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It is commonly accepted that cancer cells interact with host cells to create a microenvironment favoring malignant colonization.
The complex bone microenvironment produces an ever changing array of cytokines and growth factors. In this study, we examined
levels of MCP-1, IL-6, KC, MIP-2, VEGF, MIG, and eotaxin in femurs of athymic nude mice inoculated via intracardiac injection
with MDA-MB-231GFP human metastatic breast cancer cells, MDA-MB-231BRMS1GFP, a metastasis suppressed variant, or PBS.
Animals were euthanized (day 3, 11, 19, 27 after injection) to examine femoral cytokine levels at various stages of cancer
cell colonization. The epiphysis contained significantly more cytokines than the diaphysis except for MIG which was similar
throughout the bone. Variation among femurs was evident within all groups. By day 27, MCP-1, MIG, VEGF and eotaxin
levels were significantly greater in femurs of cancer cell-inoculated mice. These pro-osteoclastic and angiogenic cytokines may
manipulate the bone microenvironment to enhance cancer cell colonization.

1. Introduction

The colonization and growth of cancer metastases in the
bone depends on a cooperative interaction of the cancer
cells with the host cells in the bone microenvironment.
This microenvironment includes the resident osteoblasts,
osteoclasts, endothelial cells, bone-lining cells, stromal
cells, hematopoietic stem cells, and transient cells such as
macrophages, lymphocytes, neutrophils, and other blood
cells. While cell-cell contacts are established between cancer
cells and bone cells via adhesion molecules, a wider network
of communication occurs through secreted cytokines and
growth factors. These soluble molecules play a critical role
in the normal bone remodeling process as well as in cancer
cell colonization of the bone marrow.

The interplay of the cancer cells with the cells of the
bone marrow cavity has been described in terms of a vicious
cycle [1]. In brief, cytokines or growth factors secreted
by invading cancer cells (e.g., parathyroid hormone-related
protein, PTHrP) act to stimulate osteoblasts to produce more

receptor activator of nuclear factor kappa-B ligand (RANKL)
and less osteoprotegerin (OPG), a decoy receptor for
RANKL. The RANKL binds to RANK on osteoclast precur-
sors leading to differentiation and activation of osteoclasts.
Activated osteoclasts degrade bone matrix releasing growth
factors such as transforming growth factor beta (TGF-β) and
insulin-like growth factor (IGF). These molecules, in turn,
stimulate further cancer cell growth. This series of events
provides an explanation of the osteolytic outcome of breast
cancer metastasis in bone; that is, an increase in osteoclast
activation leads to excess bone breakdown and further
stimulation of cancer cells. Drugs targeted to osteoclasts slow
down formation of bone lesions. However, by and large, the
lesions do not heal. In our previous research, we found that
metastatic breast cancer cells also inhibit the differentiation
of osteoblasts, thereby diminishing bone formation. The
combination of increased bone degradation and decreased
bone rebuilding has a net outcome of bone loss.

Through cell culture studies, we discovered that meta-
static breast cancer cells induce an osteoblast inflammatory
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response. When conditioned medium from metastatic
human breast cancer cells, MDA-MB-231, was added to
human osteoblasts (hFOB1.19) or murine (MC3T3-E1) or
primary osteoblasts, the osteoblasts increased their secretion
of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte
chemoattractant protein-1 (MCP-1). Under these condi-
tions, the osteoblasts did not differentiate in culture; that is,
they did not produce characteristic osteoblast differentiation
proteins such as alkaline phosphatase, osteocalcin, or bone
sialoprotein [2, 3].

These observations were followed with in vivo experi-
ments. By using green fluorescent protein (GFP) expressing
cancer cells in a xenograft model, we were able to monitor the
progress of cancer colonization in the femurs [4]. We saw that
the cancer cells appeared throughout the bone but cleared
quickly from the diaphysis. Some cells localized in the ends of
the femur where they developed into large colonies. For the
most part, the cancer cells were associated with the endosteal
surface of the bone marrow compartment. As part of an
ex vivo study, we examined the cytokines produced by the
bone cells in the presence of cancer cells [5]. Mice received
intracardiac injections of MDA-MB-231GFP cells and were
sacrificed three weeks later. In this study, the marrow was
removed from the femurs, the bones separated into diaphysis
(shaft) and epiphyses (ends), crushed and incubated in
culture medium for 24 hr. Species-specific antibodies were
used to distinguish between host (murine) and cancer
(human) cytokines. We found that murine IL-6, MCP-1,
macrophage inflammatory protein-2 (MIP-2) (human IL-8),
vascular endothelial growth factor (VEGF), and keratinocyte
chemoattractant (KC) (human growth-regulated oncogene-
alpha, GRO-α) were greater in ends of the bone compared
to shafts and were increased in cancer-bearing mice. This ex
vivo assay confirmed the in vitro findings that host cytokines
in the bone microenvironment increase in the presence of
cancer cells.

These initial findings led us to investigate how the
cytokine profile of the bone microenvironment changed
over time following the appearance of cancer cells in the
bone marrow. We designed an experiment to ask how
cytokines changed over time in the femurs of mice inoculated
with metastatic MDA-MB-231GFP cells. Concurrently, we
wished to investigate whether or not the cytokine profile of
the bone microenvironment differed when the mice were
injected with the highly metastatic MDA-MB-231 line or the
metastasis-suppressed variant MDA-MB-231BRMS1 which
traffics to the bone but does not grow there [6]. In order to
examine the bone microenvironment in its entirety, the bone
marrow was left intact. Femurs were separated into shafts
and ends, crushed and incubated for 24 hours in serum-
free medium. An initial assay panel of 32 mouse cytokines
revealed two cytokines, eotaxin and monkine induced by
interferon gamma (MIG), in addition to IL-6, MCP-1, MIP-
2, KC, and VEGF that merited further investigation. In the
final experiment, athymic nude mice were injected in the left
cardiac ventricle with either MDA-MB-231GFP cells, MDA-
MB-231BRMS1GFP cells, or PBS. Four days were chosen for
sacrifice (3, 11, 19, and 27 days after injection) to represent
early, middle, and late stage metastasis. Culture supernatants

from femoral shafts and ends were analyzed for MCP-1, IL-
6, KC, MIP-2, VEGF, MIG, and eotaxin. Changes in cytokine
levels were compared over time as well as between injection
groups.

2. Materials and Methods

2.1. Cell Lines. The human metastatic breast cancer cell
line MDA-MB-231GFP (231) and the metastasis-suppressed
derivative MDA-MB-231BRMS1GFP (BRMS1) were obtained
from Danny Welch, University of Alabama, Birmingham and
cultured in DMEM (Mediatech, Herndon, VA), 5% fetal
bovine serum (PAA Laboratories, Etobicoke, ON, Canada),
and 1X nonessential amino acids (Mediatech). Antibiotics
were not used to culture cells for a minimum of two
weeks prior to injection. For intracardiac injection, cells
were detached with trypsin-EDTA solution, centrifuged
and washed twice with sterile phosphate-buffered saline
(PBS, Hyclone, Logan, Utah). Cells were resuspended at a
concentration of 1.5 × 106 cells/mL in sterile PBS and held
on ice until injection.

2.2. Intracardiac Inoculation. Six-week-old female athymic
nude mice were obtained from Charles River Laborato-
ries and were housed and handled in strict accordance
with IACUC regulations (Penn State IACUC Protocol
28631). On the day of inoculation, mice were anesthetized
with 120 mg/kg body weight of ketamine and 16 mg/kg
of xylazine. When animals were completely anesthetized,
200 μL of PBS or cancer cell suspension (3 × 105 cells) were
injected directly into the left ventricle of the heart. For the
pilot experiment to screen for relevant cytokines, 3 mice were
injected with either PBS, 231, or BRMS1-expressing cells and
kept for a period of 3 weeks before sacrifice. For the primary
experiment, 8 mice were inoculated with either PBS, 231,
or BRMS1-expressing cells for each of the four time points.
After recovery from the procedure, mice were returned to
sterilized cages with air filters and observed daily for signs
of illness or distress. On days 3, 11, 19, and 27 after injection,
mice were euthanized by CO2 inhalation. Both femurs were
removed from each mouse, cleaned of exterior tissue, and
placed in PBS on ice prior to processing.

2.3. Fluorescence Stereomicroscopy and Metastasis Detection.
Femurs were examined by fluorescence stereomicroscopy
(40x magnification) with a Nikon SMZ 1500 Fluorescence
Stereoscope (Nikon Instruments, Inc., Melville, NY) with
GFP long bandpass fluorescence filter (excitation = 488 nm;
emission = 515 nm, Chroma Technology Corporation, Rock-
ingham, VT). Images were captured using a Nikon Coolpix
8400 digital camera (Nikon Instruments, Inc.).

2.4. Femur Cultures. Proximal and distal ends of each femur
were separated from the shaft of the bone. The ends were
cut so that they contained the epiphyseal plates and the
metaphyses. The ends were placed together in a 2 cm2 tissue
culture well. The shaft was placed in a separate well. Bone
samples were crushed with a small glass pestle, and the
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fragments were cultured in 1 mL of α MEM (MediaTech)
for 24 hours. Culture supernatants were then collected,
centrifuged to remove cells and bone fragments, and frozen
at −80◦C.

2.5. Cytokine Assays. To determine which cytokines might
play an important role in the metastasis of cancer to bone, we
first assayed bone culture supernatants of femurs of mice that
had been injected with either PBS, 231, or BRMS1-expressing
cells 3 weeks prior to sacrifice. For this determination, we
used a Milliplex 32-plex mouse cytokine array (Millipore
Corporation, Billerica, MA) which allowed for the simul-
taneous quantitation of 32 mouse cytokines. After relevant
cytokines were established for the main experiment, eotaxin,
KC, MIG, MIP-2, and VEGF were assayed using a Milliplex
5-plex mouse cytokine array. Two other cytokines, IL-6 and
MCP-1 were assayed by standard sandwich ELISA techniques
as previously described [7].

2.6. Statistical Analysis. A statistical model was fit to allow
for correlations within a mouse and within batches of mice
using random effects in order to compare each cytokine
across each group, that is, PBS, MDA-MB-231, and MDA-
MB-231BRMS1. Prior to statistical analyses, assumptions
for linear statistics were verified and log10 transformations
were used and rechecked to assure statistical validity of
the analyses. For the shaft versus ends comparison, pg/mL
values were analyzed with a two-way ANOVA analysis with
a Bonferroni post hoc correction. To compare each cytokine
among injection groups and over time, a two-way ANOVA
test with a Fisher’s LSD post hoc analysis was used. Shown
in bar graphs is the mean ± standard error (SE). Box plots
display mean, 25–75 percentile range and max/min values.
Significance was set at P ≤ 0.05.

3. Results

3.1. Selection of Cytokines. In previous experiments, we
had access to a limited panel of cytokines available in a
multiplex format. In preparation for this current study, we
carried out a more extensive screen with a 32-plex cytokine
array to identify more cytokines of interest. Femurs were
harvested from 9 mice (3 per group) three weeks following
intracardiac inoculation with MDA-MB-231GFP cells, MDA-
MB-231BRMS1GFP cells, or PBS. Two femurs from each
mouse were incubated as described in the methods section
and the culture supernatants were tested. The patterns of
cytokines were similar in all three groups but generally
highest in the culture supernatants from MDA-MB-231
cells. Of the 32 murine cytokines tested (Table 1), nine
were below the levels of detection, approximately 3.2 pg/mL.
Another four (IL-2, IL-17, M-CSF, and RANTES) were
present in very small amounts, ≤10 pg/mL. Thirteen ranged
in concentrations from 10 to 100 pg/mL. Six (G-CSF, IL-6,
KC, MCP-1, MIG, and VEGF) were present at >100 pg/mL.
We had previously reported that IL-6, KC, MCP-1, VEGF,
and MIP-2 were secreted by osteoblasts and increased in
the presence of breast cancer cells in vitro and in vivo [5].

Table 1: Summary of 32-plex mouse cytokine array.

None detected 1–10 pg/mL 10–100 pg/mL >100 pg/mL

IFN-γ IL-15 IL-2 Eotaxin IP-10 G-CSF

IL-3 TNF-α IL-17 GM-CSF LIF IL-6

IL-4 IL-7 M-CSF IL-1α LIX KC

IL-5 IL-10 RANTES IL-1β MIP-1α MCP-1

IL-12p40 IL-9 MIP-1β MIG

IL-12p70 MIP-2 VEGF

IL-13

We choose to assay for these five cytokines plus MIG which
ranged in concentration from 100–1000 pg/mL. MIG is a
target gene of RANKL and is involved in osteoclast activation
[8]. We also selected eotaxin (10–40 pg/mL) because of its
reported roles in angiogenesis in breast cancer metastasis
patients [9] and in multiple myeloma [10]. The multiplex
cytokine array for the remainder of the study included IL-
6, KC, MCP-1, VEGF, MIG, MIP-2, and eotaxin. At the
conclusion of the study, it was found that MIP-2 levels were
negligible for most of the samples assayed and were not
considered in further analyses.

3.2. Detection of Femur Metastases. Prior to crushing the
femurs for incubation, they were examined with a fluo-
rescence stereomicroscope. We detected GFP in some of
the femurs of mice inoculated with MDA-MB-231GFP or
MDA-MB-BRMS1GFP cells taken at various times (Figure 1).
However, the sensitivity of the microscope and the location
of the cells combined with the thickness of the bone
made it likely that not all metastatic cells were detected
by microscopy. There were not enough femurs with GFP
detectable colonies to be examined as a group for cytokines
separate from the other femurs. For the most part, the GFP-
expressing metastases appeared much larger in the femurs
of mice inoculated with MDA-MB-231GFP than those with
MDA-MB-231BRMS1GFP (Figure 1).

3.3. Cytokines in the Diaphysis versus the Epiphysis of the
Femurs. We first compared the levels of MCP-1, IL-6, MIG,
KC, VEGF, and eotaxin in the diaphysis (shaft) versus
the epiphyses (end) of each bone. The epiphyseal end of
the femur contains the metaphysis, the region of bone
remodeling rich in cytokines and growth factors, in addition
to the epiphyseal growth plate. In contrast, the function of
the diaphysis is to provide support and is less metabolically
active. As expected, the ends of long bone were a much
richer source of cytokines than the shaft (Figure 2). The
exception was MIG which was found distributed equally in
both areas. Eotaxin was present in less than 10 pg/mL in the
shaft supernatant but was 5-6- fold higher in the ends. MCP-
1 was also present in low concentrations but ends contained
about 10-fold more. Little to no KC was found in the shaft
but approximately 200 to 600 pg/mL were detected in the
ends depending on the group of mice. VEGF and IL-6 were
present in the shafts at about half of the concentration in
the ends of the bone which was approximately 200 and
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Figure 1: Breast cancer metastases in femoral bone. Female athymic nude mice were inoculated in the left cardiac ventricle with 3 × 105

MDA-MB-231GFP or MDA-MB-231BRMS1GFP cells, eight per group. Animals were euthanized at day 3, 11, 19, or 27 after injection. Femurs
were removed, placed in PBS, and imaged with light and fluorescence stereomicroscopy at a 40x magnification to detect GFP-labeled cancer
cell metastases. Images are shown for 27 day metastases (a) of MDA-MB-231BRMS1 (top) and MDA-MB-231 (bottom). Note colony size
difference between the two variants. Scale bar = 1 mm. Table (b) summarizes the incidence of detectable GFP-expressing cells for each
injection group.

600 pg/mL, respectively. The cytokine found in the greatest
concentration was MIG registering 500–2000 pg/mL for both
shafts and ends.

3.4. Comparison of Cytokines in Three Groups of Mice. The
cytokines from femurs of animals inoculated with MDA-
MB-231GFP cells, with MDA-MB-231BRMS1GFP cells, or
with PBS were compared at four times, day 3, 11, 19,
and 27. The values presented (Figure 3) are the cytokine
concentrations from the ends of the bone. At the earliest
time (day 3), most of the cytokine concentrations were
similar in all groups except for VEGF. The femurs of
mice inoculated with MDA-MB-231GFP showed significantly
greater amounts of VEGF than the mice inoculated with
MDA-MB-231BRMS1GFP cells. However, neither group was
different than PBS. At day 11, IL-6 was greater in the femurs
of mice with MDA-MB-231GFP than in the femurs of the
PBS group. Interestingly, at this time, the femurs of the
mice inoculated with BRMS1-expressing cells had a greater
concentration of VEGF and MIG than the mice with 231
cells. The measurements on day 19 showed few differences
among the groups except for MIG. MIG was significantly
less in the animals injected with cancer cells than those
injected with PBS. By day 27, the differences among groups
were most pronounced. MCP-1, MIG, eotaxin, and VEGF
were all significantly greater in the cancer-inoculated mice
than in those inoculated with PBS. Mice bearing MDA-MB-
231GFP showed less IL-6 than those with PBS or MDA-MB-
231BRMS1GFP cells. No differences were apparent among the
groups for KC at any of the times tested.

3.5. Changes in Cytokines over Time. One of the original
objectives of this study was to examine the pattern of

cytokine changes over time. We found that there was
considerable variation from femur to femur even within
the same animal. In the animals treated with PBS, there
were increases and decreases over time in 5 cytokines tested
(Figure 4). Since these animals did not harbor tumor cells,
these differences likely reflect normal physiological variation
over time. For the mice inoculated with MDA-MB-231GFP

cells, neither VEGF nor eotaxin showed significant increases
or decreases over the experimental time frame (Figure 4).
In contrast, MCP-1, MIG, and IL-6 exhibited a significant
decrease on day 19 when compared to day 3. While IL-6 and
MIG levels rose moderately on day 27, the level of MCP-1 was
substantially elevated. In animals injected with the metastasis
suppressed variant, MDA-MB-231BRMS1GFP, the expression
pattern for MCP-1, MIG, and IL-6 was similar to results
obtained for the metastatic cells. Most notably, MCP-1
levels were significantly elevated by day 27. Interestingly, the
BRMS1-expressing cells elicited a variable expression pattern
for VEGF and eotaxin that closely resembled the control
PBS injection, suggesting that these two cytokines may be
implicated in tumor cell colonization. KC was excluded from
this analysis due to the lack of change among groups.

4. Discussion

Previously, we have reported changes in the inflammatory
cytokines IL-6, MCP-1, VEGF, KC, and MIP-2 in the culture
supernatants from femurs of athymic mice three weeks after
intracardiac injection of MDA-MB-231 cancer cells [5]. We
sought to verify and expand these findings to answer several
key questions. What other cytokines and growth factors may
be involved in the metastatic process? How does the inclusion
of the marrow affect the assay of cytokine expression in
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Figure 2: Cytokine levels in bone diaphysis versus bone epiphysis. Athymic nude mice received intracardiac inoculations of either PBS,
MDA-MB-231GFP, or MDA-MB-231BRMS1GFP cells. Femurs were harvested at days 3, 11, 19, and 27 after inoculation and separated into
shafts and ends. Shown here are the results from day 19, but the results were similar for the other days. Bone sections were crushed and
cultured in serum-free medium for 24 hours. Resulting supernatants were assayed for MCP-1 (a), IL-6 (b), MIG (c), VEGF (d), eotaxin (e)
and KC (f). MIP-2 values were very small or below the level of detection and were not included. With the exception of MIG, the cytokine
levels were significantly higher in the ends of the femur than in the shaft. ∗∗∗P < 0.001; ∗∗P = 0.01–0.001. n = 8 for each group.
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Figure 3: Comparison of bone cytokine levels in mice inoculated with PBS, MDA-MB-231GFP or MDA-MB-231BRMS1GFP,cells. Mice were
inoculated and femurs processed as described in Section 2. Cytokine values were log10 transformed for analysis and graphic comparison of
each postinjection group. Statistical significance is shown for comparison to PBS unless otherwise noted with a bracket. The only significant
difference shown on day 3 post injection was for VEGF which was higher in 231-injected mice than in BRMS1. On day 11, VEGF and MIG
were slightly higher in BRMS1 injected mice than in 231, while IL-6 values were higher in 231 injected mice than in PBS. On day 19, the only
cytokine that varied significantly was MIG, with higher values for 231 and BRMS1 mice than in the control animals. In later stage metastasis
(day 27), the levels for 4 (MCP-1, VEGF, MIG, and eotaxin) of the 6 cytokines were significantly higher in both the 231-and the BRMS1-
injected mice when compared to PBS. IL-6 levels were lower in animals injected with 231 cells. KC levels did not vary between groups at any
of the time points. ∗∗∗P < 0.001; ∗∗P = 0.01–0.001; ∗P = 0.05–0.01. n = 8.

the presence of metastatic cancer? Does the cytokine profile
of the bone microenvironment change over time after the
introduction of cancer cells? Does the presence of metastasis-
suppressed breast cancer cells elicit a bone cytokine profile
that differs from the profile generated by metastatic cancer
cells?.

Cytokine analysis of bone culture supernatants with an
expanded 32-plex array revealed the presence of several
cytokines in addition to the five (IL-6, MCP-1, VEGF, KC,
and MIP-2) previously reported. IL-2, IL-17, M-CSF, and
RANTES were detected but only in small amounts; due to
cost constraint, we elected not to include them in the panel.
MIG and eotaxin were found to be expressed in the mouse
femurs and appeared to vary with the presence of MDA-MB-
231. MIG is a target for RANKL [8] and as such is involved in
osteoclast activation. Eotaxin is believed to play a key role in
angiogenesis [11]. Because osteolysis and tumor angiogenesis

are intimately tied to cancer metastasis in bone, MIG and
eotaxin were included in the cytokine analysis panel.

The epiphyses is a favored site of breast cancer metastasis
to bone [12]. Unlike the bone shaft, the ends of the long
bones are areas of high bone turnover and are comprised
of a specialized arrangement of osteoblasts, osteoclasts,
stromal cells, hematopoietic cells, and endothelial cells. In
order to examine the cytokine profile of the total bone
microenvironment, we left the bone marrow intact when
culturing the bones. One obvious outcome of this study was
that the cytokine concentrations in the ends of the bones
were significantly higher than in the shaft. The exception was
MIG. MIG is a product of T cells and endothelial cells. It
has also been reported to be produced by osteoblasts [13].
Because the femurs are from athymic mice, the sources of
MIG in these experiments are likely osteoblasts and bone
endothelial cells. Eotaxin is also a product of T cells and
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Figure 4: Changes in bone cytokine levels over time. Cytokine values were obtained as described in Section 2. Results were log10 transformed
for analysis and graphic comparison of each injection group over the 4 points of the study. Each box plot graph represents the change in a
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endothelial cells, but not osteoblasts [14, 15]; thus, its likely
origin is the bone vascular endothelium. Athymic mice lack
T cells but retain much of the innate immune system. We
cannot rule out that cytokines may also be due to transient
monocytes, or to hematopoietic stem cells. Using 8 mice per
injection group per time point, we noticed a great deal of
variation in cytokine levels from mouse to mouse within the
same time and injection group. In many cases, two femurs
from the same mouse yielded very different results. Some
of this variation may be due to imprecise sectioning of the
ends and shaft of the bones. In addition, transient cells in the
marrow such as monocytes or granulocytes and the general
health of the animal independent of the presence of cancer
metastasis could also account for this wide variation. In the
case of animals injected with cancer cells, only the femurs
were examined for the presence of metastases. If the cancer
cells had colonized another locus in the body, it is possible
that the tumor may have had a more widespread effect on
the cytokine levels in general.

In order to examine the changes in MCP-1 IL-6, KC,
MIP-2, VEGF, MIG, and eotaxin levels over time, we chose
to sacrifice animals at 3, 11, 19, and 27 days after injection of
MDA-MB-231GFP, MDA-MB-231BRMS1GFP, or PBS. These
times represent early, middle, and late stage metastasis.
Unfortunately, this experimental design did not allow us
to sample the same animal over time. For this study, two
cytokines, MIP-2 and KC, were omitted from final analysis.
MIP-2 was not detected at all in a large number of the
samples and KC showed no significant changes over time
in any of the injection groups. At day 3, 11, and 19, there
were some statistically significant changes in MCP-1, MIG,
VEGF, eotaxin, and IL-6. Since many of these changes
also occurred in mice injected with PBS, the variation can
likely be attributed to cyclic expression of cytokines in the
bone, possibly due to age. Originally, we postulated that if
a particular cytokine was elevated early in the metastatic
process, it could be acting as a chemoattractant for cancer
cells or a catalyst for cancer cell colonization. However, there
is insufficient evidence from this experiment to pinpoint
such a cytokine from the seven cytokines assayed. The most
striking results were observed at day 27 when levels of
MCP-1, MIG, VEGF, and eotaxin were significantly higher
in mice injected with either breast cancer cell variant than
in mice injected with PBS. IL-6, MCP-1, VEGF, and MIG
have all been implicated in osteoclastogenesis [8, 16]. An
increase in these molecules in the microenvironment in
response to cancer cells correlates with increased osteoclast
differentiation and activation and thus bone resorption.
Osteoblasts have been reported to display an “inflammatory
cytokine stress response” to titanium in joint replacements
[17] and to bacteria in osteomyelitis [18]. The same cytokine
response occurs when breast cancer and likely other epithelial
cells invade the marrow cavity. Because several of these
cytokines are also expressed by osteoblasts during their
normal differentiation and during the bone remodeling
process, it is easy to see how the introduction of cancer
cells to the bone microenvironment can disrupt both of
these important functions. Additionally, VEGF and eotaxin
are known promoters of angiogenesis [11, 19] and may

be responsible for the vascularization of a newly formed
metastatic tumor.

In comparing the cytokine profiles of animals injected
with metastatic MDA-MB-231GFP to metastasis-suppressed
MDA-MB-231BRMS1GFP cells, we observed that at day 27
both cell types elicited significant elevations in MCP-1, MIG,
VEGF, and eotaxin levels. These data indicate that these four
cytokines are not likely to be responsible for the inability of
the BRMS1-expressing cells to colonize the bone. However,
we were intrigued by the difference in cytokine expression
patterns over time for VEGF and eotaxin. While VEGF and
eotaxin levels remained unchanged in animals injected with
231 cells, the expression levels for PBS- and BRMS1-injected
animals showed a similar pattern of significant variation over
time (i.e., reduced expression levels at day 3). One possible
interpretation of these data is that higher sustained levels of
VEGF and eotaxin are enabling the metastatic cancer cells to
colonize and thrive in the bone environment.

It is interesting to note that MDA-MB-231 and MDA-
MB-231BRMS1 themselves secrete IL-6, VEGF, IL-8, and
GRO-α (the human homologues of MIP-2 and KC, resp.) [5].
MCP-1 is made in small amounts and MIG is reported to be
absent from the 231 cancer cells [20]. In this study, human
cytokines generated by the cancer cells present in the bone
were not measured. In addition, the cancer cells have been
reported to express receptors to IL-6 [21], MIP-2 [22], KC
[22], VEGF [23], MCP-1 [22], and MIG [24]. The mRNA
for the receptor for eotaxin was not detected in MDA-MB-
231 cells [22]. In a recent publication, MIG was reported to
be produced by bone marrow mesenchymal stem cells and
enhanced the invasion and motility of MDA-MB-231 cells
[24]. In the cross-species xenograft model for breast cancer
utilized in this experiment, mouse cytokines can activate
human receptors with the exception of IL-6 [25]. Thus the
cytokine changes that occur in the microenvironment as a
consequence of the cancer cells may also be responsible for
the progression of the metastatic tumor.

In summary, cytokines in the bone microenvironment
are critical components for bone remodeling and hematopoi-
etic processes. The presence of cancer cells changes the
normal levels of these cytokines which in turn disrupts the
homeostatic balance in the bone. Abnormal cytokine levels
may also serve to fuel the propagation and further metastasis
of breast cancer cells. Whether these changes are limited to
the immediate location of the cancer cells or are the result of
a systemic effect has yet to be determined.
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