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Abstract

Background

Acquired drug resistance to the chemotherapeutic drug irinotecan (the active metabolite of

which is SN-38) is one of the significant obstacles in the treatment of advanced colorectal

cancer (CRC). The molecular mechanism or targets mediating irinotecan resistance are still

unclear. It is urgent to find the irinotecan response biomarkers to improve CRC patients’

therapy.

Methods

Genetic Omnibus Database GSE42387 which contained the gene expression profiles of

parental and irinotecan-resistant HCT-116 cell lines was used. Differentially expressed

genes (DEGs) between parental and irinotecan-resistant cells, protein-protein interactions

(PPIs), gene ontologies (GOs) and pathway analysis were performed to identify the overall

biological changes. The most common DEGs in the PPIs, GOs and pathways were identi-

fied and were validated clinically by their ability to predict overall survival and disease free

survival. The gene-gene expression correlation and gene-resistance correlation was also

evaluated in CRC patients using The Cancer Genomic Atlas data (TCGA).

Results

The 135 DEGs were identified of which 36 were upregulated and 99 were down regulated.

After mapping the PPI networks, the GOs and the pathways, nine genes (GNAS, PRKACB,

MECOM, PLA2G4C, BMP6, BDNF, DLG4, FGF2 and FGF9) were found to be commonly

enriched. Signal transduction was the most significant GO and MAPK pathway was the

most significant pathway. The five genes (FGF2, FGF9, PRKACB, MECOM and PLA2G4C)
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in the MAPK pathway were all contained in the signal transduction and the levels of those

genes were upregulated. The FGF2, FGF9 and MECOM expression were highly associated

with CRC patients’ survival rate but not PRKACB and PLA2G4C. In addition, FGF9 was

also associated with irinotecan resistance and poor disease free survival. FGF2, FGF9 and

PRKACB were positively correlated with each other while MECOM correlated positively with

FGF9 and PLA2G4C, and correlated negatively with FGF2 and PRKACB after doing gene-

gene expression correlation.

Conclusion

Targeting the MAPK signal transduction pathway through the targeting of the FGF2, FGF9,

MECOM, PLA2G4C and PRKACB might increase tumor responsiveness to irinotecan

treatment.

Introduction

Colorectal cancer (CRC) is the third most frequently diagnosed cancer and the third leading

cause of cancer deaths worldwide representing 10% of the world-wide cancer incidence and

mortality[1]. Surgical removal of the tumor is the first choice treatment for non-metastatic

CRC though approximately one-quarter of CRC patients have metastases at diagnosis and half

developing metastases even after complete resection[2,3]. The addition of cytotoxic drugs oxa-

liplatin and irinotecan and the monoclonal anti-bodies cetuximab, bevacizumab or panitunu-

mab to the backbone of the antimetabolite 5-fluorouracil has improved the median survival of

metastatic CRC(mCRC) from 8 to 24 months[4–6]. Drug resistance still hampers the efficient

treatment of mCRC as half of the patients have intrinsic or acquired resistance contributing to

a 5-year survival rate of 60% to 65%[7–10] and with the chemotherapy side effects being many,

there is an unmet need for therapy response predictive biomarkers[11].

Attempts to identify chemotherapy predictive biomarkers of treatment response and resis-

tance has yielded some results with high thymidylate synthase (TS) expression being a predic-

tor of poorer outcome in 5-fu-based therapy and also 5-fu adjuvant treatment being ineffective

in tumors with microsatellite instability[12–14];likewise higher levels of TOP1 is correlated

with greater sensitivity of colon tumors to camptothecin derivatives compared with normal

colonic mucosa, but there is no irinotecan predictive biomarkers that have reached a level of

evidence allowing for routine clinical use[15].

The testing of predictive biomarkers is not applied routinely in clinical practice, also in pre-

diction studies on response of colon cancer cells, it has been demonstrated that the assessment

of multiple biomarkers provides accurate prediction of drug response than a single biomarker

[16–18]. Gene expression profiling has been applied effectively in classifying CRC molecular

tumor subtypes and several studies have shown the feasibility of identifying genes involved in

the progression and the prognosis of CRC[16,19]. However the mechanism of acquired resis-

tance to irinotecan are not fully understood[20,21].

This study used microarray gene expression profile to identify biomarkers and pathways

involved in the acquired resistance to irinotecan in CRC and we tested these biomarkers in the

prediction of irinotecan resistance, overall survival and disease free survival in clinical data of

patients with metastatic colon cancer.
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Methods and materials

Microarray data

The Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) gene

expression profile with accession number GSE42387 was downloaded. The data was sequenced

on the platform of GPL16297 Agilent-014850 Whole Human Genome Microarray 4x44K

G4112F (Agilent Systematic Name, collapsed probe, version). The GSE42387 dataset had 27

samples which included in triplicate three parental human colon cancer cell lines of HCT116,

HT29 and LoVo and their acquired resistant subset generated after being exposed in vitro to

gradually increasing concentrations of oxaliplatin or irinotecan for nine months. MTT colori-

metric assays were used to determine the 50% inhibitory concentration (IC50) for oxaliplatin

or irinotecan resistant and the parental cell lines with the sensitivity criteria of IC50 of<1 μM

for Oxaliplatin and<1nM for irinotecan. Then the total RNA was extracted and converted

into cDNA through reverse transcription and transcribed with T7 RNA Polymerase. Then, the

labeled cRNA was hybridized to Agilent Human Gene Expression Microarrays and scanned

using an Agilent DNA Microarray scanner. The quality of the RNA was assessed using a Bio

analyzer 2100 and microarray data was processed in R (www.r-project.org) using the Biocon-

ductor bioinformatics software package (http://www.bioconductor.org/) using the Limma

package [22,23]and normalized between arrays using quantile normalization[24] and the

expression values were log2 transformed.

Data preprocessing and DEGs screening

The GEO2R online analytical tool[25], which uses the R language in applying GEOquery and

Limma packages was used to recalculate gene expressions. The HCT116 parental cell lines and

their corresponding irinotecan resistant cell lines were selected to identify the differentially

expressed genes (DEGs) between parental and resistant cell lines. The t-test method was uti-

lized to calculate the p-values of genes. Then, Benjamin & Hochberg’s method [26]was used to

calculate the adjusted p-values (false discovery rate, FDR) the DEGs with the log2 fold change

(FC) of> 1 or < - 1 and FDR <0.05 were selected.

Hierarchical clustering analysis

After extracting the expression values from the gene expression profile, a bidirectional hierar-

chical clustering heatmap was constructed using multiExperimental Viewer(MEV) v4.8 soft-

ware[27].

Construction of PPI network

In the construction of the PPI networks, STRING version 10.0 (http://www.string-db.org/)

[28]was used. This is a web biological database for prediction of known and unknown protein

interaction relationships. A combined score of>0.7(High confidence) was selected as as the

cut-off criterion. Then, the PPI pairs were inputted into Cytoscape software version 3.4.0

(http://www.cytoscape.org)[29] to construct the PPI network. The highly connected proteins

(hub nodes) with important biological functions were identified by calculating the number of

lines connecting the proteins (the degree) and how much nodes that are not directly connected

by a certain node (betweenness value) of each node by CytoNCA app for cytoscape with the

node degree cutoff criterion of�2[30].
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Enrichment analysis of DEGs

The database for Annotation, Visualization and Integrated Discovery (DAVID, https://david.

ncifcrf.gov) [31]was used to classify significant DEGs by their biological processes, molecular

functions, or cellular components using Gene Ontology consortium reference(GO, http://

www.geneontology.org/) [32]and the significant transcripts(Benjamini-Hochberg FDR<0.05)

were identified using the David Functional Annotation clustering tool[31]. The DAVID data-

base was also used to perform pathway enrichment analysis with reference from Kyoto Ency-

clopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/) database website and

Benjamini-Hochberg FDR<0.05 as a cut-off point[33,34].

Clinical validation of the DEGs

For clinical assessment of the DEGs identified to be associated with irinotecan resistance, sur-
vExpress[35], an online biomarker validation tool was used to perform survival analysis. The

colon metabase including GSE12945, GSE14333, GSE17536, GSE17537, GSE31595 and

GSE41258 with a total of 808 cases was chosen. The survival profiles were compared based on

high or low mRNA expression of a particular gene and assessed independently for overall sur-

vival and disease free survival in months. The hazard ratio(HR) with 95% confidence intervals

(CI) and log rank P-value (<0.05 as significance value) were calculated and the results were

downloaded and loaded in SPSS version 21 for plotting of Kaplan-Meier survival curves.

Confirmation of irinotecan resistant genes

To evaluate the candidate genes’ role in predicting irinotecan resistance, RNA expression pro-

files generated from TCGA-COAD RNA-sequence dataset (level 3.1.12.0) were used. The

patients were divided into two groups: those who received irinotecan and had recurrent

tumors within one-year treatment, were defined as irinotecan resistant. In contrast, the

patients who did not develop tumor relapse after one-year of irinotecan treatment were classi-

fied as irinotecan sensitive (responders). There were nine irinotecan-resistant and five irinote-

can- sensitive patients in the TCGA-COAD RNA sequence dataset. The gene expression level

in this dataset was represented in log2-transformed RSEM format. The resistant genes were

found by comparing the expression level of each target gene in the irinotecan-sensitive and

resistant patients and the significance value was found by the Mann-Whitney U test method

with<0.05 as significant.

Gene co-expression in colorectal cancer data

The cancer genome atlas (TCGA; https://cancergenome.nih.gov/) was used to find colo- rectal

cancer data which contained gene expression profiles. Level 3 RNA-Seq data containing 635

colorectal cancer cases with gene expression profiles (463 colon adenocarcinoma cases and

172 rectal adenocarcinoma cases) was downloaded, Standard Pearson correlation coefficients

(-1 to 1) of the desired gene pairs were calculated using SPSS version 21 software with signifi-

cance level p-value of<0.05 was set as the cutoff criteria.

Results

DEGs in GEO2R

The data derived from the GPL16297 oligonucleotide microarray platform by using the

GEOR2 tool consisted of 32,701 probe sets. Then 135 DEGs were identified to be related to iri-

notecan resistance after calculation of log2FC and FDR values, of which 36 were upregulated

and 99 were downregulated, then gene expression values were extracted and a bidirectional
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hierarchical clustering heat map was plotted using the the MultiExperiment Viewer v4.8 soft-

ware to present the DEGs (Fig 1, S1 and S2 Tables).

PPI networks

After mapping gene and protein interactions using STRING database to obtain the PPI pairs,

the PPI pairs were imported into Cytoscape software. The upregulated DEGs network con-

tained 83 nodes and 238 edges, 7 DEGs; PRKACB, GNAS, FGF2, FGF9, HS3ST1, PLA2G4C

and MECOM had higher degrees and betweenness values (Fig 2A, Table 1). In the down regu-

lated group which contained 147 nodes and 149 edges, 7 DEGs; BDNF, WNT3A, BMP6,

HDAC4, DLG4, CAMK1 and CPE had higher degrees and betweenness values(Fig 2B,

Table 2).

GO analysis. DAVID online tool was used to classify the 135 DEGs according to their

common GO functions of biological processes, molecular functions, or cellular components.

We included 1454 GO gene sets in the reference database, of which 37 were significantly

enriched (with p< 0.05) and had an FDR of<0.05. The most significant gene set was signal

transduction (GO:0007165) (FDR = 6.9E-1, p = 1.3E-3) which contained 18 genes. The top 10

GOs are summarised in the Table 3.

KEGG pathway analysis

DAVID online tool was also used to classify the 135 DEGs using the KEGG pathway reference.

The KEGG pathway analysis indicated that 7 pathways reached the statistical significance (p-

value <0.05, FDR<0.05) including the MAPK signaling pathway, ovarian steroidogenesis,

cocaine addiction, morphine addiction, retrograde endocannabinoid signaling, glutamatergic

synapse and serotonergic synapse (Fig 3 and Table 4). Next the MAPK signaling pathway ID

of hsa04010 was used to locate the position of the enriched genes in the pathway using DAVID

online tool, the pathway was summarized and presented in Fig 4.

Common genes between PPI networks, GOs and pathway analysis

Nine genes (GNAS, PRKACB, MECOM, PLA2G4C, BMP6, BDNF, DLG4, FGF2 and FGF9)

were observed to be commonly enriched after the analysis of the PPI networks, GOs and path-

ways. GNAS, PRKACB, MECOM, PLA2G4C, FGF2 and FGF9 were up-regulated and BMP6,

BDNF, DLG4 were down-regulated. To further compare with both the signal transduction

and the MAPK pathway, we found that five genes were significantly enriched including

PRKACB, MECOM, PLA2G4C, FGF2 and FGF(Tables 3 and 4). It was also observed that all

these genes were upregulated (Fig 3).

Genes which correlate to colorectal cancer patient survival

To further check the role of PRKACB, MECOM, PLA2G4C, FGF2 and FGF in colorectal can-

cer, we further analyzed the genes involved in the MAPK pathway for their association with

patient’s survival using the survExpress online tool. As shown in Fig 5, three genes; MECOM,

FGF2 and FGF9 were associated with survival with high expression of the genes correlating

with poor survival (Fig 5A–5C) while PLA2G4C and PRKACB did not predict survival (Fig 5C

and 5D). The combination of 5 genes showed the highly association with patients’ outcome

(S1 Fig). In addition, we also analyzed the correlation of those five genes with disease free sur-

vival. We found highly FGF9 expression was associated with poor disease free survival with all

the other 4 genes not significant (S2A–S2E Fig).
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Fig 1. Heat map showing upregulated and downregulated differentially expressed genes (DEGs) in

irinotecan-resistant colon cancer cells. A bidirectional hierarchical clustering heat map Constructed using

multiExperimental Viewer(MEV). The expression values are log2 fold changes (>1 or <−1, FDR <0.05)) between

corresponding irinotecan-resistant HCT116 cell lines and parental HCT116 cell lines. Black represents no change

in expression, green represents downregulation, and red represents upregulation.

https://doi.org/10.1371/journal.pone.0180616.g001
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Mechanism of gene correlation in tumor tissues

To understand the mechanism of gene-gene correlation expression of PRKACB, MECOM,

PLA2G4C, FGF2 and FGF, the pooled microarray datasets downloaded from NCBI were used

to identify the relationship of these candidate genes. As shown in Fig 6, we found that FGF2,

FGF9 and PRKACB were positively correlated with each other. MECOM correlated positively

with FGF9 and PLA2G4C, but correlated negatively with FGF2 and PRKACB (Fig 6)

Fig 2. Protein–protein interaction (PPI) network of differentially expressed genes (A) upregulated genes and (B) downregulated

genes. The PPI pairs were imported into Cytoscape software as described in Methods and Materials. Pink nodes represent up regulated

genes while green nodes represent down regulated genes. The lines represent interaction relationship between nodes.

https://doi.org/10.1371/journal.pone.0180616.g002

Table 1. Up-regulated genes which had interactions in the protein–protein interaction (PPI) network.

Gene symbol Gene name Degree Betweenness

PRKACB protein kinase, cAMP-dependent, catalytic, beta 34.0 237.86037

GNAS GNAS complex locus 28.0 56.964874

FGF2 fibroblast growth factor 2 (basic) 28.0 289.1067

FGF9 fibroblast growth factor 9 (glia-activating factor) 19.0 52.558647

HS3ST1 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 7.0 0.0

PLA2G4C phospholipase A2, group IVC (cytosolic, calcium-independent) 4.0 0.4871795

MECOM MDS1 And EVI1 Complex Locus 2.0 0.0

https://doi.org/10.1371/journal.pone.0180616.t001

Prediction of novel target genes and pathways involved in irinotecan-resistant colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0180616 July 27, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0180616.g002
https://doi.org/10.1371/journal.pone.0180616.t001
https://doi.org/10.1371/journal.pone.0180616


Genes which correlated to irinotecan resistance colorectal cancer

patients

The data generated from TCGA-COAD RNA-sequence dataset comprising 14 irinotecan

treated patients of which nine were resistant and five were responders, was used. To evaluate

the roles of the candidate genes in irinotecan resistance, box plots were plotted comparing

gene expression between the sensitive and the resistant group. It was found that only FGF9

was significantly elevated in irinotecan-resistant patients as compared to irinotecan sensitive

patients (p = 0.029, Mann-Whitney U test). The other genes had no significant difference

between the irinotecan-sensitive and resistant groups (Fig 7A).

To further evaluate the explanation power of each candidate gene, logistic regression was

run and the significance was tested. The results showed that only FGF9 and PLA2C4G signifi-

cantly contributed to irinotecan resistance. The regression model was estimated based on the

two genes and the score was calculated representing irinotecan resistance. This model was fol-

lowed by receiver operating characteristic (ROC) analysis[36]. Its area under the ROC curve

(AUC) was found to be 84.4%. The threshold of score, calculated by Youden’s method, was

found to be -0.6 with 100% sensitivity and 60% specificity (Fig 7B).

Discussion

CRC remains a significant cause of morbidity and mortality worldwide with high disease inci-

dence and significant numbers of patients presenting with advanced, metastatic disease[37].

Despite advances in medical and surgical therapy, the 5-year overall survival rate is still is low

at 60% to 65% [10]. The development of resistance to irinotecan treatment is still the major

Table 2. Down-regulated genes which had interactions in the protein–protein interaction (PPI) network.

Gene symbol Gene name Degree Betweenness

BDNF brain-derived neurotrophic factor 28.0 39.905716

WNT3A wingless-type MMTV integration site family, member 3A 25.0 14.574099

HDAC4 histone deacetylase 4 16.0 6.1847615

DLG4 discs, large homolog 4 (Drosophila) 15.0 4.1179338

BMP6 bone morphogenetic protein 6 13.0 3.048329

CAMK1 calcium/calmodulin-dependent protein kinase I 8.0 0.79026806

CPE carboxypeptidase E 4.0 0.2857143

https://doi.org/10.1371/journal.pone.0180616.t002

Table 3. The top ten enriched gene ontologies (GOs).

GO term Count FDR P-value

Signal transduction(GO:0007165) 18 6.9E-1 1.3E-3

cellular response to glucagon stimulus(GO:0071377) 4 6.4E-1 2.2E-3

positive regulation of osteoblast differentiation (GO:0045669) 4 8.8E-1 7.0E-3

positive regulation of protein binding (GO:0032092) 4 8.1E-1 7.3E-3

axon guidance(GO:0007411) 5 9.8E-1 2.0E-2

Inner ear development(GO:0048839) 3 9.9E-1 2.9E-2

bone development(GO:0060348) 3 9.8E-1 3.0E-2

heart development(GO:0007507) 5 9.7E-1 3.1E-2

Phosphatidylinositol-3-phosphate biosynthetic process(GO:0036092) 3 9.9E-1 4.0E-2

positive regulation of canonical Wnt signaling pathway(GO:0090263) 4 9.8E-1 4.3E-2

GO, Gene ontology; FDR, False discovery rate

https://doi.org/10.1371/journal.pone.0180616.t003
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challenge in managing CRC [38]. The mechanisms leading to development of irinotecan-resis-

tance are poorly characterized. The understanding of the etiological factors and mechanisms

of irinotecan-resistance will help to improve the therapeutic efficacy of CRC patients.

In the present study, we demonstrated that FGF9, FGF2, MECOM, PRKACB and

PLA2G4C are the new candidate genes for irinotecan resistance. To further check the correla-

tion between those five genes with overall survival or disease free survival rate, FGF9, FGF2

and MECOM were associated with survival rate and only FGF9 was associated with disease

free survival (Fig 5, S2 Fig). The possible explanation for the inconsistency may be that this

analysis is based on the general CRC patients who were not specifically receiving irinotecan

therapy. This may be needed to be verified by specific irinotecan treatment cohort.

Fig 3. Significant KEGG pathways and the genes involved. Gene enrichment analysis of the DEGs

involved in irinotecan resistance showing KEGG pathways significantly enriched in irinotecan resistant cell

lines and the genes involved in the pathways (the pathways in order of their enrichment from left to right) (FDR

<0.05 p-value of <0.05).

https://doi.org/10.1371/journal.pone.0180616.g003
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Our finding has revealed that FGF9 is positively correlated with FGF2, PRKACB and

MECOM therefore placing it at a central role (Fig 6). All these genes have been correlated to

resistance status in different cancers [39–44], though the role of those genes in irinotecan resis-

tance is still unclear. In addition, FGF9 is also the only gene that predicted irinotecan resis-

tance and disease free survival making it an important gene in that, the targeting of FGF9

might affect the expression levels and prognostic and therapeutic effects of FGF2, PRKACB

and MECOM. The effects of FGF9 were also observed with its interaction with PLA2G4C in

Table 4. Enriched KEGG pathways.

KEGG pathway Count FDR P-value

MAPK signaling pathway (hsa04010) 5 0.0025 0.0001

ovarian steroidogenesis (hsa04913) 4 0.0149 0.0003

cocaine addiction (hsa05030) 4 0.0149 0.0003

morphine addiction (hsa05032) 5 0.0149 0.0004

retrograde endocannabinoid signaling (hsa04723) 5 0.0181 0.0006

glutamatergic synapse (hsa04724) 5 0.0208 0.0010

serotonergic synapse (hsa04726) 5 0.0208 0.0009

KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR, False discovery rate

https://doi.org/10.1371/journal.pone.0180616.t004

Fig 4. Simplified MAPK pathway showing the location of the significant genes in the pathway. The DAVID online tool was used to

download the pathway and show the position of the DEGs in the pathway using the pathway ID of hsa04010. Input genes are in red. And the

final effect of the pathway is represented in gray.

https://doi.org/10.1371/journal.pone.0180616.g004
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the irinotecan resistant cohort (Fig 7B). Thus FGF9 was found to play a crucial role as it was

involved in all the stages in this study and was also observed to interact with all other genes.

FGFs interact with FGF receptors for signal transduction which regulates cell growth and

differentiation and have also been implicated in tumorigenesis and induction of drug resis-

tance in cancer cells [45–47]. The targeting of either FGF2/FG2R or FGF9 has been shown to

increase the sensitivity of chemotherapy [39,48–52]. Those studies also support our finding

that the upregulation of FGF2 and FGF9 appears to reduce the response to irinotecan.

Besides FGFs, we also found that MECOM is related to irinotecan resistance in CRC and

also has a prognostic role. MECOM is a nuclear zinc finger transcription factor [53] involved

in the cell cycle, proliferation, and differentiation and is said to suppress the JNK1-mediated

phosphoration of c-Jun thereby exhibiting antiapoptotic effects[54]. MECOM is a transcrip-

tion factor with no clear downstream targets and with no transcription profile been reported

before, therefore more in-depth research on the relationship of FGF9 and MECOM biological

functions could lead to the discovery of potential irinotecan targets, which can hasten a new

chemical drug therapy for metastatic CRC which will improve the survival time and life quality

of CRC patients therefore increasing the significance of FGF9 and MECOM in irinotecan

treatment in CRC.

Fig 5. Kaplan-Meier survival curves presenting the prognostic relationship between high and low expression of specific genes

involved in irinotecan resistance to overall survival (A) MECOM, (B) FGF2, (C) FGF9, (D) PLA2G4C and (E) PRKACB. The survival

curves were plotted using the survExpress online tool. The specific DEGs expression levels were dichotomized by median value and the

results presented visually by Kaplan-Meier survival plots. P-values were calculated using log-rank statistics. Patient number = 808,

HR = Hazard Ratio, P = Logrank P-value.

https://doi.org/10.1371/journal.pone.0180616.g005
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Fig 6. Gene expression correlation of the genes involved in the MAPK pathway in the CRC tumor

samples from the TCGA data base. The pooled microarray datasets downloaded from NCBI were used to

identify the relationship of these candidate genes. The genes in the upstream of the network were assumed to

be less variant, so coefficient of variation (CV) of each gene (presented in percent) was calculated to

determine its site in the regulatory network. Besides, Spearman’s rank correlation coefficients (-1 to 1) of the

desired gene pairs decide whether they were negative/positive control with significance level p<0.05. Number

of patients = 653. The red lines or arrows represent significant correlation (P-value <0.05). Coefficient of

variation in red, correlation coefficient in blue and P-value in green.

https://doi.org/10.1371/journal.pone.0180616.g006
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Fig 7. (A)Box plots presenting the gene expression status between irinotecan sensitive and

irinotecan resistant patients of the five candidate genes (MECOM, FGF2, FGF9, PLA2G4C and

PRKACB). (B) The receiver operating characteristic (ROC) curve showing area under ROC curve

(AUC) and the threshold of score between FGF9 and PLA2G4C. The regression model was also

estimated based on the two genes and the score was calculated representing irinotecan resistance.

TCGA-COAD RNA-sequence dataset (level 3.1.12.0) was used. The patients were divided into sensitive and

resistant. The significance value was found by the Mann-Whitney U test method (P <0.05 as significant).

Number of patients = 14.

https://doi.org/10.1371/journal.pone.0180616.g007
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The other two identified biomarkers play a role either in resistance or in prognosis in can-

cer. PRKACB may involve in type 1 cAMP-dependent protein kinase a-related pathway which

modulates breast, pancreatic, colon and ovarian cancers to be resistant to different cytotoxic

agents [55–57]. PLA2G4C plays the prognostic role in breast and colon cancer [44,58].

MAPK signal transduction pathway restrains the efficacy of irinotecan in CRC. The modifi-

cations in the MAPK signal transduction pathway increase resistance to irinotecan with the

upregulation of growth factors responsible for tumor growth CRC[59]. The MAPK p38 which

is required for cell proliferation and survival, is also said to be activated in irinotecan resistant

HCT116 CRC cells[60–62]. The pharmacological inhibition of MAPK p38 may overcome iri-

notecan resistance both in vitro and in vivo by mediating cell cycle arrest and autophagy-medi-

ated cell death[60–62].

The findings provide important new target genes which could predict irinotecan treatment

response and the emergence of resistance. This approach can also predict patient prognosis

however further studies need to be conducted to validate these findings and determine

whether they can be applied in a clinical setting.

Conclusion

In conclusion, targeting the MAPK signal transduction pathway through the targeting of

FGF9, FGF2, MECOM, PRKACB and PLA2G4C might increase tumor responsiveness to iri-

notecan and improve patient survival thus being therapeutically and prognostic significant in

CRC patients.
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