabs). cDNA synthesis was achieved with the NEBNext RNA First-
Strand Synthesis and NEBNext Ultra Directional RNA Second Strand Synthesis Modules
(New England BioLabs). The remaining library preparation steps were performed using the
NEBNext Ultra II DNA Library Prep Kit for Illumina (New England BioLabs). Adapters and
PCR primers were purchased from New England BioLabs. Libraries were quantified using
the Kapa Illumina GA with Revised Primers-SYBR Fast Universal kit (Kapa Biosystems).
Average fragment size was determined using a LabChip GXII (PerkinElmer) instrument.
The libraries were normalized, pooled, and then denatured in 0.05 N NaOH and neutralized
using HT1 buffer. The pool was loaded at 225 pM on an Illumina NovaSeq S4 lane using
Xp protocol as per the manufacturer’s recommendations. The run was performed for
2 × 100 cycles (paired-end mode). A phiX library was used as a control and mixed with
libraries at 1% level. Base calling was performed with RTA v3.4.4. The program bcl2fastq2
v2.20 was then used to demultiplex samples and generate fastq reads.

2.8. Bioinformatics and Statistical Analysis

The analysis of microbiota data was carried out using the Microbiome Helper pipeline
(https://github.com/LangilleLab/microbiome_helper/wiki, accessed on 29 July 2021),
based on QIIME2. This uses amplicon sequence variants (ASVs) created with Deblur.
Primer sequences were removed from sequencing reads using cutadapt (v 1.14) [50], and
primer-trimmed files were imported into QIIME2 (v. 2019.4.0) [51]. Reads (forward and re-
verse paired ends) were joined using VSEARCH (v 2.9.0) [52] and inputted into Deblur [53]
to correct reads and obtain amplicon sequence variants (ASVs). Taxonomic assignment was
performed with the SILVA database (v.1.3.2) using a naive Bayes approach implemented
in the scikit learn Python library [49]. Rarefaction curves were used to examine the in-
dividual alpha diversity for all samples (with the default observed OTUs as the metric).
Alpha diversity comparisons for the treatments were explored using boxplots and the
Kruskal–Wallis statistical test set at p < 0.05. Beta diversity was visualized using weighted

http://imr.bio/
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UniFrac PCoA plots. The relative abundance at different taxonomic levels was visualized
using stacked bar charts, while significant microbiota proportions were determined in the
Statistical Analysis of Metagenomic Profiles (STAMP) software [54] with an ANOVA test
using the Benjamin–Hochberg false discovery rate as multiple test correction and then
sorting by Corrected p-value (p < 0.05). Data on SCFA concentrations and total bacteria
density were subjected to one-way ANOVA analysis in the Minitab statistical package
(v.18.1). Data were analyzed in a completely randomized design and the analyzed data are
presented as means ± SEM and probability values. Values were considered statistically
different at p ≤ 0.05.

For the RNA-Seq analysis, adaptor sequences and low-quality scores containing bases
(Phred score < 30) were trimmed from reads using Trimmomatic [55]. The resulting reads
were aligned to the GRCg6 genome using STAR [56]. Read counts were obtained using
HTSeq [57]. The R package DESeq2 [58] was used to identify differentially expressed
genes between the groups. Nominal p-values were corrected for multiple testing using the
Benjamini–Hochberg method. Gene ontology (GO) enrichment analysis was performed
using the R package GOSeq [59]. Kyoto Encyclopedia of Genes and Genome (KEGG)
Pathway Enrichment analyses of differentially expressed genes were performed on the
PANTHER platform (http://pantherdb.org, accessed on 26 September 2021) [60].

3. Results

The 16S rRNA V4–V5 sequencing resulted in 8,774,523 quality read counts at an
average of 60,934 counts per sample after quality filtering and demultiplexing. A total of
554 operational taxonomic units (OTUs) at the 97% sequence similarity level were obtained
from all samples.

3.1. Microbiota Diversity

Internal sample α-diversity was estimated using the number of observed features
(richness) and Shannon’s index (diversity). Rarefaction curves of observed features and
Shannon’s index values reached a plateau in all samples, demonstrating that sequenc-
ing depth was adequate to cover the bacterial diversity in both ceca and ileal samples
(Supplementary Figures S1 and S2).

Alpha diversity inspection revealed significant (p < 0.001) diversity between the ileal
and ceca samples but not between treatment groups (Figure 2a–c). Ceca samples recorded
a higher Shannon diversity index compared to ileal samples. While Shannon’s diversity
index showed a similar profile between the treatment groups in both ceca and ileal tissues,
the ovo EO treatment recorded numerically higher alpha diversity in the ileum, the same
as the NC treatment in the ceca.

To determine beta diversity, a principal coordinate analysis (PCoA) based on un-
weighted UniFrac distances was conducted. The PCoA plot showed unique cluster sep-
aration between the ileal and ceca microbiota; contrastingly, no difference in microbial
community structure between treatments in both the ileum and ceca was observed (Supple-
mentary Figure S3).

3.2. Microbiota Composition

The relative abundance of the predominant bacteria phyla and genus in both the ileum
and ceca are presented in Figures 3 and 4, respectively. At the phyla level, ileum microbiota
was dominated by Firmicutes (range of 99.5–99.8%), Proteobacteria (range of 0.03–1.79%),
and Actinobacteria (range of 0.03–0.12%) for all treatments. Ceca microbiota phyla taxa
showed a similar trend as the ileal microbiota, as the relative abundance of Firmicutes (range
of 98.3–99.6%) was found higher than Proteobacteria (range of 0.38–0.81%), which was also
higher than Actinobacteria (range of 0.01–0.24%) across the treatment groups. At the genus
taxa, the ileal microbiota was 96% dominated by Lactobacillus, Clostridium sensu_stricto_1,
Enterococcus, Romboutsia, and Lachnospiraceae_unclassified species, with Lactobacillus species
being the prevalent species (occurring > 64% in all treatments, except for the in-water EO

http://pantherdb.org
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treatment, which recorded a 46.2% Lactobacillus relative abundance). Faecalibacterium was
the most abundant genus in the ceca, recording at least 40% abundance across treatment
groups. Similar to the ileal microbiota, genus Lactobacillus and Romboutsia were also found
in the ceca, although at lower relative abundance. Contrastingly, the genus Lachnospiraceae
was higher in the ceca (22.39%) compared to the ileum (1.91%). Significant differences in
the cumulative proportions of bacteria in the genera Christensenellaceae_R-7_group, Elsen-
bergiella, Lachnoclostridium, and Shuttleworthia were recorded between treatments in the
ceca (Figure 5). Compared to other treatments, the in-feed antibiotic treatment significantly
(p < 0.05) increased the proportion of Eisenbergiella, Lachnoclostridium, and Shuttleworthia.
Contrastingly, the proportion of bacteria Christensenellaceae_R-7_group (p < 0.01) in the ceca
was reduced by the in-feed antibiotic treatment when compared to other treatments. No
significant differences in the microbiota proportion between treatments were recorded in
the ileum at both the phylum and genus levels.
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abundance). Faecalibacterium was the most abundant genus in the ceca, recording at least 
40% abundance across treatment groups. Similar to the ileal microbiota, genus Lactobacil-
lus and Romboutsia were also found in the ceca, although at lower relative abundance. 
Contrastingly, the genus Lachnospiraceae was higher in the ceca (22.39%) compared to the 
ileum (1.91%). Significant differences in the cumulative proportions of bacteria in the gen-
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feed antibiotic treatment significantly (p < 0.05) increased the proportion of Eisenbergiella, 

Figure 2. Alpha diversity (Shannon’s index) box plots show (a) significant difference between ileal and
ceca microbiota (Kruskal–Wallis, p < 0.001), (b) no significant effect of treatments on ileal microbiota
(Kruskal–Wallis, p > 0.05), (c) no significant effect of treatment on ceca microbiota (Kruskal–Wallis,
p > 0.05). Treatments include (A) negative control treatment—chicks fed a basal corn-soybean meal-
wheat-based diet; (B) in-feed antibiotics—chicks fed NC + 0.05% bacitracin methylene disalicylate and
(C) in-water essential oil—chicks supplied the essential oil via the water route at the recommended
dosage of 250 mL/1000 L of drinking water; (D) in ovo saline treatment—eggs injected with 0.2 mL
of physiological saline (0.9% NaCl); (E) in ovo essential oil treatment—eggs injected with 0.2 mL of
a saline + essential oil blend mixture at a dilution ratio of 2:1; and (F) in ovo + in-water essential oil
treatment—chicks offered the essential oil blend via the in ovo and in water route, successively. Boxes in
the boxplots denote interquartile range, solid middle line in the boxes denote the median, and ⊕ denote
the means, Symbols # and * in (a,b) represent outliers.
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Figure 3. Ileal microbiota bacteria composition at the (a) phylum and (b) genus levels of broiler
chickens subjected to different treatments groups. Treatments include (A) negative control treatment—
chicks fed a basal corn-soybean meal-wheat-based diet; (B) in-feed antibiotics—chicks fed NC + 0.05%
bacitracin methylene disalicylate; (C) in-water essential oil—chicks supplied the essential oil via
the water route at the recommended dosage of 250 mL/1000 L of drinking water; (D) in ovo saline
treatment—eggs injected with 0.2 mL of physiological saline (0.9% NaCl); (E) in ovo essential oil
treatment—eggs injected with 0.2 mL of a saline + essential oil blend mixture at a dilution ratio of
2:1l; and (F) in ovo + in-water essential oil treatment—chicks offered the essential oil blend via the in
ovo and in water route, successively.
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Figure 4. Ceca microbiota bacteria composition at the (a) phylum and (b) genus levels of broiler
chickens subjected to different treatments groups. Treatments include (A) negative control treatment—
chicks fed a basal corn-soybean meal-wheat-based diet; (B) in-feed antibiotics—chicks fed NC + 0.05%
bacitracin methylene disalicylate; (C) in-water essential oil—chicks supplied the essential oil via
the water route at the recommended dosage of 250 mL/1000 L of drinking water; (D) in ovo saline
treatment—eggs injected with 0.2 mL of physiological saline (0.9% NaCl); (E) in ovo essential oil
treatment—eggs injected with 0.2 mL of a saline + essential oil blend mixture at a dilution ratio of 2:1;
and (F) in ovo + in-water essential oil treatment—chicks offered the essential oil blend via the in ovo
and in water route, successively.
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Figure 5. Significant differences (ANOVA, B–H FDR corrected p value: p < 0.05) in cumulative
proportions of genus (a) Christensenellaceae_R-7_group, (b) Elsenbergiella, (c) Lachnoclostridium, and
(d) Shuttleworthia in ceca microbiota of broiler chickens subjected to different treatments groups.
Treatments include (A) negative control treatment—chicks fed a basal corn-soybean meal-wheat-
based diet; (B) in-feed antibiotics—chicks fed NC + 0.05% bacitracin methylene disalicylate; (C) in-
water essential oil—chicks supplied the essential oil via the water route at the recommended dosage
of 250 mL/1000 L of drinking water; (D) in ovo saline treatment—eggs injected with 0.2 mL of
physiological saline (0.9% NaCl); (E) in ovo essential oil treatment—eggs injected with 0.2 mL of a
saline + essential oil blend mixture at a dilution ratio of 2:1; and (F) in ovo + in-water essential oil
treatment—chicks offered the essential oil blend via the in ovo and in water route, successively.

3.3. Ceca SCFA Concentration

The resulting concentrations of ceca SCFA are presented in Table 1. Only the concentra-
tion of butyric acid recorded a statistical trend towards significance (p = 0.09) in the in-water
EO treatment, compared to other treatments. All other acids that were quantified recorded
no statistical significance between treatment groups (p > 0.05). Nonetheless, the in-water
essential oil treatment equally recorded numerically higher concentrations of acetic, lactic,
volatile, and total fatty acids. Total bacteria (copies/gram of sample) were also found to be
higher (p > 0.05) in the in-water EO treatment when compared to other treatments.

Table 1. Effect of essential oil delivery route on ceca short-chain fatty acid concentration (SCFA) and
total eubacteria (copies/gram of sample) in broiler chickens.

Short-Chain Fatty Acid
Concentration

(mmol/kg)

Treatments 1

SEM 2 p ValueNegative
Control

In-Feed
Antibiotics

In-Water
Essential

Oil

In Ovo
Saline

In Ovo
Essential

Oil

In Ovo Essential Oil +
In-Water Essential Oil

Acetic acid 51.9 50.5 57.2 55.4 50.9 55.8 1.73 0.82
Propionic acid 4.24 3.79 4.31 4.43 3.81 4.36 0.18 0.86

Butyric acid 13.6 15.7 19.3 18.8 13.4 17.9 0.77 0.09
Valeric acid 1.05 0.79 0.87 1.17 1.08 1.07 0.07 0.67
Lactic acid 0.60 0.73 1.40 1.26 1.09 0.83 0.86 0.49
Total SCFA 74.1 74.2 89.7 84.1 74.4 82.4 2.65 0.41

Branched-chain fatty acids 2.25 1.63 1.94 2.28 1.77 1.91 0.11 0.46
Volatile fatty acids 73.1 72.4 83.6 82.1 70.9 81.0 2.40 0.49

Total eubacteria
(copies/gram of sample) 2.3 × 1012 1.9 × 1012 3.0 × 1012 2.6 × 1012 2.5 × 1012 2.2 × 1012 2.06 × 1012 0.72

1 Treatments include (1) negative control treatment—chicks fed a basal corn-soybean meal-wheat-based diet; (2) in-
feed antibiotics—chicks fed NC + 0.05% bacitracin methylene disalicylate; (3) in-water essential oil-chicks supplied
the essential oil via the water route at the recommended dosage of 250 mL/1000 L of drinking water; (4) in ovo saline
treatment—eggs injected with 0.2 mL of physiological saline (0.9% NaCl); (5) in ovo essential oil treatment—eggs
injected with 0.2 mL of a saline + essential oil blend mixture at a dilution ratio of 2:1; (6) in ovo + in-water essential
oil treatment—chicks offered the essential oil blend via the in ovo and in water route, successively. 2 SEM = pooled
standard error of means. Mean values from n = 16 birds/treatment group are presented.
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3.4. Transcriptome Analysis

In this study, to identify differentially expressed mRNAs in the liver of broiler chickens, a
total of 6,360,427,350 raw reads were generated from 48 samples (Supplementary Table S2). After
the trimming step, 6,357,176,660 clean reads were obtained and the clean reads were aligned
to the whole genome of Gallus gallus domesticus (Fasta: Gallus_gallus. GRCg6a.fa, Annotation:
Gallus_gallus.GRCg6a.Ensembl98.gtf, source: Ensembl98). An average of 95.56% of clean
reads were mapped to the genome. To determine the statistical significance of differentially
expressed genes (DEGs) between treatments, the genes with the parameter of false discovery
rate (FDR < 0.05) were considered differentially expressed genes/transcripts. Only a limited
number of DEGs were observed (6: 3 up-regulated, and 3 down-regulated) to be differentially
influenced by the treatments (Table 2). The in ovo + in-water EO recorded the highest number
(2) of DEGs in this category, as it down-regulated the expression of both cubilin (CUBN) and
aldehyde dehydrogenase 1 family member L2 (ALDH1L2) genes. A heatmap illustrating the
top 100 most variable genes is presented in Supplementary Figure S4.

Table 2. Differentially expressed genes in the liver of broiler chickens as influenced by treatment groups 1.

Treatments Gene Symbol Gene Description Expression Level log2FoldChange p Value

B vs. A ALDH1L2 aldehyde dehydrogenase 1 family member L2 Down −0.6 <0.01
C vs. A BTN1A1 butyrophilin subfamily 1 member A1-like Up 0.4 0.02
D vs. A AVD Avidin Up 0.5 <0.01

E vs. A ST8SIA6 ST8 alpha-N-acetyl-neuraminide
alpha-2,8-sialyltransferase 6 Up 0.6 <0.01

CUBN Cubilin Down −0.7 0.01
F vs. A ALDH1L2 aldehyde dehydrogenase 1 family member L2 Down −0.6 0.01

1 Treatments include (A) negative control treatment—chicks fed a basal corn-soybean meal-wheat-based diet;
(B) in-feed antibiotics-chicks fed NC + 0.05% bacitracin methylene disalicylate; (C) in-water essential oil—chicks
supplied the essential oil via the water route at the recommended dosage of 250 mL/1000 L of drinking water;
(D) in ovo saline treatment—eggs injected with 0.2 mL of physiological saline (0.9% NaCl); (E) in ovo essential
oil treatment—eggs injected with 0.2 mL of a saline + essential oil blend mixture at a dilution ratio of 2:1; (F) in
ovo + in-water essential oil treatment-chicks offered the essential oil blend via the in ovo and in water route,
successively. Each comparison is specified in the format “B vs. A”, where group B is compared to group A, with
group A being the denominator for the comparison. Liver tissues (50–100 mg) were sampled from 8 replicate
birds/treatment (independent of sex) using 1 mL TRIzol™ (Qiagen, Hilden, Germany).

4. Discussion

The supplementation of phytogenic feed additives, especially essential oil, is reported
to promote lipid and cholesterol metabolism [39], as well as to enhance immunity [61],
leading to improved poultry performance. These favorable effects are thought to be
exerted through the modulation of gut microbiota and the expression of several unique
genes [39–41,44,61]. However, in vivo results on the effect of EO on chicken microbiota
are somewhat inconsistent. While EO blends have been reported to reduce the relative
abundance of pathogenic bacteria like Escherichia coli [22,23], Salmonella [24], and Clostridium
perfringens [25] in broiler chickens, a few studies have equally reported no effect of EO
supplementation on gut commensal bacteria [24,26,27]. This study utilized 16S rRNA gene
sequencing in combination with transcriptomic analysis to investigate the effect of essential
oil and its delivery routes (in water, in ovo, and in ovo + in water) and 0.05% bacitracin on
both the composition and diversity of ileal and ceca microbiota and liver transcriptomics.
Additionally, ceca short-chain fatty acid concentration was also evaluated. Bacitracin, the
positive control in this study, is an extensively used antibiotic growth promoter in the
poultry industry [62]. There is no doubt that the detailed delineation of the effect of a
classic AGP like bacitracin and an alternative to AGP and its delivery routes, as this study
presents, is key to understanding the molecular mechanisms underlying growth promotion
in poultry. Accordingly, this study provides insight into the microbiota-mediated mode
of action of antibiotics growth promoters, as well as preliminary transcriptomic evidence
suggesting sex-controlled hepatic differential gene expression in broiler chickens offered
antibiotics and essential oil (via water, in ovo, and in ovo + in-water delivery routes).
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The gut microbiota plays an important role in host health, immune modulation,
nutrient absorption, and pathogen control [63,64]. Although no treatment effect was
recorded, this study revealed higher alpha (Shannon index) diversity in broiler chicken ceca
compared to the ileum. This agrees with other studies [65–67], which have also recorded
higher microbial diversity in the ceca. Higher microbial richness and stability observed
in the ceca compared to the ileum in broiler chicken have been correlated with the higher
number of obligate anaerobic microbes present therein, compared to aerobes or facultative
anaerobes [63]. Consistent with the results of this study, both Abdelli et al. [68] and Pham
et al. [69] have equally reported no effect of EO on alpha diversity. Thibodeau et al. [70] have
shown that only extreme events (dysbiosis and disease inclusive) which modify the number
of ecological niches in different bacterial species can alter the alpha diversity. Furthermore,
beta diversity analysis revealed no difference in microbial community structure between
treatments at both the ileum and ceca; however, the bacteria communities clearly differed
across both gut sections. Other studies involving AGP or EO supplementation in broiler
chickens have also observed similar results [71–73]. Conversely, Pham et al. [69] have
recently highlighted the potential of EO to modulate the gut bacterial community structure.
Aside from differences in intestinal sections, time of sampling, and supplemented additives,
other factors, including broiler chicken breed, age, environmental condition, and disease
status, can potentially cause shifts in beta diversity [63,74]. Diseases accompanied by
intestinal dysbiosis like necrotic enteritis and Eimeria infection are reported to cause a
significant change in gut microbiota community structure [75,76], buttressing the healthy
state of the flock in this study.

Furthermore, in-feed antibiotic treatment significantly (p < 0.05) increased the propor-
tion of Eisenbergiella, Lachnoclostridium, and Shuttleworthia, while decreasing (p < 0.01) the
proportion of Christensenellaceae_R-7_group in the ceca, as compared to other treatments
in this study. Interestingly, all of the bacteria with an increased proportion belong to the
family Lachnospiraceae. The abundance of bacteria in the family Lachnospiraceae has been
associated with improved weight gain [77], feed conversion ratio [78], and butyrate pro-
duction in broiler chickens [79,80]. The performance result from this study published in
Oladokun et al. [47] shows the increased weight gain recorded by the in-feed antibiotic
treatment in the early period (d 1–14), compared to the in ovo treatments group, supports
this result. Consistent with our results, Zhong et al. [81] reported the increased abundance
of bacteria in the genus Eisenbergiella in neonates offered probiotics and antibiotics concur-
rently. An increased abundance in bacteria of the genus Eisenbergiella has been associated
with reduced incidence of gastrointestinal disorders linked to metabolic and microbiota
changes (functional dyspepsia), resulting in improved nutrient metabolism in broiler chick-
ens [82]. Nonetheless, a few studies have also associated the abundance of this genera
with the incidences of subclinical enteritis and Eimeria infection in broiler chickens [83,84],
emphasizing the cost-benefit effects of antibiotic use in poultry production and the need
for more studies in this regard. Lachnoclostridium has been positively correlated with in-
creased butyrate production with attendant gut health protection and pathogen control
effects [85,86]. Probiotics [87], prebiotics (wheat bran) [88], and antibiotics, but not essential
oil, have all been reported to enrich the abundance of Lachnoclostridium in broiler chicken
ceca [89]. Similar to other enriched genera in the ceca in this study, the genus Shuttleworthia
has also been associated with increased weight gain and growth performance resulting
from a possible role in lipid and carbohydrate metabolic pathways [77]. Furthermore,
disease conditions like avian leukosis virus [90], coccidia infection [91], and Salmonella
infection have all been reported to decrease the abundance of bacteria in the genus Shuttle-
worthia in broiler chicken ceca [92]. Similar to the results presented here, Hung et al. [93]
have also reported a reduced abundance of members of the genus Christensenellaceae in
the feces of weaned piglets offered the antibiotic bacitracin. Although the functional role
of bacteria in this genus in the chicken microbiota is not fully known, their abundance
has been associated with the colonization of Campylobacter jejuni, a foodborne zoonotic
pathogen [70]. While the results presented here suggest that antibiotic growth promoters
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might give the birds a better growth advantage than EOs under this experimental condi-
tion, such growth advantage might come with some metabolic costs, deducible from the
metabolic functions of bacteria species enhanced by this treatment. Hence, more research
is needed on potent alternatives to antibiotic growth promoters with no reported adverse
effects on the poultry industry. Nonetheless, the results on gut microbiota presented here
provide a critical perspective on microbiota-mediated mode of action of antibiotics growth
promoters in broiler chickens.

The fermentation of dietary fibers to yield SCFA constitutes an important function
of the ceca commensal microbiota. No significant effect of evaluated treatments on ceca
SCFA concentration was recorded in this study. Only the in-water EO treatment showed
a statistical trend (p = 0.09) of enhancing ceca butyric acid concentration relative to other
treatments. Butyric acid serves as an important energy substrate for the maintenance and
proliferation of gut colonic cells and structures [71,94]. Essential oils (in feed or in water)
have been reported to increase the concentrations of acetic, butyric, propionic, and lactic
acids and total SCFA in quail breeders [95] and broiler chickens [96–98]. The positive effect
of EO on ceca SCFA concentration could be related to the capacity of their phytogenic
formulations to enhance bacteria proliferation in the lower gut. Several variable factors
that potentially influence SCFA concentrations in broiler chickens, including the microbiota
composition, bird age, and the amount and type of available fermentable substrates, explain
the observed results in this study [23,99,100].

Transcriptomic analysis in this study suggests unique sex-controlled gene expression
in broiler chicken livers. To evaluate the similarities and dissimilarities between samples in
an unsupervised manner, principal component exploratory analysis (PCA) was carried out.
The PCA showed that samples were not segregated by treatments (Supplementary Figure
S5) but instead showed modest segregation based on an unknown variable, probably sex.
To confirm the hypothesis that treatments indeed clustered based on sex, the expression of
five highly expressed genes on the W chromosome was examined. The results showed that
all five genes showed much higher expression in group two than group one, indicating that
group two samples were probably female (group two were samples with PC1 score > 0,
group one were samples with PC1 scores < 0) (Supplementary Figure S6). Based on these
PCA gene expression plots, samples were thus assigned as male or female according to
their PC1 score. A total of 14 DEGs were found to be influenced by the treatment and sex
(Supplementary Table S3). Of these DEGs, six genes were up-regulated (fold change range
from 0.4 to 1.1) and eight genes were down-regulated (fold change range from −0.5 to
−0.9). Sex-based analysis revealed that in male transcripts, antibiotic treatments recorded
the highest number of DEGs (seven genes: four upregulated and three downregulated)
compared to other treatments. Similarly, in male transcripts, the BVES (blood vessel epicar-
dial substance) gene was significantly downregulated in both antibiotics, in-water essential
oil, and in ovo essential oil treatments. In female birds, only four DEGS (two upregulated,
two downregulated) were recorded amongst treatment groups. To understand the func-
tional roles of identified DEGs, GO and KEGG pathway analysis was carried out. The
GO analysis showed that a total of 33 significant GO categories were enriched (p < 0.05)
compared to the negative control treatment (Supplementary Figure S7a,b). The GO terms
included both biological process (BP), cellular component (CC), and molecular function
(MF). However, a vast majority (75.8%) of the significant GO terms in the male transcript
were observed in the antibiotic treatment, with GO terms in the BP category including “non-
canonical Wnt signaling pathway” and “snRNA 3′-end processing” being the principal
terms. In the female transcript, the vast majority (51.5%) of the significant GO terms were
observed in the in-water EO treatment, with GO terms in the CC category including “signal
transduction” and “plasma membrane” being the principal terms. The KEGG pathway
analysis results, also shown in Table 2, provides predictions of differentially regulated
pathways across treatments and sex. The results revealed that the main enriched pathways
were cell signaling- (acting in sodium-glucose transporter, ion channels, exosome, and
inositol phosphate metabolism) and tight-junction-related pathways. Other highlighted en-
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riched pathways include genetic information processing, transcription machinery, spindle
formation proteins, phosphoric diester hydrolases, and purine metabolism.

Several factors, including the threshold of significance levels, but certainly not the
number of animals or sample number utilized in this study, could have contributed to
the low number of DEGs observed in this study (n = 14). Compared to this study, other
broiler chicken RNA-Seq experiments [101–103] have utilized lower animal or sample
numbers to detect a higher number of DEGs. The BVES gene with the cellular GO term
category “regulation of microtubule cytoskeleton organization and tight junction related
pathways” was found to be ubiquitously downregulated in male transcripts in this study
irrespective of treatments, suggesting that this gene plays a vital metabolic function in the
cell. Since first identified in 2001, the BVES gene has mostly been functionally correlated
with the maintenance of epithelial integrity and tight junctions [104–107]; this has been
validated by decreased trans-epithelial resistance values (TER, a measure of tight junction
integrity) [106]. Nonetheless, the exact mechanisms of its role in tight junction maintenance
are yet to be fully elucidated [108]. Osler et al. [106] have proposed that BVES’s role in
tight junction maintenance might indeed be a secondary effect, with more primary roles
likely related to cell signaling, and structural support, among others. Besides the intestine,
where tight junction proteins are noted to ensure gut barrier integrity, the BVES gene is also
reported to be highly expressed in cardiac and skeletal muscle [109–111]. More recently,
Gu et al. [112] reported the detection of BVES following whole-genome resequencing of the
autochthonous Niya chicken breed and associated its function to the regulation of heart
rate and heart development [113,114]. Considering that ischemic hepatic necrosis, which
is linked to heart failure, could occur in broiler chickens [115] and the healthy state of
flocks in this study, it is hypothesized that the downregulation of the BVES gene in broiler
chicken liver observed in male transcripts in this study might be functionally related to
the regulation of heart rate. Moreover, male embryos and adult chickens are reported to
exhibit slower heart rates as compared to females [116,117]. More studies are thus needed
to validate the relationship between BVES expression in the liver and heart rate regulation
in broiler chickens.

Furthermore, antibiotic treatment upregulated the expression of INTS2 (integrator
complex subunit 2), SLC5A10 (solute carrier family 5-member 10), CEP70 (centrosomal
protein 70), and MED13 (mediator complex subunit 13) genes, while downregulating the
expression of PDE11A (phosphodiesterase 11A) and CLCA1 (chloride channel accessory
1) genes in male transcripts in this study. Only in female transcripts did the antibiotic
treatment upregulate PANX2 (pannexin 2) gene expression. INTS2 is a subunit of the
integrator complex, which interacts with the C-terminal domain (CTD) of RNA polymerase
II (RNAP II) large subunit and modulates 3-prime end processing of small nuclear RNAs
(snRNAs) U1 and U2 [118]. The snRNAs are components of the spliceosome involved with
the processing of pre-mRNA while also modulating the expression of other genes [119]. The
modulation of snRNAs has also been reported to impact the innate immune system [120].
Slc5a10 (encoding SGLT5) is a mannose, fructose, and to a less degree, a glucose and
galactose transporter [121,122]. Although glucose transporter 2 (GLUT2) is considered the
main sugar transporter relevant to liver function [123], Fukuzawa et al. [124] have reported
exacerbated hepatic steatosis induced by diminished sodium-dependent fructose uptake in
SGLT5-deficient mice, suggesting the potential use of this gene as an indirect biomarker
of liver health. Moreover, while the liver is the main site of ingested fructose metabolism,
the occurrence of excess fructose beyond the liver’s metabolic capacity triggers GLUT5
transporter upregulation to ensure fructose absorption into the epithelial cells [125]. Similar
to the BVES gene with predicted cardioprotective effect, the upregulation of the MED13
gene by the antibiotic treatment is also thought to exert a cardioprotective effect in the birds.
The MED13 gene is a component of the mediator complex, working in synchronization
with RNA polymerase II to direct transcription [126]. Its mutation has been implicated in
lethal cardiac defects [127–129]. Similarly, upregulated CEP70 expression, as induced by
antibiotic treatment in this study, has been implicated in the pathophysiology of numerous
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cancers [130]. It is a centrosomal-associated protein that has been linked with the regulation
of microtubule nucleation in animal cells [131–133]. Centrosome dysfunction has been
linked to the incidences of liver diseases and other non-apparent cell cycle defects in
humans [134]. The downregulated PDE11A is a dual-specificity phosphodiesterase that
catalyzes the breakdown of the cyclic nucleotides cyclic adenosine monophosphate (cAMP)
and cyclic guanosine monophosphate (cGMP) [135]. Although mainly expressed in the
prostate, it also finds expression to a lower degree in the pituitary gland, heart, and
liver [136]. Although CLCA1 is noted for its role in the activation of calcium-activated
chloride channels, its downregulation is reported to enhance pro-inflammatory cytokine
release in both mice mucus cells [137] and human small airway epithelial cells [138].
Increased innate immune responses are usually associated with increased energy demands;
this suggests that antibiotic use might be an energy-intensive means of growth promotion.
Similar to this study, Farmahin et al. [139] have reported the differential expression of
PANX2 in the liver of female, but not male, Fischer rats. PANX2 is functionally known for
its potential to create gap junctions that facilitate ion exchange between cells and their role
as a potential tumor suppressor in the human brain, skin, and liver tissues [140–143].

In a like manner, in-water EO treatment equally downregulated the expression of the
MC5R (melanocortin 5 receptor) gene in female transcripts in this study. MC5R encodes a
protein receptor for melanocyte-stimulating hormone and adrenocorticotropic hormone. It
has been functionally designated as a candidate gene for obesity and fatness in humans and
domestic animals [144]. Consistent with the results presented here, Ren et al. [145] have
previously reported that its expression in the chicken liver might be estrogen activated,
further buttressing its differential expression in female transcripts in this study. Similarly,
Blankenship et al. [146] have reported that the downregulation of MC5R was critical to
achieving feed efficiency phenotype in first-generation female, but not male, quails in their
study. This is likely achieved directly by fatty acid metabolism or indirectly by glucose
homeostasis. This result is not unexpected, considering that the broiler chickens utilized in
this study have been bred for high feed efficiency. Conversely, the in-water EO treatment
up-regulated the expression of the GUCY2C (guanylate cyclase 2C) gene, which encodes
guanylate cyclase belonging to the membrane guanylyl cyclase family [147]. Mice deficient
in GUCY2C have been reported to have reduced inflammatory response due to reduced
expression of pro-inflammatory molecules [148]. In contrast, higher expression of GUCY2C
in the liver of milk-restricted lambs has been associated with increased pro-inflammatory
response [149]. This is likely the molecular basis of the antibacterial properties of essential
oils, especially as it relates to pro-inflammatory hepatic stimulus. This also has an energy
trade-off, as more energy might be directed towards countering systemic inflammation and
not growth. Higher expression of GUCY2C in human females as compared to males has
also been reported [150]. Furthermore, while the in ovo EO treatment downregulated the
expression of the cubilin (CUBN) gene, the in ovo + in-water EO treatment downregulated
the expression of the MTMR6 (myotubularin related protein 6) gene in male and female
transcripts, respectively. Although the functional relevance of CUBN in chickens is not
fully understood, CUBN is generally noted to play a role in the uptake of vitamin, iron, and
lipoprotein endocytosis [151,152]. Lee et al. [153] have reported the downregulation of the
CUBN gene in chicken lines with high residual feed intake, suggesting a possible role in
amino acid metabolism and molecular transport network. Sun et al. [154] have also alleged
that the downregulation of this gene could be induced by stressors, particularly heat stress.
More research is thus needed to fully elucidate the functionality of this gene in chickens.
Overexpression of the downregulated MTMR6 by the in ovo + in-water EO treatment
has been reported to inhibit the Ca2+-activated potassium channel [155,156]. Given the
physiological function of the Ca2+-activated potassium channel, which is to regulate cellular
membrane potential and calcium signaling, this is considered to be a beneficial effect of
essential oil delivery via this route. Moreover, hypoxia has been reported to increase
mitoBKCa channel activity (big conductance potassium channel) of rat liver [157].
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Furthermore, in this study, both in-feed antibiotic and in ovo + in-water EO treatments
downregulated the expression of ALDH1L2 in the liver of broiler chickens. Similar to
this study, Li et al. [158] have previously reported the downregulation of ALDH1L2 in a
nonalcoholic steatohepatitis (NASH) rat model by analyzing the liver proteome, suggesting
that ALDH1L2 may be involved in NASH progression. Contrary to the result presented
here, Bajagai et al. [101] have reported upregulation of the ALDH1L2 gene with continuous
EO (2% oregano powder) supplementation in the liver of male broiler chickens. Differ-
ences in routes of EO supplementation and length of study may have possibly influenced
reported results. Although little is known about the BTN1A1 gene in chickens, which
was upregulated by the in-water EO treatment in this study, Huang et al. [159] reported
that this gene might play a role in immune response via inhibition of T-cell activation
using lipopolysaccharide-challenged broiler chickens [160,161]. Low hepatic expression
of this gene has also been reported in water buffalo [162]. In addition, while the ST8SIA6
gene has been reported to be downregulated in the liver of apolipoprotein E-knockout
(apo E-KO) mice offered phytosterol treatment for 14 weeks [163], an upregulation of
this gene in birds of the in ovo EO treatment was observed in this study. Phytosterols
are of plant origin and have reported cholesterol-lowering effects [164,165]. In humans,
high expression of the ST8SIA6 gene has been attributed an oncogenic function, including
tumor cell proliferation, invasion, and migration [166]. As little is known of this gene in
chickens, an overt attribution of a high expression of this gene to an increased likelihood
of hepatic steatosis or liver cancer might be farfetched. More studies are needed in this
regard to enable a more definite prognosis. On the other hand, the CUBN gene is reported
to play an important role in the metabolism and transport of the active form of vitamin D
(1,25-dihydroxy vitamin D) in the liver. This has been confirmed in transcriptomics studies
involving mice supplemented with cholecalciferol [167,168]. Although this gene is reported
to be downregulated by the in ovo EO treatment in this study, Collision et al. [169] have
previously reported its upregulation in mice liver under a trans-fatty acid (TFA)-induced
non-alcoholic fatty liver disease challenge. Overall, the results presented here provide
transcriptomic evidence on the possibility of “natural” phytobiotics (including essential
oil) having side effects depending on the length of use, dosage, and administration routes,
an important concept to be considered in the development of potent human and animal
pharmacotherapeutic strategies.

5. Conclusions

Summarily, while treatments yielded no difference in alpha and beta bacteria diversity
in this study, clear differences in ileal and ceca microbiota distribution and structure
were recorded. In-feed antibiotic treatment is also reported to significantly increase the
proportion of specific beneficial bacteria in the family Lachnospiraceae while reducing the
proportion of bacteria in the genus Christensenellaceae, all in the ceca. No significant effect of
the evaluated treatments on ceca SCFA concentration was recorded in this study. Only the
concentration of butyric acid recorded a statistical trend towards significance in the in-water
essential oil treatment when compared to other treatments. The study also suggests unique
sex-controlled gene expression in broiler chicken liver. Compared to the negative control
treatment, the differential expression of the INTS2, SLC5A10, MED13, CEP70, PDE11A,
and CLCA1 genes functionally associated with genetic information processing, glucose
transport, mediator complex, spindle formation proteins, phosphoric-diester hydrolases,
and ion channel activity, respectively, were all regulated by the antibiotic treatment in
male transcripts. Only the BVES and CUBN gene sets, functionally associated with tight
junctions and cholesterol homeostasis, were regulated by the in-water and in ovo EO
treatments in male transcripts, respectively, compared to the negative control treatment.
Conversely, in female transcripts, while the antibiotic treatment regulated the expression
of the PANX2 gene functionally associated with ion exchange, the in-water and in ovo +
in-water treatments regulated the differential expression of GUCY2C, MC5R, and MTMR6
genes functionally associated with peptide hormone binding, melanocortin receptor activity,
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and peptidyl-tyrosine dephosphorylation, respectively, all compared to the negative control
treatment. Taken together, the results presented here provide mechanistic insights on the
microbiota-mediated mode of action of antibiotics growth promoters by modulating the
abundance of specific bacteria communities, as well as preliminary transcriptomic evidence
suggesting sex-controlled hepatic differential gene expression in broiler chickens offered
antibiotics and essential oil (via water, in ovo, and in ovo + in-water delivery routes). To
our knowledge, this is the first study to suggest such sex-controlled hepatic differential
gene expression in broiler chickens offered these treatments. There is thus a need for
well-designed in vivo studies that take sex into consideration in order to fully validate the
results presented herein. Nonetheless, the data presented here not only provide guidance
on antibiotics and essential oil application in the poultry industry; they also provide a solid
framework for further research in the field.
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