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Abstract: Certain symptoms associated with mild sickness and lethargy have not been categorized
as definitive diseases. Confirming such symptoms in captive monkeys (Macaca fascicularis, known as
cynomolgus monkeys) can be difficult; however, it is possible to observe and analyze their feces. In
this study, we investigated the relationship between stool state and various omics data by considering
objective and quantitative values of stool water content as a phenotype for analysis. By examining
the food intake of the monkeys and assessing their stool, urine, and plasma, we attempted to obtain
a comprehensive understanding of the health status of individual monkeys and correlate it with the
stool condition. Our metabolomics data strongly suggested that many lipid-related metabolites were
correlated with the stool water content. The lipidomic analysis revealed the involvement of saturated
and oxidized fatty acids, metallomics revealed the contribution of selenium (a bio-essential trace
element), and intestinal microbiota analysis revealed the association of several bacterial species with
the stool water content. Based on our results, we hypothesize that the redox imbalance causes minor
health problems. However, it is not possible to make a definite conclusion using multi-omics alone,
and other hypotheses could be proposed.

Keywords: multi-omics; redox; selenium; saturated fatty acids; lipid mediators; multiple sample sources;
microbiota; metabolomics; lipidomics; metallomics

1. Introduction

Living a healthy life and reaching old age without agony and disease are common
aspirations in human society. However, numerous diseases have to be overcome in old age.
These include widely recognized diseases such as cancer, dementia, and infectious diseases,
as well as diseases that cannot be diagnosed using conventional techniques despite the
presence of clinically evident symptoms. The pre-symptomatic state of disease is increas-
ingly attracting the attention of researchers and healthcare professionals. Various disease
models have been used to elucidate the mechanisms underlying disease development and
to develop diagnostic and therapeutic strategies. In vitro experiments using cell lines are
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relatively inexpensive and suitable for high-throughput screening; however, there is a large
difference between the findings of in vitro experiments and phenomena observed in the
body in vivo. In addition, although mice are used extensively as experimental models,
there are significant differences in the biology and behavior of rodents and humans. For
example, mice do not naturally develop aging-related diseases such as atherosclerosis
and diabetes, partially due to their short lifespan [1,2]. Therefore, non-human primates
(NHPs) could serve as effective experimental models, as they are close to humans in terms
of evolutionary distance [3]. Furthermore, unlike research on humans, research on NHPs
allows for complete control over housing, environment, diet, and behavior.

A survey investigating the experiences of veterinary clinicians working on diarrhea
in primates in 1981 revealed the incidence of diarrhea in 13,385 monkeys to be 10.6% [4].
However, a 2018 study reported diarrhea in 3.6% to 31.6% of monkeys housed under
captivity [5]. If these symptoms do not improve, they may lead to death or engender
the need for euthanasia. Previous studies have repeatedly shown that both personality
and psychological stressors can serve as predictors of gastrointestinal disease and chronic
diarrhea [5]. In general, the risk of diarrhea is higher when one is nervous, introverted,
and/or anxious. While certain stressful environments increase the risk of chronic diarrhea,
the relative effects of such stressors are considered to be highly dependent on the animals’
personality [5]. In humans, diarrhea is one of the most common bowel diseases, affecting
8–20% of the general population globally [6]. In particular, irritable bowel syndrome (IBS),
with diarrhea as a typical symptom, seems to be associated with high psychosocial stress
and low quality of life and work productivity [7,8]. However, the mechanisms underlying
the development of IBS are largely unknown. Chronic psychological stress is thought
to play an important role in the onset and worsening of symptoms of functional bowel
disease [8,9].

To study the complex biological processes in a comprehensive manner, an inte-
grated approach involving omics analyses of different samples such as plasma/serum
and urine, was undertaken to reveal the interrelationships between the biomolecules and
their functions. This may facilitate a more comprehensive understanding of health and
disease [10–13]. In multi-omics, a correlation is identified between a vast array of molec-
ular profile information and the disease status. Therefore, it is important to evaluate the
phenotypes of diseases as continuous and objective quantitative values. In the present
study, stool water content was considered a phenotype [14,15], and multi-omics data
pertaining to plasma, urine, feces, and food were obtained from monkeys housed in a
controlled environment.

2. Results
2.1. Stool Water Content Analysis

The amount of water in each fecal sample is shown in Table 1. The values were
obtained by weighing approximately 50 mg of stool, and the dry weight was obtained after
drying the sample for 24 h in a dryer. The feces of five monkeys marked with an asterisk
had high water content and were observed to be soft (only one of the animals (No. 20) had
obvious diarrhea), suggesting that water content in the feces reflects the stool condition.
The stool water content was considered a quantitative and an objective phenotype, and an
association was investigated with the following omics data.

2.2. Metabolomics

Using untargeted metabolomics analyses, we detected 899 peaks in the plasma
(Table S1), 2920 peaks in urine (Table S2), and 3125 peaks in feces (Table S3). As the
number of monkeys in the present study was small (n = 20), we excluded peaks with
missing values (below the detection limit). The number of peaks with significant corre-
lations (p < 0.05) was as follows: 85 for plasma metabolites, 267 for urinary metabolites,
and 1347 for fecal metabolites. Among them, the metabolites with particularly strong
correlations (peaks with a strong correlation [±0.8]) with stool water content were exam-
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ined using Pearson’s correlation coefficient. Such metabolites were not found in plasma
or urine. However, 18 metabolites in stool had a positive correlation and 92 had a neg-
ative correlation with the stool water content. When the strength of the correlation was
expanded to ±0.7, 392 peaks were correlated (along with three and two peaks in urine
and plasma, respectively). We attempted to identify the metabolites using the “LC-MS
Search” function (https://hmdb.ca/spectra/ms/search (accessed on 28 June 2021)) in
the Human Metabolome Database (HMDB) with an accurate mass number. We specu-
lated the names of 982 metabolites (HMDB ID numbers), including redundancies, such as
structural isomers and stereoisomers (Table S4). As we did not use any standard metabo-
lites for confirmation, it was difficult to specifically identify the metabolites, and some
of the metabolites were considered misidentified. However, while misidentifications are
likely to occur randomly, metabolites were correctly identified by annotating the charac-
teristics of candidate metabolites to determine the metabolic pathways/networks most
likely to be affected by these metabolites and the populations of metabolites with similar
characteristics [16–19]. Therefore, we used this information to perform an analysis using
the Enrichment Analysis function in MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/
(accessed on 28 June 2021)). As shown in Figure 1, more than a half (53.4%) of the metabo-
lites whose structures could be estimated by HMDB were lipid-related metabolites. Hence,
we focused our subsequent analysis on lipids.

Table 1. Stool water content and animal age. Asterisk (*) monkeys were observed to be soft stools.

Monkey Water % Age (Years)

1 57.93 5.8
2 * 74.50 5.1
3 * 74.07 4.2
4 65.52 4.7

5 * 77.21 5.0
6 71.46 5.1

7 * 79.45 6.3
8 72.62 5.1
9 67.80 5.6
10 69.09 6.3
11 72.98 6.2
12 75.36 5.1
13 62.24 6.3
14 57.89 5.3
15 66.60 6.1
16 64.70 4.2
17 72.67 3.9
18 67.69 4.4
19 65.50 3.8

20 * 76.92 4.0

Liquid chromatography/mass spectrometry identification was performed using HMDB
(https://hmdb.ca/spectra/ms/search (accessed on 28 June 2021)) by refining the precise
molecular weight information to an error of 2 ppm. The obtained HMDB ID numbers
were used in MetaboAnalyst 5.0’s Enrichment Analysis (https://www.metaboanalyst.ca/
MetaboAnalyst/Secure/enrichment/ParamView.xhtml (accessed on 28 June 2021)). The
super-class was selected from the chemical structures category to obtain a pie chart of the
type of compound families correlated with stool water content.

2.3. Fatty Acid Analysis

To examine the lipids in more detail, the basic structural units of lipids and fatty
acids were analyzed using gas chromatography (GC). Free fatty acids and fatty acids
covalently bound to-cholesterol and -glycerol skeletons via ester bonds were hydrolyzed
so that the total amount of fatty acids could be determined. The results are shown in

https://hmdb.ca/spectra/ms/search
https://www.metaboanalyst.ca/
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https://www.metaboanalyst.ca/MetaboAnalyst/Secure/enrichment/ParamView.xhtml
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Figure 2. The most common fatty acid in the feed (orange bars) was C18:2n-6 (54.5%),
followed by C18:1n-9 (20.4%), and the two accounted for approximately 75% of the total
fatty acid content. Most of the unsaturated fatty acids present in the diet were reduced to
the saturated form in the feces, except for the C18 series, the levels of which increased in
the feces.
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Figure 2. Comparison of fatty acid species in food and feces. The orange bars represent the fatty
acids in the food (repeatedly twice), the blue bars the fatty acids in the feces (average of 20 animals,
and each sample was measured repeatedly three times), the vertical axis shows the percentage when
the total fatty acid content is 100%, and the horizontal axis shows the fatty acid species; the number
following “C” indicates the length of the carbon chain, the number following the colon indicates
the number of unsaturated bonds, and the number following “n-” indicates the position of the first
unsaturated bond counting from the position of the carbon atom of the terminal methyl group. The
graph embedded in Figure 2 is a magnified view of fatty acids with chains of more than 20 carbons. The
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error bars indicate the standard error.

As shown in Figure 3, the correlation of fatty acids present in feces with stool water
content was determined next. Two fatty acids, C18:2n-6 and C18:1n-9, positively correlated
with the stool water content. These two fatty acids were abundant in the diet. Thus, in
monkeys with defective intestinal absorption, the composition of the food may be strongly
reflected in their feces. In other words, these two lipids were not metabolized completely
and remained in the stool as food residue. Saturated fatty acids showed a strong negative
correlation with stool water content (less than −0.8). The negative correlations between
saturated fatty acids and stool water content may be due to the relatively low dry weight
of wet stools.
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the number following “n-” indicates the position of the first unsaturated bond counting from the
position of the carbon atom of the terminal methyl group. The fatty acids were measured by GC after
derivatization. The numbers next to the bar graph are the p-values.

However, as shown in Figure 3, some lipids were positively correlated, and even
among lipids that were negatively correlated, large differences were observed in the
strength of the correlation. We realized that the relationship between stool dry weight and
stool lipids is not simple. Although the origin of the saturated fatty acids remains unknown,
there was no significant correlation between plasma fatty acids and stool water content
(Table S5). The levels of urinary fatty acids were not measured because the quantitative
sensitivity of the assay was insufficient for the 200 µL urine obtained in this study.

2.4. Lipidomics

Untargeted lipidomic analyses were conducted to determine the source of saturated
fatty acids in the stool. As only LipidSearch [20,21] was used for the analysis, and no
verification using standard products was conducted, there were potential incorrect iden-
tifications. However, we decided to focus on lipid subclasses rather than the individual
molecules identified.
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We performed lipidomic analyses on monkey feed and identified 361 lipid components
(Table S6), as shown in Figure 4. More molecular species belonged to TG than the other
lipids, but the distribution (the number of lipid-species within one lipid class) of other
lipids seemed to be relatively well-balanced. Subsequently, we conducted fecal lipidomic
analysis, and 844 lipids were identified (Table S7).

Metabolites 2021, 11, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 4. Lipidomics of monkey food. The numbers represent the number of lipids identified. PE-
related lipids are LdMePE (5 lipids) and dMePE (14 lipids). PC, phosphatidylcholine; LPC, lyso-
phosphatidylcholine; PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; TG, 
triglyceride; Hex1Cer, hexosylceramide. 

Figure 5a shows the distribution (the number of lipid-species within one lipid class) 
of lipid components in the stool. The content of TG, which was abundant in the food, 
significantly decreased, and that of PE increased in the stool. The constituents in the stool 
are difficult to interpret because they are a mixture of undigested food residues and the 
molecules produced by the intestinal bacteria. It has been reported that PC is the most 
abundant phospholipid produced by mammalian cells [22,23]. In the present study, the 
number of phospholipids in the monkey diet was almost the same for PC/LPC and PE/LPE 
(Figure 4). However, in stool, PE/LPE was 1.5 times more than PC/LPC (Figure 5a). It has 
been reported that PE is more abundant in bacteria than PC [24,25]. The results suggest 
that the bacteria in the intestine produce various types of PE/LPE. Although we do not 
have clear explanations for the trends, fecal lipids with a positive correlation (p < 0.05) 
with stool water content are shown in Figure 5b. PA, PEt, and PMe were characteristic 
minor components in the stool. Figure 5c shows the lipids with a negative correlation. As 
the amount of water absorbed from the intestine decreases (amount of water in the stool 
increases), the amount of PE absorbed from the intestine may also decrease. However, if 
the decrease in absorption is not limited to PE, then the level of PE produced by the bac-
teria may reduce as the stool water content increases. 
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PE-related lipids are LdMePE (5 lipids) and dMePE (14 lipids). PC, phosphatidylcholine; LPC,
lysophosphatidylcholine; PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; TG,
triglyceride; Hex1Cer, hexosylceramide.

Figure 5a shows the distribution (the number of lipid-species within one lipid class)
of lipid components in the stool. The content of TG, which was abundant in the food,
significantly decreased, and that of PE increased in the stool. The constituents in the stool
are difficult to interpret because they are a mixture of undigested food residues and the
molecules produced by the intestinal bacteria. It has been reported that PC is the most
abundant phospholipid produced by mammalian cells [22,23]. In the present study, the
number of phospholipids in the monkey diet was almost the same for PC/LPC and PE/LPE
(Figure 4). However, in stool, PE/LPE was 1.5 times more than PC/LPC (Figure 5a). It has
been reported that PE is more abundant in bacteria than PC [24,25]. The results suggest
that the bacteria in the intestine produce various types of PE/LPE. Although we do not
have clear explanations for the trends, fecal lipids with a positive correlation (p < 0.05)
with stool water content are shown in Figure 5b. PA, PEt, and PMe were characteristic
minor components in the stool. Figure 5c shows the lipids with a negative correlation. As
the amount of water absorbed from the intestine decreases (amount of water in the stool
increases), the amount of PE absorbed from the intestine may also decrease. However,
if the decrease in absorption is not limited to PE, then the level of PE produced by the
bacteria may reduce as the stool water content increases.

There were no obvious lipids in the stool that could explain the origin of the saturated
fatty acids that inversely correlated with the water content as shown in Figure 3. Therefore,
plasma lipidomic analysis was performed to identify 711 lipids, which were less than the
molecular species identified in the fecal lipidomic analysis (Table S8).

The distribution (the number of lipid-species within one lipid class) of plasma lipid
species is shown in Figure 6a. The TG component abundant in the food was also abundant
in the plasma, which was very different from the lipid component in the stool. In addition,
the percentage of glycerophospholipids, including PC and PE, increased in the plasma
compared with that in the food. Five plasma lipids (two each of PC and PE, and one of PG)
positively correlated with the stool water content, although the correlation was not strong
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(0.5 < r < 0.6). However, there were 239 lipids with a negative correlation (p < 0.05), and
their distribution (the number of lipid-species within one lipid class) is shown in Figure 6b.
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Figure 5. Fecal lipidomics. (a) Distribution (the number of lipid-species within one lipid class) of
lipid components in the stool. (b) Lipids in stool with a significant positive correlation with the
stool water content. (c) Lipids in stool with significant negative correlation with the stool water
content. PC; phosphatidylcholine, LPC: lysophosphatidylcholine, PE, phosphatidylethanolamine;
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TG, triglyceride; HexCer, hexosylceramide; PA, phosphatidic acid; Pet, phosphatidylethanol; PMe,
phosphatidylmethanol.
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Figure 6. Plasma lipidomics. (a) Distribution (the number of lipid-species within one lipid class)
of lipid components in the plasma. (b) Lipids in plasma with significant negative correlation
with the stool water content. PC, phosphatidylcholine; LPC lysophosphatidylcholine; PE, phos-
phatidylethanolamine; LPE, lysophosphatidylethanolamine; TG, triglyceride; HexCer, hexosylceramide.

Nineteen of the negatively correlated plasma lipids presented correlation coefficients
of −0.7 or lower with the stool water content, which was considerably higher than that
observed for lipids in the stool (Table S7). Of these, 10 were TGs, and the abundance of TGs
was also characteristic, as shown in Figure 6b. LPC also tended to be abundant as a plasma
lipid with a negative correlation, and four of them presented correlation coefficients of
−0.7 or lower with the stool water content.

Lipidomic analysis of urine samples led to the identification of 566 lipids in urine,
which were fewer than the lipids found in stool and plasma, but more than those present in
food (Table S9). As shown in Figure 7a, the relatively high number of TG species followed
the same trend as in plasma, but a higher number of PEs than that of PCs was more
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pronounced in urine than in stool. The very high percentage of sphingolipids is probably a
characteristic of urinary lipids. There were 42 urinary lipids that positively correlated with
the stool water content (Figure 7b). All correlation coefficients with stool water content
were less than 0.6 and were not as high as those of plasma lipids. However, it is noteworthy
that the correlations were positive, unlike those of plasma and feces. Plasma circulates
in the body, whereas stool is excreted and contains molecules of both bacterial and food
origin. Only urine is considered as pure excretion from the body, and therefore it may be
different from plasma and feces in terms of its interactions (in/out/circulation) with the
body. Most of the urinary lipids with a positive correlation were sphingolipids. Although
TG and PE were also common as urinary lipids, they did not correlate well with the stool
water content. Both plasma TG and PE have been found to be inversely correlated with the
stool water content. Only one type of lipid, PS, presented a negative correlation with the
stool water content, and the correlation coefficient was −0.45 (not a strong correlation).
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2.5. Lipid Mediator Analysis

In addition to general lipidomic analysis, we also measured the levels of fatty acid-
derived lipid mediators and their related metabolites (FA metabolites) for functional
analysis of the feces; 14 FA metabolites in the stool (Table S10) and 2 FA metabolites in
plasma (Table S11) positively correlated with the stool water content (only oxidized lipids
that were above the lower limit of quantification). Among them, six FA metabolites with
relatively high correlation coefficients (0.6 or higher) are shown in Table 2. In addition,
urinary FA metabolites, which were detected in 20 animals, did not correlate with the stool
water content (Table S12).

Table 2. Highly correlated (>0.6) oxidized fatty acids in feces with stool water content.

Lipid Name Correlation Coefficient p-Value

13-HpODE 0.732 0.00024
9-HpODE 0.717 0.00038

12,13-EpOME 0.71 0.00045
13-HOTrE 0.659 0.0016
13-HODE 0.651 0.0019
13-KODE 0.618 0.0037
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The precursor of the oxidized fatty acids (excluding 13-HOTrE) was linoleic acid
(LA, C18:2n-6). As shown in Figure 2, LA constitutes more than half of the fatty acids in
monkey feed. It will be interesting to verify if these oxidized FAs decrease when the LA
content in the diet is reduced. LA was also the precursor of two FA metabolites in plasma
(9-KODE and 9-HpODE), which were positively correlated. These oxidized fatty acids
in stool, particularly 13-HpODE, promote intestinal inflammation [26,27] and may affect
the intestinal conditions and cause soft stools, even if they do not lead to specific diseases.
However, due to oxidative stress, the production of 13-HpODE and other substances may
have increased, causing intestine inflammation and poor food absorption. Two of the
oxidized fatty acids in the plasma also correlated with the stool water content, suggesting
that monkeys with soft stools may have increased oxidation in not only their stool but also
their plasma.

2.6. Metallomic Analysis

In general, the concentration of ions in the gastrointestinal tract changes the osmotic
pressure in the lumen, which in turn affects the stool water content. Therefore, the trace
elements, including metallic elements that constitute inorganic substances in feces, plasma,
and urine, were also measured in this study. The correlations with stool water content are
shown in Figure 8 and Table S13.
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The only element in plasma with correlation coefficients higher than 0.5 or lower than
−0.5 was selenium (Se), which showed a negative correlation with the stool water content
(−0.637, p = 0.0025); however, no such correlation was found in stool or urine. Although Se
is an essential element and exhibits antioxidant properties, it is incorporated into proteins as
selenocysteine in vivo and is predominantly found as selenoprotein P in the plasma [28,29].
Glutathione peroxidase (GPx), one of the selenoproteins, plays an important role in the
reduction of lipid peroxides. GPX4 is an essential selenoprotein in mammals and regulates
lipid peroxidation by utilizing selenocysteine [30]. The decrease in Se in the plasma may
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increase the content of oxidized fatty acids. However, as fatty acids other than 9-HpODE
and 9-KODE did not change notably in the plasma, some other mechanism may also be
involved. Metallomic analysis of trace elements in the food revealed that all the elements
shown in Figure 8 were present in the food (Table S14). However, recent studies have
shown that Se, an essential trace element for living organisms, is stored in intestinal bacteria
and is utilized by the host as and when needed [31]. Therefore, we then investigated the
intestinal bacteria from feces.

2.7. Microbiota Analysis

Based on microbiota profiling by 16S rRNA gene amplicon sequencing, we further
assessed the correlation between the abundance of amplicon sequence variants (ASVs) and
the stool water content. For this analysis, we considered ASVs that were detected in the
feces of at least half the monkeys (based on the mean of rarified ASV tables of duplicate
measurements per monkey, see the Methods). This subset of ASVs (n = 405) accounted
for 91.7% ± 2.2% (mean and standard deviation) of total abundances across samples or
monkeys. Using Spearman’s correlations to identify monotonic associations, we recovered
60 ASVs that were significantly (adjusted p-value of <0.1) correlated with the stool water
content (Figure 9a and Supplementary Figures S1 and S2).
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Figure 9. Fecal microbial diversity and their relationship with fecal water content. (a) Summary of
Spearman’s correlation coefficients reflecting the relationship between ASV abundance and water
content. Violin plots show the distribution of correlation coefficients for all ASVs analyzed and
grouped according to taxonomic affiliation (y-axis). Non-significant correlation coefficients (adjusted
p-value threshold of 0.1) are shown as dark gray circles, and significant negative and positive
correlations are plotted as blue and red circles, respectively. (b) Scatter plots of ASV abundance and
water content for ASVs with the most significant positive (top) and negative (bottom) correlations
(*** adjusted p-value of <0.01 and ** adjusted p-value of < 0.05). Graphics for all ASVs with significant
correlations are shown in Supplementary Figures S1 and S2. Note that ASVs with zero abundances
in the rarified ASV tables are shown as light gray symbols, plotted at a pseudo-abundance of 0.001%.

Within the family Lachnospiraceae, the abundance of ASVs belonging to multiple
genera, including Blautia, Roseburia, and Dorea, positively correlated with the stool water
content and increased up to an order of magnitude in abundance (as a percentage of the
total community) across the range of the stool water content evaluated (Figure 9b). Other
ASVs that positively correlated with the water content included ASVs from members of the
genera Holdemanella and Faecalibacillus (family Erysipelotrichaceae), and Prevotella (family
Prevotellaceae). For the family Ruminococcaceae, correlation coefficients had both signifi-
cant positive and negative associations with the water content. Many ASVs that negatively
correlated with the water content could be identified only at higher taxonomic levels. Based
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on the ASV table collated at the family level (that is, by summing ASV abundances within
families), Lachnospiraceae significantly positively correlated with the stool water content,
which is consistent with the positive correlations for a considerable number of ASVs within
this family, whereas Ruminococcaceae negatively associated with the stool water content,
although the correlation was not significant (Supplementary Figures S1 and S2).

In line with mounting evidence that the families Lachnospiraceae and Ruminococ-
caceae play an important and potentially dual (beneficial and detrimental) role in the
development of intra- and extra-intestinal diseases [32–34], correlational analysis also
suggested an association between both families and mild health conditions in our monkeys.
Although the genera Dorea and Blautia within the family Lachnospiraceae are generally con-
sidered part of a healthy gut microflora, increased abundance of Dorea has been reported in
Japanese individuals with diarrhea [35], whereas enrichment of Blautia has been shown in
the stool of individuals with self-reported bowel symptoms [36]. Furthermore, the family
Erysipelotrichaceae has been linked to inflammation-related gastrointestinal diseases [37],
and Nakajima et al. [38] reported a positive correlation between the genus Holdemanella
and diarrhea in patients with type 2 diabetes mellitus. In foals, Schoster et al. [39] re-
ported underrepresentation of the families Ruminococcaceae and Lachnospiraceae in fecal
samples of subjects with diarrhea. Although we observed a significant decrease in some
ASVs within the family Ruminococcaceae with an increase in stool water content, other
Ruminococcaceae-related ASVs exhibited an opposite trend.

Overall, fecal microbiota analyses results suggested several microbial signatures that
may be indicative of intestinal dysbiosis in monkeys with elevated stool water content.
However, the possible role(s) of the bacteria in modulating host physiology, especially
redox balance, remains to be elucidated.

3. Discussion

One of the shortcomings of using multi-omics approaches to analyze individual
subjects (humans and animals) is the handling of phenotypes. Especially in the case of
non-defined diseases, there are only qualitative indices, and they do not fit well with
quantitative omics data. In the present study, we obtained continuous quantitative data
by using water content in stool as a phenotype for reflecting the health status of monkeys,
in monkeys housed for a long time under similar conditions and controlled for infections.
The observation that the amount of saturated fatty acids in stool decreased as the stool
became softer (as the stool water content increased) was interesting because it has also been
reported that an increase in saturated fatty acid levels in the lumen of the colon improves
gastrointestinal motility [40]. Fatty acids other than free fatty acids are often stored as
TG [41]. The molecular species that were correlated strongly (inverse correlation) with
the stool water content were saturated fatty acids in stool, followed by TG in plasma. It
has been reported that the plasma TG levels and oxidative status in plasma are inversely
correlated [42,43]. Metal ion analysis by inductively coupled plasma-mass spectrometry
(ICP-MS) revealed a deficiency of Se in plasma, and plasma Se was also inversely correlated
with stool water content. As Se has antioxidant properties, plasma may be inclined to the
oxidative status. Selenoprotein P is an enzyme involved in the metabolic pathway of PE [44].
Similar to Se, many plasma PEs (major phospholipids in bacteria) are inversely correlated
with stool water content, and PEs are also more predominant in the stool. Furthermore,
phospholipase D is activated by reactive oxygen species [45,46], and it is known to produce
PA and Pet [47,48]. Therefore, in soft stools, the PA and PEt levels may have increased due
to the components of the stool tending to the oxidative status. In diabetic nephropathy,
oxidative stress increases sphingolipid levels [49], and sphingolipids reportedly regulate
redox homeostasis in chronic kidney disease [50]. Although our study was not related to
kidney disease, urinary sphingolipid levels increased with soft stools, which may reflect
oxidative stress, and which may be consistent with other observations. Several studies have
reported that oxidative stress is involved in inflammation and affects gut health [51,52].
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Some phenomena cannot be directly explained by the redox state. Conflicting results
have been reported by disease lipidomic studies performed on human subjects. For exam-
ple, it has been reported that the plasma LPC levels increase under some inflammatory
conditions, and decrease under other inflammatory conditions [53]. However, the mech-
anisms of action of some lipids are complex, and the interpretation of the results is not
simple due to the complex interplay of numerous factors. In this study, intestinal bacteria
were associated with soft stools, but the detailed involvement of intestinal bacteria in the
mechanisms of action remains unknown. Based on the results of this study, we hypothe-
sized that a disturbance in redox balance may cause mild health problems. However, this
is not a comprehensive multi-omics study, and there is a lack of data to test the hypothesis,
and other hypotheses can be developed. In addition, the reasons for soft stools may be
multifactorial and may differ among individual monkeys. It may be difficult to develop
a hypothesis with only 20 individuals. However, by systematically examining the food
that is ingested, the feces and urine that are excreted, and the plasma of an individual, it
is possible to evaluate the changes occurring in the body. In this study we only collected
samples at one time point, but by examining the changes over time, a hypothesis about the
changes occurring in the body can be developed.

4. Materials and Methods
4.1. Reagents

Phospholipid mixtures were obtained from Avanti Polar Lipids, Inc. (Alabaster, AL,
USA). Lipid mediator standards and deuterium-labeled compounds used as internal stan-
dards were obtained from Cayman Chemical Company (Ann Arbor, MI, USA). Trace
element standard solutions, special grade reagents of ammonium bicarbonate, sodium chlo-
ride, diethyl ether, and chloroform, nitric acid and perchloric acid of toxic metal determina-
tion grade, hydrogen peroxide for atomic absorption spectrometry, and high-performance
liquid chromatography-grade solvents (methanol, isopropanol, and acetonitrile) were
purchased from Wako Pure Chemical Co. (Osaka, Japan) and from Kanto Chemical Co.,
Inc. (Tokyo, Japan, for untargeted lipidomics). Deionized water was produced using a
Millipore-Q water system (Millipore, Bedford, MA, USA).

4.2. Samples

Plasma, urine, and stool samples from 20 male monkeys (Macaca fascicularis, known
as cynomolgus monkeys), aged 3 years 10 months to 6 years 5 months, housed for more than
eight months under the same conditions, were obtained from LSI Medience Co. (Tokyo,
Japan) after a review by the Animal Experimentation Committee, and approval by the
Director of the Testing and Research Center in LSI Medience Co. (Approval No. 2018-1071).
All methods were carried out in accordance with relevant guidelines and regulations. The
monkeys were housed with the lights turned on from 7:00 to 19:00 h and turned off at night.
The cages were cleaned once a day. The monkeys were fed 100 g of solid feed (CLEA Old
World Monkey Diet CMK-2; CLEA Japan Inc., Tokyo, Japan) once a day. There was no
solid leftover food inside the cages; however, it was possible that the food was crushed
or thrown outside the cage and the food given was not consumed completely. Filtered
(5-µm filter) and UV-irradiated tap water was provided as drinking water to the monkeys.
Monkeys have a habit of urinating when the lights are turned on in the morning; therefore,
urine was collected early in the morning by placing a urine-collection tray in the home
cage and lighting up the animal room. Regarding stool collection, as we did not know
when the monkeys would defecate, a tray for feces was placed in the home cage, and the
animal caretakers collected the stool into a plastic tube as soon as they found one; this may
have happened on a different date than the date of urine collection. On the same day as
urine collection, approximately 5 mL blood was drawn from a monkey and collected in
a tube with EDTA-2K and centrifuged (1750× g, 10 min, 4 ◦C) to obtain approximately
2 mL plasma. All samples were frozen and stored in a −80 ◦C freezer at LSI Medience
immediately after collection and placed on dry ice during transport.
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4.3. Sample Preparation

To carry out targeted lipidomic/fatty acid analysis by gas chromatography with flame
ionization detection (GC-FID), 50 µL of plasma samples and 20 mg wet weight of feces and
feed (the feces and feed were dissolved while dipped in a sonication bath, and the feed
was fully pulverized using a stainless-steel crusher) were derivatized using the Fatty Acid
Methylation Kit (Nacalai Tesque, Tokyo) with C23:0 fatty acid solution (n-tricosanoic acid;
Sigma-Aldrich, St. Louis, MO, USA) as the internal standard.

As described in the 2.2 Metabolomics section, metabolomics was performed first.
Methanol extraction is commonly used in metabolomics. As shown in Figure 1, there were
many lipid-related molecules. Therefore, methanol extractions were used for lipidomics in
order to provide consistency in the results.

For untargeted lipidomics by LC/MS, 20 µL plasma was combined with 180 µL
methanol, vortexed, and centrifuged to collect the supernatant. The supernatant was
further diluted three times with methanol for the analysis. Since the urine sample was
dilute, the concentration was needed. Urine lipids were recovered from the organic layer
of 300 µL urine using the Bligh and Dyer method, followed by evaporation of the organic
solvent, and resuspension of the residuals in 60 µL methanol for measurement (the upper
layer was used for metabolomics). Approximately 20 mg feces was weighed (wet weight)
and mixed with 20 µL water to avoid aggregation, and placed on ice. After vortexing,
180 µL methanol was added, and the mixture was stirred in an ultrasonic bath with ice
cooling. After centrifugation, the supernatant was diluted four times with methanol and
used to measure phospholipids. Twenty milligrams of feed was ground and extracted with
500 µL methanol. After centrifugation, the supernatant was collected and diluted with
methanol to 5 mg/mL.

For targeted lipidomics by LC/MS, solid-phase extraction (SPE) was performed as
described previously with some modifications [54]. Briefly, 200 µL plasma was combined
with 0.8 mL methanol and mixed with internal standards (18 heavy water-labeled com-
ponents) and centrifuged to collect the supernatant. The supernatant was then purified
using an Oasis HLB cartridge (10 mg; Waters, Milford, MA, USA) and eluted with 200 µL
of 0.2% formic acid in methanol. The solvent was evaporated by rotary evaporator and
resuspended in 50 µL methanol for measurement. Four hundred microliters of urine was
centrifuged after mixing with 800 µL methanol and internal standards, and the supernatant
was applied to the Oasis HLB cartridge, as mentioned above for plasma. The eluate was
measured. Approximately 150 mg feces was measured as wet weight, and 300 µL water
was added to the sample on ice and mixed well. Subsequently, 1.2 mL methanol and inter-
nal standards were added and mixed in an ultrasonic bath while chilled. The supernatant
was purified using an Oasis HLB cartridge, as mentioned above for plasma samples, and
eluted with 200 µL of 0.2% formic acid in methanol. The eluate was analyzed by LC/MS.

To carry out untargeted metabolomics for hydrophilic metabolites analysis by LC/MS,
560 µL methanol was added to 140 µL plasma. The sample was vortexed and centrifuged;
then, 600 µL supernatant was concentrated in a rotary evaporator and resuspended in
100 µL methanol for measurement. For urine, the upper layer (aqueous phase) obtained
in the Bligh and Dyer extraction with 300 µL urine was dried in a rotary evaporator and
resuspended in 100 µL methanol for measurement. For feces, approximately 20 mg wet
weight of feces was suspended in 20 µL water on ice, followed by the addition of 180 µL
methanol; the sample was mixed in an ultrasonic bath while chilled. After centrifugation,
the supernatant was diluted four times with methanol and measured. Twenty milligrams
food was smashed, mixed well with 800 µL methanol, centrifuged to collect the supernatant,
and then diluted 10-fold with methanol for measurement.

For trace element measurements, each sample (50 mg of feed samples, 50 µL each of
plasma samples, 50 µL each of urine samples, and the entire amount of each feces sample)
was placed in a 50-mL beaker and heated on hotplates to 150 ◦C. After 3 min, 2 mL of
60% (v/v) nitric acid (HNO3 for poisonous metal determination; Kanto Chemical, Tokyo,
Japan) was added; 3 min later, 2 mL of 60% (v/v) perchloric acid (HClO4 for poisonous
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metal determination; Kishida Chemical, Osaka, Japan) added, and 3 min later, 2 mL
of 30% (v/v) hydrogen peroxide (H2O2 for atomic absorption spectrochemical analysis;
Kishida Chemical, Osaka, Japan) was added. This process was repeated three times, and
if any brownish residue remained, the steps were repeated further until the sample was
completely white. Thus, washing was continued until the residual material at the bottom of
the beaker turned completely white. After cooling the sample to room temperature, 5 mL
(feed, plasma, and urine) or 10 mL (feces) of 5% (v/v) nitric acid was added; the sample
was allowed to stand at room temperature for 24 h to completely dissolve any remaining
material. Thereafter, 5 µL (feed, plasma, and urine) or 10 µL (feces) of 1 µg/mL indium
(In) was added as the internal standard solution and mixed well; each sample solution was
transferred to a polycarbonate cup for ICP-MS measurement. Tall beakers and sample cups
were previously soaked in 1% nitric acid for at least three days, washed with ultrapure
water, and dried.

For 16S rRNA gene amplicon library construction and sequencing, DNA from fe-
cal samples (approximately 200 mg of biomass per sample) was extracted using the
ISOSPIN Fecal DNA Kit (Nippon Gene Co., Ltd., Tokyo, Japan) according to the man-
ufacturer’s instructions. For cell lysis, three rounds (1 min each) of bead beating were
performed using the FastPrep-24 instrument (MP Biomedicals, Irvine, CA, USA) at a speed
of 6 m/s. DNA concentrations were measured using the Quant-iT PicoGreen dsDNA As-
say Kit with a Qubit fluorometer (both from Invitrogen). Amplicon sequencing libraries
were prepared by two-step tailed polymerase chain reaction (PCR) following Illumina’s
“16S Metagenomic Sequencing Library Preparation” protocol. In the first round of PCR,
the V4 hypervariable region of the 16S rRNA gene was amplified using primers 515F
(5′-GTGYCAGCMGCCGCGGTAA-3′) [55] and 806R (5′-GGACTACNVGGGTWTCTAAT-
3′) [56]; the primers contained appropriate 5′-end adapters required for indexing in the
second round of PCR. The reaction mixtures (20 µL) consisted of 1× KAPA HiFi HotStart
ReadyMix (F. Hoffmann-La Roche AG, Basel, Switzerland), 500 nM each of forward and
reverse primers, and 5 ng of template DNA. The thermal cycling conditions were as follows:
95 ◦C for 3 min; followed by 18 cycles at 95 ◦C for 30 s, 50 ◦C for 30 s, and 72 ◦C for 30 s;
and finally, 72 ◦C for 5 min. The PCR products were purified using the Agencourt AMPure
XP system (1× volume of AMPure beads) and eluted in 50 µL of 10 mM Tris-HCl buffer
(pH 8.0). The reaction mixture for the second round of PCR (30 µL) contained 1× KAPA
HiFi HotStart ReadyMix, 3 µL each of i5 and i7 Nextera XT indexing oligos (Illumina,
San Diego, CA, USA), and 3 µL of purified first-round PCR product. The thermal cycling
conditions were as follows: 95 ◦C for 3 min; followed by eight cycles at 95 ◦C for 30 s,
55 ◦C for 30 s and 72 ◦C for 30 s; and finally, 72 ◦C for 5 min. Following purification using
1× AMPure beads, DNA concentrations were measured using the Quant-iT PicoGreen
dsDNA Assay Kit and amplicon libraries were pooled at equimolar concentration. The
pooled library was supplemented with phiX DNA (30% final concentration) and sequenced
on a MiSeq instrument using V2 chemistry (2 × 251 bp reads).

4.4. Measuring Instruments and Measurement Parameters

GC—2010 Plus (Shimadzu Co., Kyoto, Japan) and LCMS-8060 (Shimadzu Co.) were
used for targeted lipidomics. ThermoScientific Orbitrap Fusion Lumos with ThermoSci-
entific Vanquish DGP system (Thermo Fisher Scientific Inc, Waltham, MA, USA) and
ThermoScientific Orbitrap Fusion Lumos with ThermoScientific Ultimate 3000 RS (Thermo-
Scientific) were used for untargeted metabolomics, and an inductively coupled plasma-
mass spectrometer (ICP-MS; Agilent 7700/Mass Hunter, Agilent Technologies, Inc., Santa
Clara, CA, USA) was used for measurements.

A FAMEWAX capillary column (30 m × 0.25 mm I.D × 0.25 µm, (Restek Corporation,
Bellefonte, PA, USA ) was used for GC-FID analysis. The flow rate of the carrier gas (He)
was set at 45 cm/s linear velocity. The temperatures of the injection unit and the detector
were 240 ◦C and 250 ◦C, respectively. The temperature of the column oven was initiated
at 140 ◦C, then raised to 200 ◦C at a rate of 11 ◦C/min, then increased to 225 ◦C at a
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rate of 3 ◦C/min, and finally increased to 240 ◦C at a rate of 20 ◦C/min, and held at this
temperature for 5 min. The injection volume was 2 µL in the split injection mode. Fatty
acid methyl esters were identified and quantified using a mixture of Supelco 37 component
FAME Mix (Merck KGaA, Darmstadt, Germany), C22:5 (n-3)-FAME (Sigma-Aldrich), C22:5
(n-6)-FAME (Nu-Chek Prep. Inc., Elysian, MN, USA), and C22:4 (n-6)-FAME (Cayman
Chemical, Ann Arbor, MI, USA) for calibration.

For untargeted lipidomics, an AcquityUPLC BEH C8 column (1.7 µm, 2.1 mm × 100 mm,
Waters) was used for reversed-phase chromatography, and column temperature was
47 ◦C. The injection volume was 5 µL. A gradient analysis was performed with 5 mM
NH4HCO3/Acetonitrile/2-propanol as the mobile phase at a flow rate of 0.35 mL/min
for 55 min per analysis. Pump gradient times were as follows: 0 min (5 mM NH4HCO3/
Acetonitrile/2-propanol: 75/20/5)—20 min (20/75/5)—40 min (20/5/75)—45 min (5/5/90)—
50 min (5/5/90)—55 min (75/20/5). Targeted lipidomics for fatty acid-derived lipid
mediators and their related metabolites was performed as described previously with some
modifications [57]. Kinetex C8 column (2.6 µm, 2.1 mm × 150 mm, Phenomenex, Torrance,
CA, USA) was used and 5 µL of the prepared sample was injected. Gradient analysis was
performed with 0.1% formic acid in water/Acetonitrile as the mobile phase at a flow rate
of 0.4 mL/min, as described previously, for urine samples with a 27 min gradient program.
For plasma and feces samples, extra wash was performed with 2-propanol. The washing
method is as follows; 27 min (0.1% formic acid in water/Acetonitrile/2-propanol: 5/95/0)
—30 min (5/50/45)—35 min (5/50/45)—38 min (5/5/90)—42 min (5/5/90)—42.1 min
(5/95/0)—44 min (5/95/0)—44.1 min (90/10/0)—48 min (90/10/0).

The trace elements (magnesium [Mg], calcium [Ca], chromium [Cr], manganese [Mn],
iron [Fe], cobalt [Co], copper [Cu], zinc [Zn], and selenium [Se]) in the solutions were
identified and quantitated by ICP-MS (Agilent7700/Mass Hunter, Agilent Technologies,
Santa Clara, CA). Standard curves were plotted by preparing 1000 µg/mL (ppm) standard
solutions of Mg, Ca, Cr, Mn, Fe, Co, Cu, Zn, and Se (Fujifilm Wako Pure Chemical Industries
Ltd., Osaka, Japan) and diluting them in 5% (v/v) nitric acid to final metal concentrations
of 0, 1, 2, 5, 10, 20, 50, 100, and 200 ng/mL (ppb). For quality control, 1 ng/mL (ppb) of
a reference internal standard (indium; In) was measured along with the samples. The
standard curves of each trace metal exhibited good linear regression (over r = 0.999)
in the 1–200 ng/mL (ppb)concentration range. Additionally, all elements placed in the
mass number table by Agilent were semi-quantified simultaneously according to the
analytical method recommended by Agilent. Briefly, mass intensities of all elements were
corrected and semi-quantified by those of the ICP-MS tuning solution, including five
standard elements, lithium (Li), Co, yttrium (Y), cerium (Ce), and thallium (Tl), at each
final concentration of 1 ng/mL (ppb).

4.5. Sequencing Data Processing and Analysis

Demultiplexed sequencing reads were subjected to primer trimming using Cutadapt
v3.2 [58], with the following command line options: -g ˆ GTGYCAGCMGNNNNNNNNN
-G ˆ GGACTACNVGNNNNNNNNNN –no-indels –error-rate 0.2 –discard-untrimmed
–max-n 0 –minimum-length 200:200. Amplicon sequence variants (ASVs) were then in-
ferred using DADA2 v1.16.0 [59], following additional trimming and filtering of reads
using DADA2′s filterAndTrim function, specifying options truncLen = c (180, 180) and
maxEE = c (3, 3). Learning of error models for forward and reverse reads (function
learn Errors), denoising of forward and reverse reads (function data), merging of reads
(function mergePairs), and removal of bimeras (function removeBimeraDenovo) were
performed with default settings, with the exception that a minimal number of 2—108 bases
from randomly selected samples was used option 2—108 (option nbases = 2 × 108 and
randomize = TRUE). Taxonomy of the inferred ASVs was assigned using RDP’s naïve
Bayesian classifier v2.13 [60] specifying option –format fixrank.

Subsequently, a filtered ASVs table was generated by discarding ASVs lacking domain-
and/or phylum-level taxonomic assignment (a bootstrap confidence score of 80%) as
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well as ASVs with an aberrant length (that is, shorter than 250 or longer than 255 bp
based on the expected length of 253 bp for the V4 hypervariable region of the 16S rRNA
gene). The filtered ASV table was 10 times randomly subsampled to 60,000 total counts
per sample using vegan v2.5 (https://CRAN.R-project.org/package=vegan (accessed
on 24 March 2021)) rarefy function, averaged across subsamples (arithmetic mean), and
converted to relative abundances by total sum scaling. Further, duplicate measurements
for each monkey were averaged prior to downstream analysis by obtaining the arithmetic
mean of ASV-wise relative abundances.

To correlate ASV relative abundance with water content, we considered ASVs detected
(that is, with non-zero count in the rarified ASV table) in at least a half of the samples.
Spearman correlation coefficients and p-values were calculated using R v4.0.2 stats’s cor.test
function and adjusted p-values generated using R stats’s p.adjust function (method =
“fdr”), with a cut-off of 0.1 for significant correlations. Graphics were generated using
ggplot2 v3.3.3 (https://ggplot2.tidyverse.org (accessed on 24 March 2021)) and dplyr v1.0.3
(https://CRAN.R-project.org/package=dplyr (accessed on 24 March 2021)) in R.

4.6. Lipid Data Analysis

Lipid species in plasma, urine, and stool samples of 20 monkeys were identified by
LipidSearch4.2 using raw data files from mass spectrometry, aligned among monkeys, and
then Spearman’s rank correlation coefficients were calculated for each sample based on
arrays of quantitation values from 20 monkeys with all combinations of identified lipids.
The search parameters of LipidSearch were set as follows: precursor ion m/z tolerance and
product ion m/z tolerance were both set to 5 ppm, intensity threshold of product ion was
set to 1% of the precursor ion. If peaks within 5 ppm were detected more than once within
a retention time of 0.1 min, they were considered the same lipid. The m-score was set to 5
or higher, and the lipid was identified if the grade (lipid subtype and fatty acid chains [full
or partial] were identified) was displayed by the LipidSearch criteria.

For data analysis, Labsolutions version 5.61 (Shimadzu Co.), GCsolution version 2.44
(Shimadzu Co.), Compound Discoverer 2.1 (Thermo Fisher Scientific Inc.), LipidSearch version
4.2 (Thermo Fisher Scientific Inc.), HMDB (https://hmdb.ca/ (accessed on 28 June 2021)),
MetaboAnalyst (https://www.metaboanalyst.ca/ (accessed on 28 June 2021)), and MS Excel
2016 (Microsoft Corp., Redmond, WA, USA) were used for the calculation of Spearman’s
rank correlation and p-values, and p-values for the correlation coefficient were calculated
in MS Excel (Microsoft Corp.) (https://www.statology.org/p-value-correlation-excel/
(accessed on 28 June 2021)).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11100701/s1, Table S1: Plasma metabolomics, Table S2: Urinary metabolomics,
Table S3: Fecal metabolomics, Table S4: HMBD ID numbers for candidate metabolites correlated
with stool water content, Table S5: Total fatty acids in plasma measured using gas chromatography,
Table S6: Food lipidomics, Table S7: Fecal lipidomics, Table S8: Plasma lipidomics, Table S9: Urinary
lipidomics, Table S10: Oxidized fecal fatty acids, Table S11: Oxidized plasma fatty acids, Table S12:
Oxidized urinary fatty acids, Table S13: Plasma (ng/mL), fecal (ng/g of feces), and urinary (ng/mL)
metallomics, Table S14: Food metallomics (ng/g), Figure S1: Scatter plots of amplicon sequence
variant (ASV) abundance (y-axis) and water content (x-axis) for ASVs with a significant (adjusted
p-value of <0.1) positive Spearman’s correlation coefficient, Figure S2: Bar chart of correlation
coefficients of the association between relative abundance and water content for amplicon sequence
variant (ASV) tables aggregated at the family (top panel) and genus (bottom panel) levels.
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Lipid Abbreviations

LPA (lysophosphatidic acid), PA (phosphatidic acid), LPC (lysophosphatidylcholine), PC
(phosphatidylcholine), LPE (lysophosphatidylethanola-mine), PE (phosphatidylethanolamine),
LPG (lysophosphatidylglycerol), PG (phosphati-dylglycerol), Hex1Cer (Hexosylceramide),
Hex2Cer (Dihexosylceramide), Hex3Cer (Tri-hexosylceramide), SM (sphingomyelin), DG
(diglyceride), TG (triglyceride), Pet (phospha-tidylethanol), PMe (phosphatidylmethanol).
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