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Measurement efficiency is of concern when a large
number of observations are required to obtain reliable
estimates for parametric models of vision. The standard
entropy-based Bayesian adaptive testing procedures
addressed the issue by selecting the most informative
stimulus in sequential experimental trials.
Noninformative, diffuse priors were commonly used in
those tests. Hierarchical adaptive design optimization
(HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further
improves the efficiency of the standard Bayesian
adaptive testing procedures by constructing an
informative prior using data from observers who have
already participated in the experiment. The present
study represents an empirical validation of HADO in
estimating the human contrast sensitivity function. The
results show that HADO significantly improves the
accuracy and precision of parameter estimates, and
therefore requires many fewer observations to obtain
reliable inference about contrast sensitivity, compared to
the method of quick contrast sensitivity function
(Lesmes, Lu, Baek, & Albright, 2010), which uses the

standard Bayesian procedure. The improvement with
HADO was maintained even when the prior was
constructed from heterogeneous populations or a
relatively small number of observers. These results of
this case study support the conclusion that HADO can be
used in Bayesian adaptive testing by replacing
noninformative, diffuse priors with statistically justified
informative priors without introducing unwanted bias.

Introduction

Measurement in controlled experiments serves as a
rigorous and objective avenue to obtain reliable
inferences in scientific and clinical investigations. In
vision, a general interest is to measure human
performance in visual tasks to infer how external visual
stimuli are transformed and processed through the
visual system to yield perceptual experience. To
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accurately measure how visual performance—e.g.,
detection threshold—varies within a multidimensional
feature space of stimuli, normally a large number of
stimuli covering the region of interest in the feature
space need to be presented to an observer and tested. In
most cases, using a preselected, fixed set of stimuli (the
method of constant stimuli) is not practical given the
restrictions on the time and cost of data collection. The
drawback of the method of constant stimuli is that the
stimuli selected before the experiment are not equally
informative for different individuals, especially when
clinical populations are considered. To combat this
heterogeneity among individuals and improve the
efficiency and precision of vision testing, numerous
adaptive testing methods have been developed.

Adaptive testing in vision

The nonparametric staircase procedure has been the
dominant adaptive method of testing human sensory
abilities (Dixon & Mood, 1948; Kesten, 1958; Taylor &
Creelman, 1967). Despite its popularity, the staircase
procedure typically only accommodates one-dimen-
sional variation of stimuli—i.e., the threshold—and is
used for estimating thresholds at predetermined per-
formance levels on the psychometric function. Further,
although staircase procedures with various down–up
rules have been proposed and their properties have
been systematically studied (Garcia-Perez, 2001;
Kaernbach, 1991; Levitt, 1971), their theoretical
underpinnings concerning optimality are not well
grounded in probability theory.

A new generation of adaptive testing methods
overcome these limitations by taking advantage of
statistical models that capture the regularities of the
underlying mechanism with parametric functions to
improve the testing efficiency. A statistical model
reduces the description complexity to a few parameters
in a mathematical function, thereby requiring fewer
observations for accurate and precise estimation. These
methods include best-PEST (Pentland, 1980), QUEST
(Watson & Pelli, 1983), and ZEST (King-Smith,
Grigsby, Vingrys, Benes, & Supowit, 1994). Neverthe-
less, these methods are still limited to the estimation of
psychometric functions with one parameter, and
further restricted by the strong assumption that the
stimulus corresponding to the estimated threshold is
always the optimal stimulus to be presented on the next
trial, without rigorously formalizing the usefulness of
each stimulus in improving statistical inferences.

A theoretically more sound adaptive procedure is a
class of entropy-based Bayesian adaptive procedures,
such as the psi method (Kontsevich & Tyler, 1999), the
quick methods (Lesmes, Jeon, Lu, & Dosher, 2006;
Lesmes, Lu, Baek, & Albright, 2010; Lesmes et al.,

2015; Lu & Dosher, 2013), Bayesian adaptive estima-
tion (Kujala & Lukka, 2006), adaptive design optimi-
zation (Cavagnaro, Myung, Pitt, & Kujala, 2010), and
active data collection (DiMattina, 2015; DiMattina &
Zhang, 2008, 2011). Formulated within an informa-
tion-theoretic Bayesian framework, these procedures
update the posterior distributions of the parameters in
a psychological function sequentially with incoming
observations. The usefulness of each stimulus on a
given trial is quantified by the expected reduction of
entropy of the posteriors, or equivalently the uncer-
tainty of the parameters. In general terms, the utility
function measures the usefulness of a given stimulus
choice, written in the following form:

UðsÞ ¼

Z
y

Z
h

uðs; y; hÞpðyjs; hÞpðhÞ dy dh; ð1Þ

where u(s, y, h), called the sample utility, is a function
of stimulus s, observation y, and parameter h; p(yjs, h)
is the statistical model; and p(h) is the prior distribution
of h. For example, a psychometric function p(yjs, h)
describes the probability of correct response for a given
stimulus s, with the parameter h containing a threshold
and slope and the response y being either a correct
response or an incorrect response. The sample utility
u(s, y, h) quantifies the usefulness of stimulus s with a
specific parameter value h and a potential response y. A
particular specification of u(s, y, h) is

uðs; y; hÞ ¼ log
pðhjy; sÞ
pðhÞ ; ð2Þ

in which p(h) is the prior distribution of h, and p(hjy, s)
is the posterior. Therefore, u(s, y, h) can be interpreted
as the reduction in the uncertainty about parameter h
after a new trial with a stimulus s and an observation y.
By taking the integral of the sample utility over all
possible observations y and parameters h, the derived
expected utility U(s) in Equation 1 measures the
expected information gain brought by the stimulus s
(Cover & Thomas, 1991). The design that maximizes
the expected utility is selected and presented in the next
experimental trial. Hence, the optimal stimulus is
expected to yield the largest information gain about the
psychological function in the response on the next trial.

The computation of Equations 1 and 2 requires the
specification of p(h), the prior distribution that
represents the current state of knowledge about model
parameters. For each trial during an adaptive testing
session, the prior distribution is updated in a straight-
forward way by applying Bayes’s rule with incoming
data. However, the initial prior at the beginning of an
experiment must be specified a priori by researchers.
Commonly in Bayesian adaptive testing of visual
functions, conservative priors—either uniform (Kont-
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sevich & Tyler, 1999; Kujala & Lukka, 2006; Lesmes et
al., 2006) or diffuse (Hou, Huang, Lesmes, Feng, Tao,
Zhou, & Lu, 2010; Lesmes et al., 2010; Lesmes et al.,
2015)—have been used.

One advantage of Bayesian statistics is that infer-
ences can be enhanced by starting each new inference
from previously collected observations, quantified as an
informative prior (Wagenmakers, Lee, Lodewyckx, &
Iverson, 2008). Although the standard Bayesian adap-
tive testing methods we have reviewed adopt full
Bayesian procedures for parameter estimation, the
advantage of informative priors has yet to be utilized.
Consequently, those methods are needlessly conserva-
tive in that every experiment starts its inference anew
with a ground-zero state of knowledge, even if there
might be several observers’ worth of data already in
hand.

A hierarchical adaptive approach

To further improve the current Bayesian testing
procedure, we recently introduced a hierarchical
Bayesian adaptive testing method, hierarchical adaptive
design optimization (HADO; Kim, Pitt, Lu, Steyvers, &
Myung, 2014), which achieves even greater efficiency by
applying informative priors constructed using data
from observers who have previously conducted the
same task. The improvement results from integrating
hierarchical Bayesian modeling (HBM) with the
standard entropy-based Bayesian adaptive testing
procedures. In the work by Kim et al. (2014), HADO
was applied to estimating the contrast sensitivity
function (CSF) in a series of simulations with CSF data
from 67 amblyopic and 80 healthy eyes, using as a
baseline the quick CSF (qCSF) procedure (Lesmes et
al., 2010), which embodies the standard Bayesian
testing procedure to measure the CSF. A leave-one-out
paradigm was used to compare HADO with qCSF by
treating 146 subjects as being previously tested and the
remaining subject as a new individual to be measured
subsequently. The results showed that HADO achieved
a decrease of around 2 dB (1 dB¼ 0.05 decimal log
units) in the root-mean-square error (RMSE) in the
estimation of CSF during the first 40 trials, and saved
more than 20 trials to reach a 90% correct classification
as an amblyopic eye versus a healthy eye, compared to
the qCSF procedure, in a two-alternative forced-choice
task.

Although HADO achieves greater efficiency in
simulations, some of its working assumptions are in
need of further investigation. For example, it was
assumed in HADO that the observers used for
constructing informative priors were from the same
population as the new observers, and further, that a
sufficiently large number of observers would be

available to represent the target population. The
purpose of the present study is to empirically validate
HADO by evaluating those assumptions in a case study
of CSF measurement. In what follows, we first provide
a brief overview of the methodological foundation of
HADO, and then present two experiments that applied
HADO to estimate the CSF.

Hierarchical adaptive design
optimization (HADO)

The methodological foundation of HADO (Kim et
al., 2014) features the integration of the standard
entropy-based Bayesian method with HBM (Bernardo
& Smith, 1994; Lee, 2006; Rouder & Lu, 2005), a
statistical technique that improves the precision of
inferences by accounting for dependencies in data.
Particularly, observers from the same population or
who were tested in the same experimental condition are
expected to perform more similarly to each other than
to those from different populations or conditions. The
innovative application of HBM in HADO is to extract
the similarity, or the common information shared by
observers, and turn it into informative priors for new
observers.

The framework of HADO is illustrated in Figure 1.
As a subroutine in HADO, the shaded area represents
the standard entropy-based Bayesian adaptive testing
procedure, which consists of three basic steps that are
repeated in each trial: (a) design optimization (finding
the optimal stimuli), (b) measurement (presenting stimuli
and collecting responses), and (c) Bayesian updating of
prior to posterior. On trial t, the prior is expressed as

p
�
hnjyð1:t�1Þ

n

�
, in which y

ð1:t�1Þ
n denotes responses in the

previous trials, and n indexes observers. The utility U(st)
of a stimulus quantifies the expected reduction of
entropy of parameters each stimulus can potentially
bring, calculated by Equation 1. Then the optimal
stimulus s*

t corresponding to the maximal U(st) is
administered and a new responsey

ðtÞ
n observed. The

posterior distribution of parameters is calculated by

Bayes’s rule: p
�
hnjyð1:tÞn

�
}p
�
y
ðtÞ
n jhn; s*

t

�
p
�
hnjyð1:t�1Þ

n

�
.

The posterior p
�
hnjyð1:tÞn

�
is subsequently used as the

prior for the next trial tþ 1. These steps repeat until a
given number of trials are executed or a given criterion
for accuracy and precision of estimation is reached.

The standard Bayesian adaptive testing procedure
leaves open the option of priors at the beginning of an
experiment, to which HBM contributes. The upper
loop of Figure 1 represents the HBM component of
HADO that draws information from previously run
observers to provide an informative prior for a new
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observer. Given a data set of n observers, a hierarchical
Bayesian model can be formulated as

g ; pðgÞ
hijg ; pðhijgÞ i ¼ 1; . . . ; n
yjs; hi ; pðyjs; hiÞ

:

8<
: ð3Þ

The lower level, represented in the third line,
contains an individual-level data model p(yjs, hi) that
describes how a response y is generated given a
stimulus s and the ith observer’s parameter hi. A
middle-level model p(hijg), in the second line, defines
the dependency among individual-level parameters hi,
conditional on the higher level parameter g associated
with the population. Depending on a researcher’s
assumption, p(hijg) may be modeled by a parametric
distribution. For instance, if we assume that the CSFs
of a population follow a Gaussian distribution N(hijl,
R), then g would be the mean l and variance R.
Alternatively, a nonparametric model such as a kernel
density estimator can be specified if the underlying
distribution is believed to deviate significantly from
standard parametric distributions. The first line of
Equation 3 specifies the prior distribution of the higher
level parameter g. When n observers’ worth of data are
collected with observed responses y1:n (the subscript
‘‘1:n’’ denotes a collection of observations from a total
of n observers), the posterior distribution of the
parameter g is obtained by

pðgj y1:nÞ}
R R

Pn

i¼1 pðyij hiÞpðhij gÞ
h i

pðgÞ dh1 . . . dhn:

ð4Þ
Subsequently, the prediction of the parameter hnþ1 for a
new observer is made by

pðhnþ1j y1:nÞ ¼

Z
pðhnþ1jgÞpðgjy1:nÞ dg: ð5Þ

It is important to note that p(hnþ1jy1:n) serves as an
informative prior for the next observer n þ 1 in the
experiment. It can be expected that with the increase in
the number of collected observers n, p(hnþ1jy1:n)
contains more information and therefore becomes
more concentrated. On the other hand, when no prior
data are available (i.e., n¼ 0), HADO is reduced to the
standard Bayesian adaptive testing procedure method
with a noninformative, diffuse prior.

The HADO algorithm is implemented through two
subroutines—the standard Bayesian testing procedure
(e.g., the qCSF method) and HBM—corresponding to
the adaptive and the hierarchical component, respec-
tively. In a typical implementation, the Bayesian testing
procedure is performed online during an experiment to
select an optimal stimulus on each trial, while HBM is
performed off-line after an experiment, to update the
population-level structure with existing data sets and
construct a prior for a new observer.

Figure 1. Illustration of the HADO algorithm. The standard Bayesian adaptive procedure—e.g., the psi method (the shaded area)—is

an integral component of the HADO algorithm. See the text for additional details. Reprinted with permission from Kim,W., Pitt, M. A.,

Lu, Z. L., Steyvers, M., & Myung, J. I. (2014). A hierarchical adaptive approach to optimal experimental design. Neural Computation, 26,

2468.
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In evaluating the performance of HADO, we
compared HADO and the standard Bayesian testing
procedure in an empirical case study of CSF measure-
ment. The standard Bayesian testing procedure of CSF
is reviewed in the next section.

Contrast sensitivity function (CSF)

The CSF describes how contrast sensitivity (recip-
rocal contrast threshold) changes as a function of
spatial frequency, and can serve as a comprehensive
assessment of spatial vision. The CSF is closely related
to daily visual functions and has been used to
characterize both normal and impaired vision (Gins-
burg, 1981, 2003; Hess, 1981). Accurate measurement
of the CSF is of keen interest for the purpose of
diagnosing visual deficits, because various visual
pathologies are associated with characteristic changes
in it (Hess, 1978; Jindra & Zemon, 1989; Marmor,
1981; Wolkstein, Atkin, & Bodis-Wollner, 1980).
However, measuring CSFs typically requires a large
number of observations, given the complex shape and
the requirement of proper sampling in both contrast
and spatial-frequency domains (Lesmes et al., 2010).
To reduce the data-collection burden, adaptive testing
methods have been extensively studied and exploited
for measuring CSF (Dorr, Lesmes, Lu, & Bex, 2013;
Hou et al., 2010; Hou, Lesmes, Bex, Dorr, & Lu, 2015;
Lesmes et al., 2010).

Lesmes et al. (2010) proposed a qCSF method that
adopts the entropy-based Bayesian testing procedure
to estimate the CSF. The regularities in contrast
sensitivity were modeled by a truncated log-parabola
model with four parameters (Watson & Ahumada,
2005):

SðfÞ ¼
cmax � d if f, f max � b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

log102

s
;

cmax � ðlog102Þ f� f max

b=2

 !2

otherwise:

8>>>>><
>>>>>:

ð6Þ
Figure 2a illustrates the parametrization of the CSF

in terms of the four parameters (peak sensitivity cmax,
peak frequency fmax, bandwidth b at half of the peak
sensitivity, and low-frequency truncation level d). The
SCF S(f) in Equation 6 is the reciprocal of the contrast
threshold, corresponding to the level of contrast that is
associated with a predefined performance level.

The psychometric function in the qCSF method is
defined by a cumulative Gaussian function (Alcalá-
Quintana & Garcı́a-Pérez, 2004)

pðc; fÞ ¼ Gþ ð1� G� LÞU
logðcÞ þ log

�
SðfÞ

�
r

0
@

1
A;
ð7Þ

where p(c, f) is the probability of generating a correct
response at a specific contrast level c and a spatial
frequency f, G is the guess rate, L is the lapse rate, U(�)
is the cumulative Gaussian function, and r determines
the slope of the psychometric function. An example of
a cumulative Gaussian psychometric function is shown
in Figure 2b. The guess rate is the probability of
making a correct response when the contrast of stimuli
approximates zero. In an N-alternative, forced-choice
(NAFC) task, the guess rate is assumed to be equal to
1/N. Figure 2b shows a guess rate of 0.1 for a 10AFC
task (Hou et al., 2015). The lapse rate restrains the
maximum probability of correct response to account
for response errors caused by inattention. The slope of
the psychometric function is preset to a value obtained
from previous studies (Hou et al., 2015).

Equations 6 and 7, combined as f(yjc, f, cmax, fmax, b,
d, G, L, r), mathematically describe how external
stimulus variables c and f are transformed into
underlying visual sensitivity, tuned by the parameters
(cmax, fmax, b, d, G, L, r) specific to each observer being
tested, and finally reflected as the probability of correct
responses. The four parameters to be estimated in the
present study are cmax, fmax, b, and d. The other three
parameters G, L, and r are fixed as G ¼ 0.1, L ¼ 0.04,
and r¼ 0.42 following Hou et al. (2015). Note that in a
hierarchical modeling context, the model f(yjc, f, cmax,
fmax, b, d) describes the individual-level data, corre-
sponding to the third line in Equation 3.

The qCSF method, as with the other standard
entropy-based Bayesian testing procedures, assumes a
noninformative prior at the beginning of an experi-
ment. In the present empirical validation study, we used
the qCSF procedure as a benchmark to compare its
performance with that of the HADO procedure.

Hierarchical adaptive estimation of
the CSF

The soundness of HADO hinges upon the validity of
two main assumptions it makes. First, the informative
prior obtained based on existing data should be
representative of a new observer. In other words, new
observers are assumed to come from the same
population as earlier observers. If this assumption is
violated, the prior would contain mismatched infor-
mation, giving a biased view of new observers. The
second assumption of HADO is that to construct an
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informative prior, the size of the data sample (i.e.,
number of existing observers) should be large enough
to well approximate the underlying population. If data
are available from only a small number of observers,
the resulting prior either may become too diffuse to be
useful for an inference purpose or may lead to
undesirable bias when these observers are not repre-
sentative of the population.

One specific goal of the current study was to
investigate the robustness of HADO when these two
assumptions are violated to different degrees. While
this question might be partly addressed by a simulation
study, we opted to integrate such tests into the design of
the current empirical validation. More specifically, we
assumed neither true parameter values nor correct
models for the purpose of data generation in both
HADO calibration and validation phases (we need
modeling assumptions for the purpose of estimation).
This aspect had important implications. First, we
believed that the benefit of HADO should be demon-
strated by testing real, out-of-sample observers whose
behavior is not necessarily predicted by the model being
used for estimation. Second, since true CSFs are
unknown in reality, we treated large-sample estimates
as a ground truth against which the accuracy and
reliability of parameter estimates under various,
specific conditions were evaluated.

To conduct an empirical study on the robustness of
HADO, we designed two validation experiments by
manipulating the extent of agreement with the theo-
retical assumptions of HADO (i.e., sample representa-
tiveness and sample size). Data from a previously
conducted baseline experiment, in which a large
number of observers participated in the qCSF task
under three different luminance conditions (reported

separately by Hou et al., 2016), were used to build the
informative priors for Experiments 1 and 2 in the
present study. In Experiment 1, priors constructed from
different luminance conditions were applied to assess
the effect of priors’ representativeness on HADO
performance. In Experiment 2, priors constructed from
several samples of different sizes were used to gauge
how large a sample needs to be to construct an effective
prior. In what follows, we begin with a brief overview
of the baseline experiment upon which the two
validation experiments were built.

Baseline experiment: Data collection for prior
construction

In the baseline experiment (Hou et al., 2016), the
CSFs of 112 observers were measured under three
different luminance conditions using the standard
Bayesian testing procedure (qCSF) in a 10AFC task
(Hou et al., 2015; Lesmes et al., 2010). Test–retest
analyses were carried out to investigate the precision
for detecting changes in CSFs.

In the HADO validation experiments, we used the
data from the baseline experiment to construct various
forms of informative priors—i.e., p(hjg) in Equation 3.
In the following presentation, only the information
relevant to the present study is described. For details of
the baseline experiment, readers are directed to Hou et
al. (2016).

Each naı̈ve observer received six blocks of qCSF
measurements in four different viewing conditions: low
luminance (L), medium luminance (M), high luminance
(H), and low pass (LP). In the H condition, observers
viewed the display through uncovered goggles. In the

Figure 2. (a) Contrast sensitivity function S(f) as a function of spatial frequency f, parameterized by peak sensitivity cmax, peak

frequency f
max, bandwidth b, and truncation level d (Watson & Ahumada, 2005). (b) The psychometric function p(c, f) for a 10AFC task

that describes the probability of detecting stimuli of contrast c, with the threshold determined by 1/S(f).
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M condition, they viewed the display binocularly
through goggles with neutral density filters with an
attenuation factor of 0.67 decimal log units. In the L
condition, they viewed the display through goggles
fitted with the neutral density filters with a total
attenuation factor of 1.56 decimal log units. Bangerter
occlusion foils were used as the low-pass filter in the LP
condition. The equivalent mean luminance in the L, M,
H, and LP conditions was 2.62, 20.4, 95.4, and 95.4 cd/
m2, respectively. The order of the test blocks was L, L,
M, H, LP, H. The first L condition was used for
observers to dark-adapt and practice the qCSF test,
and the two H conditions were included to assess the
test–retest reliability of the qCSF method. In each test
block, the qCSF procedure with a 10AFC letter-
identification task was used to measure the CSF in 50
trials. Each observer finished the six blocks in
approximately 70 min. For additional details about the
procedure (i.e., use of a diffuse prior, adaptive stimuli
selection, and Bayesian estimation), please refer to Hou
et al. (2015).

In the present study, we used data from 100 of the
112 observers in the baseline experiment for prior
construction, and only those data from the H, M, and
L conditions. For each observer, the point estimates of
the four parameters of the truncated log-parabola CSF
model were computed by the Bayesian posterior means
under each luminance condition. The estimates across
all 100 observers in each luminance condition were then
pooled together. Nonparametric kernel density esti-
mation (KDE; Scott, 1992) was then applied to
estimate the population-level distribution of the pa-
rameters, which is the higher level model referred to
earlier—i.e., p(hjg) in Equation 3. To visualize these
higher level distributions, we mapped the estimates of
the four parameters onto two summary statistics of a
CSF—the area under the log CSF (AULCSF; Apple-
gate, Howland, Sharp, Cottingham, & Yee, 1997;
Oshika, Okamoto, Samejima, Tokunaga, & Miyata,
2006) and the cutoff spatial frequency (cutSF; Huang,
Tao, Zhou, & Lu, 2007; Zhou et al., 2006)—both of
which are diagnostic measures of contrast sensitivity
(Hou et al., 2010; Hou et al., 2015; Lesmes et al., 2010).
The four-dimensional distributions of CSF parameters
were thus transformed into a two-dimensional distri-
bution of AULCSF and cutSF. Figure 3 shows the 75%
equal-density contours of these distributions corre-
sponding to the three conditions. Differences among
the distributions are clearly visible in their locations in
the parameter space, which are attributable to the
experimental manipulations. Given that larger values
of AULCSF and cutSF indicate better vision, the
distribution of the CSFs in the H condition is located in
the upper right in the space. Distributions representing
the M and L conditions are located in regions covering
smaller values of AULCSF and cutSF, exhibiting the

expected ordering based on our luminance manipula-
tions.

Experiment 1: Effect of different types of priors

The relatively large sample size (100) of CSFs
measured under each luminance condition in the
baseline experiment can serve as a proxy for the
corresponding population. The goal of Experiment 1
was to assess whether the use of informative priors,
estimated from the baseline data, can help achieve
greater efficiency in the estimation of CSF compared to
the qCSF method, which assumes noninformative,
diffuse priors, and if so, to determine the size of the
benefit. The choice of priors is straightforward: Use the
H prior for new observers in the H luminance
condition, the L prior for observers in the L luminance
condition, etc. An improvement of the estimation when
the correct informative priors were applied would be
expected naturally. In practice, however, the choice of
priors may not always be clear. For example, if an
observer comes from an unknown population, the
imposition of a prior of strong beliefs can be
misspecified and risks introducing an unjustified bias in
parameter estimation (e.g., an L prior given to a CSF
measurement in the H condition). In such a case, it may
be wiser to use an informative prior constructed from
the collapsed data from different populations, which
may result in a prior still more informative than a
noninformative diffuse prior. To investigate this

Figure 3. Equal-density contours of the estimated population

distributions of AULCSF and cutSF under the H, M, and L

luminance conditions estimated from the data of 100 observers

in the baseline experiment.
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possibility, we assessed the influence of additional types
of priors—i.e., misspecified and mixed-population
priors—on HADO performance.

Methods

Observers: Ten college students from The Ohio State
University participated to obtain partial course credit
in an introductory psychology course. All observers
had normal or corrected-to-normal vision and were
unaware of the purpose of the study. Verbal consent
was obtained prior to participation. The study protocol
was approved by the institutional review board of
human-subjects research of The Ohio State University.
Apparatus: The experiment was implemented in
MATLAB R2013a (MathWorks, Natick, MA) with the
Psychtoolbox subroutines (Kleiner et al., 2007) on a
PC. Stimuli were presented on a gamma-corrected
Samsung UN55FH6030 55-in. monitor with a 1920 3
1080 pixel resolution and a vertical refresh rate of 60
Hz. The mean luminance of the monitor was 95.4 cd/m2

(measured by a Tektronix J17 photometer). A bit-
stealing algorithm was used to achieve 9-bit grayscale
resolution (Tyler, 1997). Observers viewed the display
binocularly from a distance of 4 m in a dark room. A
chin rest was used to help observers fix their head
position relative to the screen. Two luminance condi-
tions, H and L (the same as those in the baseline
experiment), were tested.
Stimuli: Ten filtered Sloan letters—C, D, H, K, N, O,
R, S, V, and Z (shown in Figure 4)—were used as
stimuli (Alexander, Xie, & Derlacki, 1994; Hou, Lu, &
Huang, 2014; Hou et al., 2015). All filtered-letter

stimuli had a center frequency of 3.3 cycles per object
and a bandwidth (of half height) of one octave. The
filtered letters had a narrowband spectrum in the
spatial-frequency domain and were found to assess
contrast sensitivity in different central spatial frequen-
cies equivalently to the conventional gratings (Alexan-
der et al., 1994; McAnany & Alexander, 2006). The
pixel intensity of each filtered image was normalized by
the maximum absolute intensity of the image. After
normalization, the maximum absolute Michelson
contrast of each image was 1.0. Stimuli with different
contrasts were obtained by scaling the intensities of the
normalized images with corresponding values. The
filtered images were rescaled to 19 different sizes to
generate stimuli with 19 evenly spaced (in log space)
central spatial frequencies from 1.19 to 30.95 c/8 for the
qCSF procedure.
Design and procedure: Three different informative priors
(H, L, and Mixture), plus the diffuse prior as a baseline,
were constructed in the current experiment. The H and L
priors were exactly the estimated population distribu-
tions of the CSFs under the H and L luminance
conditions, as shown in Figure 3. The Mixture prior was
obtained by averaging the H, M, and L distributions
with equal weights. Therefore, the Mixture prior
contains information about all three conditions (i.e., a
general population) so as to represent a wide spread of
belief but still more informative belief about the
parameters than a diffuse prior, which is noninformative
by construct. The diffuse prior was the same as that used
by Hou et al. (2015): a hyperbolic secant function close
to being flat over the parameter space.

Figure 4. (a) Ten filtered letters. (b) Illustration of filtered letter ‘‘C’’ in various spatial-frequency conditions.
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All stimuli in the experiment were selected from the
ten Sloan letters. Observers were instructed to
familiarize themselves with the letter set before the
start of the experiment and respond only with letters
from the set during the test. The task was therefore a
10AFC identification task. To improve user experi-
ence, three letter stimuli with the same central spatial
frequency were presented in the same row with a
center-to-center distance of 1.1 times the letter size in
each trial. Each letter was randomly chosen with
replacement from among the ten Sloan letters. The
contrast of the letter on the right was determined by
the qCSF algorithm, and the contrasts of the letters on
the left and in the middle were 2 and 4 times of the
optimal contrast, with an upper limit of 0.9. Observers
were asked to identify the three letters one by one
among the 10 alternatives.

Each observer received two testing blocks with a
break in between, one under the H luminance
condition and the other under the L luminance
condition. In each block, four independent qCSF
experiments with different priors were conducted
simultaneously, with stimuli from different prior
conditions interleaved. Each qCSF experiment con-
sisted of 50 trials, and therefore in total each observer
performed a total of 200 trials under each of the two
luminance conditions.

The rest of the experimental setup was the same as in
the baseline experiment (Hou et al., 2016). The stimuli
were defined on discrete grids in each dimension, with
128 grids in the contrast dimension (evenly spaced on a
base-10 log scale from 0.2% to 100%) and 19 in the
spatial-frequency dimension (evenly spaced on a base-
10 log scale from 1.19 to 30.95 c/8).

Results

Ideally, assessing the performance of CSF estima-
tion would require knowing the true underlying CSF
of an observer. However, given that the underlying
CSF is unknown, it was approximated as follows.
First, for each observer under a particular luminance
condition, all 200 trials from the four prior conditions
were collapsed into one data set. The posterior
distribution of the CSF parameters was then obtained
by applying Bayes’s rule to the data under a diffuse
prior. Finally, the posterior mean was taken as our
estimate of the true CSF. This method was applied to
the data from each observer under each luminance
condition to obtain separate true CSFs in the H and L
conditions.

Point estimates of the CSF parameters were obtained
for each experimental trials and transformed to the
AULCSF summary statistic. To assess the quality of
the estimates, the RMSE was calculated for each
experimental trial (j ¼ 1, . . ., 50) by

RMSEj ¼ 20 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10

X10

i¼1

ðĥi;j � ĥi;TÞ2

vuuut
j ¼ 1; . . . ; 50; ð8Þ

where ĥi,T denotes the approximation of the true
AULCSF of the ith observer estimated as already
described in a given luminance condition, and ĥi,j is the
estimate of the AULCSF of the ith observer on the jth
trial. The constant 20 is multiplied to scale the results in
decibel (dB) units, given that the parameter values are
base-10 logarithms. Note that the RMSE reflects a
combination of accuracy and precision in measurement
theory (or equivalently, bias and variance in statistical
inference) in a single summary statistic (Wackerly,
Mendenhall, & Scheaffer, 2007). Accordingly, it can be
considered an empirical instantiation of the mean
squared error in the theory of point estimation in
statistics (Lehmann & Casella, 1998).

Figure 5a and c (left-hand column) shows the RMSE
profiles over trials based on the qCSF procedure with
different priors under the H and L luminance
conditions, respectively. Overall, regardless of the
priors, the estimation error decreases as observations
accumulate over trials. The estimation errors under all
prior types were smaller than 1.8 dB under the H
luminance condition and 1.2 dB under the L condition
at the end of the experiment (i.e., 50 trials). The effects
of informative priors were assessed by comparing their
RMSEs with those from the diffuse prior. The effect of
priors is evident in the graphs, and largest at the
beginning of the experiment. When priors match the
condition (or population), specifically when the H prior
is used under the H luminance condition (black curve in
Figure 5a) or the L prior is used under the L luminance
condition (red curve in Figure 5c), the measurement
error is smallest across trials. Estimation with the
Mixture prior performs worse in both luminance
conditions (green curves in both plots) than the
correctly specified priors, but the results are still far
superior to the performance under the diffuse priors
(blue curves). In a misspecification scenario, specifically
when the L prior is used in the H luminance condition
(red curve in Figure 5a) and the H prior is used in the L
condition (black curve in Figure 5c), the estimation
error becomes larger than with the correctly specified
prior and the Mixture prior. In the H luminance
condition, in particular, the error with the misspecified
L prior is overall comparable to that with the diffuse
prior and gets even worse after several trials. By
contrast, in the L condition the use of the misspecified
H prior fares better. This can be explained by the
general asymmetric shape of these prior distributions,
which are skewed toward poor vision, as revealed in
Figures 3 and 6. This enables the H prior to have better
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coverage of the L CSFs than the L prior does of the H
CSFs.

These empirical results were obtained from only 10
observers and thus tend to be noisy due to idiosyncratic
sampling errors. To provide clarity, simulations were
performed to complement the experimental findings.1

We used the approximated true CSFs of the 10
observers (estimated from all responses with a diffuse
prior) to generate simulated responses. For each CSF,
Experiment 1 was executed 100 times with the
simulated data. The RMSEs across all observers and
replications were computed.

Figure 5b and d (right-hand column) gives the plots
of RMSEs for the H and L luminance conditions
obtained from the simulation. As can be seen, the
simulation results are qualitatively indistinguishable
from the experimental ones shown in the left panel, but
much smoother due to the large number of replications
in each condition.

We note an interesting pattern observed under the
diffuse prior in the H condition (Figure 5a, b). The
RMSE started small but became larger in the first few
trials before decreasing in later trials. We believe this
abnormal pattern is pure coincidence and of no

theoretical interest. The pattern is mostly likely due to
the fact that the mean of the diffuse prior just happens
to be close to the true CSFs, thereby yielding a smaller
RMSE at the beginning of the experiment. The
subsequent large RMSEs are driven by the posterior
updating with the initial observations. Note that the
abnormal pattern is not observed under other priors in
the H condition, nor any prior in the L condition,
because the means of those priors did not happen to be
close to the true CSFs. The phenomenon can also be
observed in Experiment 2. The relationship of the
diffuse prior and the true CSFs can be observed next in
Figure 6, in which the CSFs in the H condition are
closer to the mean of the diffuse prior than in the other
conditions.

Table 1 shows the average reduction of RMSEs by
using informative priors from using the diffuse prior
based on the simulation data. After 10 trials, the
correctly specified priors (the H prior for the H
condition and the L prior for the L condition) reduce
error by 4.58 dB in the H condition and 4.99 dB in the
L condition compared to the diffuse prior. Using the
Mixture prior produces reductions of 4.29 and 4.54 dB
in the H and L luminance conditions, respectively. By

Figure 5. RMSE plots of AULCSF estimation in Experiment 1 with the four different types of priors under the H (a–b) and L (c–d)

luminance conditions.
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contrast, the use of misspecified priors (the L prior in
the H condition and the H prior in the L condition)
results in reductions of only 0.28 and 2.88 dB in the H
and L conditions, respectively. After the entire 50 trials,
the difference in estimation between priors becomes
smaller because of the contribution of data to the
estimation. The misspecified priors performed nearly
on par with the diffuse prior in the end, although the L
prior in the H condition is slightly worse, by 0.78 dB,
and the H prior in the L condition is slightly better, by
0.62 dB.

To summarize the main findings from Experiment 1,
the results show that using an informative prior,
estimated from data belonging to the same population
as new observers, greatly improves the efficiency of
measurement, reflected in requiring fewer trials to
attain the same quality of parameter estimation. In
other words, with the same number of observations a
representative informative prior attains greater accu-
racy and precision in estimation. As shown in Figure 5,

it takes 20 to 30 trials for the diffuse priors to reach the
initial error level of estimation found with the correctly
specified priors at the beginning of an experiment.
Although CSF estimates obtained by using any priors
gradually converge to stationary values as more
observations are collected, the initial advantage of
using an informative prior is valuable when there is a
restriction on the time of the testing session.

Another point is that using a misspecified prior can
produce an even worse outcome than using a diffuse
prior if a large bias is contained in the prior. The
identification of a suitable prior (or of the population
for an observer) may not be straightforward in
practical situations. One feasible solution suggested in
the current results is to use a mixture prior that
represents a wide range of observers in the population.
Although a mixture prior did not provide as much
improvement in estimation as the correctly specified
informative prior, it can help mitigate the problem of
misspecification and at the same time still outperforms
noninformative diffuse priors.

Experiment 2: Effects of sample sizes with an
informative prior

In Experiment 1, the informative priors were
constructed using the data from 100 observers in the
baseline experiment. The large sample size ensured that
the sample was sufficiently representative of the
population, and the estimated informative prior p(hjg)
in Equation 3, was much more concentrated than the
diffuse prior. In practice, however, it may not be
feasible to collect that many observers before con-
structing an informative prior in HADO. Because a

Figure 6. Equal-density contours of the diffuse and informative priors of sample sizes 5, 12, 30, and 100 used in Experiment 2.

Condition Prior After trial 10 (dB) After trial 50 (dB)

H Diffuse 0 0

H �4.58 �1.90
Mixture �4.29 �1.86
L �0.28 0.78

L Diffuse 0 0

H �2.88 �0.62
Mixture �4.54 �1.59
L �4.99 �1.71

Table 1. Simulation results of the reduction of RMSE in the
estimation of AULCSF by using the H, Mixture, and L priors
compared to the diffuse prior, in the H and L luminance
conditions.
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small sample contains limited information about its
population, the prior constructed from the sample may
still be somewhat diffuse, or potentially biased if there
are outliers in the sample. The question of greatest
interest is then how large the sample size should be in
order to achieve sufficient efficiency, or whether a prior
constructed from a relatively small sample will be even
worse off. The goal of Experiment 2 was thus to
investigate how the priors constructed from different
sample sizes affect the estimation errors. The experi-
ment measured CSFs of observers in the H luminance
condition using the priors constructed from the data of
different sample sizes in the same H condition.
Therefore, the only possible source of measurement
differences across conditions should be the amount of
information in the priors.

Methods

Observers: A total of 10 observers were recruited for the
experiment, five of whom had participated in Experi-
ment 1. All observers had normal or corrected-to-
normal vision and were unaware of the subject of the
current study. Verbal consent was obtained before the
experiment. The study protocol was approved by the
institutional review board of human-subjects research
of The Ohio State University.
Apparatus and stimuli: The apparatus and stimuli were
the same as in Experiment 1.
Design and procedure: Informative priors of varying
sample sizes were constructed using the data in the H
luminance condition in the baseline experiment. In a
clinical context, a practical approach would be to use
the first-arriving observers to construct priors for
subsequent observers. However, the degree of repre-
sentativeness of such a sample to the population would
be totally random. In order to minimize such sampling
bias and select a sample that was moderately repre-
sentative of the population, we devised the following
sampling strategy for selecting a sample of a given size
from the original pool of 100 observers. We first
selected a large number of subsets of observers of a
given size, with each subset randomly selected without
replacement (e.g., 1,000 subsets of five observers), and
then obtained a kernel density estimate of the
distribution of the CSF parameters for each subset.
Separately, we obtained a similar distribution based on
all 100 observers as a proxy for the underlying true
population. We then measured the representativeness
of the KDE sample distribution constructed from each
subset by its bias and divergence compared to the proxy
population distribution. The bias was calculated by the
distance between the mean of the sample distribution
and that of the proxy population distribution. The
divergence was calculated by the determinant of the
variance–covariance matrix of the sample distribution.

We found that with the increase in sample size, the
average bias and divergence of the sample distributions
gradually decreased. Finally, we chose one sample of a
given sample size whose bias and divergence were both
closest to the median among all the samples. In this
way, we selected three samples of differing sample sizes
(n ¼ 5, 12, and 30) from the 100 observers in the
baseline experiment.

Figure 6 shows the 75% equal-density contours of
the prior distributions of AULCSF and cutSF esti-
mated from the observers of different sample sizes, and
the total 100 observers, along with the diffuse prior.
With the increase of sample size, the prior distributions
become more concentrated and therefore contain more
certainty about the average CSF in the corresponding
population. On the other hand, the diffuse prior covers
a much wider range of the parameter space, even
though some part of its coverage is highly unlikely for a
person with normal vision.

Each of the 10 observers received a single session of
250 trials in the H luminance condition. Within the
session, five independent qCSF experiments (50 trials
for each) were interleaved, each corresponding to the
diffuse prior condition (i.e., sample size of 0) and the
four informative prior conditions (sample sizes of 5, 12,
30, and 100). The stimulus-presentation paradigm was
the same as in Experiment 1.

Results

Error measures were defined and computed in the
same way as in Experiment 1 (i.e., RMSEs of estimated
AULCSFs from the approximated true CSFs, as
described in Equation 8). Figure 7a shows the
comparison of estimation quality across the five
different prior conditions. As expected, given any prior,
the estimates gradually converged to a stable value
after sufficient observations were made. Compared to
the diffuse prior, all informative priors achieved smaller
errors at the beginning of the experiments. There seem
to be only small differences among the sample sizes,
suggesting that even a very small sample (n¼ 5) can be
quite effective in improving estimation.

As in Experiment 1, a simulation was also conducted
to compare with the experimental data. To assess the
random effects of the selection of different observers
for priors, many priors were created from different
selections of observers for each sample size. To do that,
we drew 500 subsets of observers for each sample size
of 5, 12, and 30, with each subset randomly sampled
from the 100 observers without replacement. For each
subset, an informative prior was constructed. Hence,
the total number of priors for the simulation was 5003
3þ 2¼ 1,502, with the additional two being the diffuse
prior and the prior constructed from the total 100
observers. Ten simulated observers were assumed to
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have the CSFs of the real observers. With each of the
1,502 priors, each simulated observer went through the
same experimental procedure as in the human exper-
iment 50 times. The RMSE of estimation was
calculated across the replications, priors, and 10
observers for each sample-size condition.

The results of the simulation revealed a clearer effect
of sample size on the quality of estimation (Figure 7b).
All informative priors started with smaller errors than
the diffuse prior. The general pattern showed that the
larger the sample size, the smaller RMSE the estima-
tion achieved. The advantage of using informative
priors remained until the end of the session, even
though the differences between priors diminished. As
shown in Table 2, for the first 10 trials the average
reduction of RMSE by using a prior constructed from
five existing observers compared to using a diffuse prior
was 3.30 dB; it was 4.06 dB for the sample size of 12; it
was 4.56 dB for the sample size of 30; and it was 4.72
dB for the sample size of 100. The average reduction of
RMSE through 50 trials by using informative priors
was smaller (see Table 2), because the effect of priors
became less influential on later trials. As a measure of
precision, we calculated the standard deviation of the
RMSEs on each experimental trial across all subsets of
the priors. For the first 10 trials, the standard
deviations of RMSE for the diffuse prior was 1.80 dB,
decreasing to 1.24, 0.74, 0.46, and 0.35 dB, respectively,
for the priors constructed from the sample sizes of 5,
12, 30, and 100. After 50 trials, the difference of the
variability among priors was smaller because the
estimation became more stable when more observa-
tions were collected.

Several conclusions can be drawn from the results of
Experiment 2. First, the prior constructed from at least
five observers is sufficient to provide significant
improvement in CSF estimation of new observers. Even
though a small sample may not accurately represent the
population, our results showed that the prior con-
structed from a small sample was still relatively
divergent (the blue line in in Figure 6), and therefore
sampling error may not induce overly large bias to the
priors. On the other hand, a diffuse prior (the orange
line in Figure 6) tends to be excessively divergent from
true human vision, so that information in a small
sample is still better than none. Second, priors

Figure 7. RMSE plots of the estimation of AULCSF in Experiment 2 with the diffuse prior (n¼ 0) and the informative priors of different

sample sizes (n ¼ 5, 12, 30, and 100).

Sample size After trial 10 (dB) After trial 50 (dB)

RMSE

0 0 0

5 �3.30 �1.25
12 �4.06 �1.53
30 �4.56 �1.75
100 �4.72 �1.88

Precision

0 1.80 0.88

5 1.24 0.62

12 0.74 0.48

30 0.46 0.38

100 0.35 0.31

Table 2. The RMSE of AULCSF and the precision (variability;
standard deviation of RMSE from replicated measurements) of
estimation in HADO experiments with the diffuse prior and the
informative priors constructed from the observers of sample
sizes of 5, 12, 30, and 100.
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constructed from larger samples led to more accurate
and precise estimation, demonstrating the benefit of
measurement when more prior knowledge is available.
Third, the gain from increasing sample size stabilizes
when the sample size is large enough. In the current
study, a sample size of 30 appeared to perform
comparably to the estimation with a sample size of 100.

Discussion

In vision research, we are often faced with the
dilemma that increasing the quality of measurement
incurs the cost of additional data collection. The
current study focused on a newly proposed method
called hierarchical adaptive design optimization (HA-
DO; Kim et al., 2014), which improves both efficiency
and accuracy of measurement by incorporating previ-
ous data as informative priors in the test. In the present
study of CSF measurement, both experiments and
simulations showed that HADO yields more accurate
and precise estimates than the existing adaptive
methods given the same number of observations. The
improvement from HADO is manifested to the greatest
degrees in early trials of the experiment and is
equivalent to the amount of information that estima-
tion with a diffuse prior can acquire after 20 to 30
trials. The advantages of HADO manifest even when a
mixture prior constructed from heterogeneous popula-
tions is employed (Experiment 1) or when only a small
number of observers contribute to the construction of
priors (Experiment 2). To put these results in perspec-
tive, the present case study of CSF measurement
provides a validation of HADO by showing that the
theoretical diffuse priors, which have been adopted to
represent conservative prior beliefs and thus avoid
inferential bias, can be replaced by statistically justifi-
able informative priors to achieve the desired im-
provement in measurement without incorporating
unwanted bias.

A major goal of visual assessment in clinics is the
diagnosis of patients with visual deficits. As demon-
strated in our study, the distributions of the CSFs in
different luminance conditions are heterogeneous,
which is also the case for people with normal and
abnormal CSFs (Hou et al., 2010). One could therefore
use the estimated CSFs for diagnostic purposes. For
instance, logistic regression has been employed to
classify CSFs into two clinical populations (Hou et al.,
2010; Kim et al., 2014). Going forward, we could also
apply other classification tools such as support vector
machines (Cristianini & Shawe-Taylor, 2000) to opti-
mize such clinical diagnosis based on the parameter
estimates from HADO or any other adaptive testing
procedures.

It is important to note that as a general-purpose
adaptive experimental method, HADO can also be
applied in a straightforward way to other visual
psychophysical functions—such as threshold-versus-
external-noise contrast functions (Lesmes et al., 2006),
sensory memory decay (Baek, Lesmes, & Lu, 2014; Lu,
Neuse, Madigan, & Dosher, 2005; Sperling, 1960), and
color-matching ellipses (Wyszecki & Stiles, 1982)—
which all face the same problem of efficient measure-
ment. While we note that the standard Bayesian testing
procedure has already been adopted for estimating
these functions (Baek et al., 2014; Kujala & Lukka,
2006; Lesmes et al., 2010), the HADO procedure is
expected to provide additional gains in efficiency in
these testing scenarios.

There are several ways in which HADO can be
extended to further improve the measurement efficiency
and accuracy that are demonstrated in the present
study. To illustrate, any covariates relevant to the
functional vision characteristics to be measured can be
incorporated into the informative prior as part of a
more sophisticated hierarchical model. For example, if
CSF is assumed to vary linearly with a covariate cov,
the second line in Equation 3 can be formulated as hja,
b, r ; N(aþ bcov, r2), a normal distribution with its
mean modeled by a linear regression with cov as the
regressor. Plausibly, the cost of measuring these
covariates could be very low. In the current study,
individual variables such as age, gender, visual acuity,
and eyeglass prescriptions are likely to covary with the
CSF characteristics and are very easy to obtain. In that
way, even more efficiency could be gained when these
variables are included as covariates in a group-level
model to obtain a more informative specific prior for
new measurements.

As demonstrated in Experiment 1, a misspecified
prior may impose a large error on the statistical
inference of new observers. A mixture prior that
represents a larger population is a better choice when
the group membership of a new observer is unknown.
In the present study, the weights of the components in a
mixture prior (H, M, and L) were chosen to be
uniform. Improvement can be made by changing the
weights of the components according to the known or
cheaply measurable covariates.

The use of kernel density estimation (KDE) for prior
construction (described in the baseline experiment) may
be considered a crude form of empirical Bayesian
methods, which approximates a full Bayesian treatment
of hierarchical modeling (Casella, 1985). It was a
necessary choice due to the prohibitive computational
burden that would accrue with many instances of
Bayesian computations in real and simulated experi-
ments in the current study. Technically, the distribution
resulting from KDE is not precisely the same entity as
the prior distribution shown in Equation 5, which
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represents a full Bayesian treatment. Despite the
theoretical difference between the two methods, how-
ever, our empirical Bayes priors, as an approximation,
were shown to attain similar improvement in subse-
quent measurements to a Gaussian prior estimated
from a full Bayesian hierarchical model.

Another approach to building a mixture prior is to
fit all data sets across populations with Bayesian
nonparametric methods (Bush & MacEachern, 1996;
Rodriguez, Dunson, & Gelfand, 2008; Teh, Jordan,
Beal, & Blei, 2006) instead of estimating each
component distribution separately and combining them
with weights. The Bayesian nonparametric approach
represents a theoretically better grounded mechanism
for constructing a mixture distribution without the
assumption of any parametric form of the group-level
distribution. However, its implementation demands
more sophisticated statistical modeling and estimation
techniques.

The advantage of hierarchical Bayesian modeling, an
integral component of HADO, can also be further
explored. The current study only focused on an
application in which all observers take only a single
kind of vision test (i.e., CSF). There are many other
functional vision characteristics, e.g., visual acuity,
stereo acuity, Vernier acuity, binocular combination.
Together with CSF, they define a more complete
assessment of visual characteristics. Potential inferen-
tial benefit can be gained by using data from one test to
inform a different test. The solution is to build parallel
hierarchical models for different tests and link these
tests with shared parameters in the higher level
distribution. This way, better measurements and
inferences are made not only by having one person’s
data inform another person’s test but also by having
one kind of test data inform another kind. Ultimately,
when this HBM approach is combined with model-
based adaptive testing, a powerful system of compre-
hensive visual assessment could be established.

In conclusion, the present empirical validation study
of HADO demonstrates a statistically justified way to
incorporate information from previously collected data
into a new test rather than relying on a noninformative
prior. As an extension to the standard Bayesian
adaptive testing method, HADO can be implemented
with a moderate amount of modeling effort on top of
the current adaptive testing framework, with a notice-
able gain in efficiency. Through its combination of the
advantages of hierarchical Bayesian modeling and the
Bayesian adaptive testing method, HADO is a powerful
and flexible statistical tool that can be applied for more
realistic modeling and more robust and efficient
measurement.

Keywords: visual psychophysics, Bayesian adaptive
estimation, hierarchical Bayesian modeling, informative
priors, contrast sensitivity
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can also gain access to the source code after they sign a
software license agreement with The Ohio State
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