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Simple Summary: Fermented feed has been of wide concern in livestock and poultry production
because of its many advantages. In this study, the nutritional quality of the feed before and after
fermentation was assessed, and four supplemental levels of fermented feed were used to replace
unfermented feed to study the influence of fermented feed on the gut health of the laying hens
during the laying peak period. The results suggest that fermented feed can improve the intestinal
morphology and barrier functions of laying hens, possibly by altering the cecal microbiome.

Abstract: This study aimed to evaluate the effects of fermented corn–soybean meal mixed feed on
intestinal barrier function and cecal microbiota in laying hens. A total of 360 Jingfen No.6 laying
hens (22 wk-old) were assigned to 4 dietary treatments, which were offered basal diets (without
antibiotics) containing 0, 4, 6 and 8% of fermented mixed feed respectively. The results showed that
the pH value and anti-nutritional factor concentrations in fermented mixed feed were lower than
those in unfermented feed (p < 0.05). Moreover, fermentation in the feed significantly increased the
crude protein content (p < 0.05). Supplementation with fermented feed significantly reduced the
crypt depth and increased the villi height:crypt depth ratio of duodenum and jejunum (p < 0.05).
Meanwhile, fermented feed increased the secretory immunoglobulin A content and MUC2 mRNA
expression of jejunum (p < 0.05). These beneficial effects were exhibited at the addition level ≥6% and
microbial composition of caeca in the control, and so 6% fermented feed groups were analyzed. The
structure of the gut microbiota was remarkably altered by additions, characterized by increased abun-
dances of some health-promoting bacteria, such as Parasutterella, Butyricicoccus and Erysipelotrichaceae
(p < 0.05). In summary, fermented mixed feed modulated cecal flora, subsequently contributing to
improvements in intestinal morphology and barrier functions in laying hens.

Keywords: fermented feed; laying hen; cecal microbiota; gut health

1. Introduction

To achieve resistance-free breeding, a growing number of studies has been conducted
to evaluate non-antibiotic alternatives and their effects on the health and production
performance of animals [1]. Fermented feed has attracted wide attention in livestock and
poultry breeding because of their potential to improve the nutritional quality of feedstuffs
by increasing nutrient bioavailability and reducing feed costs [2,3]. Previous research has
demonstrated that fermentation may enhance the bioavailability of feed nutrients by the
following processes: (1) increasing crude protein content [4], (2) decreasing fiber content,
(3) enhancing the utilization of vitamins, (4) improving amino acid patterns and protein
solubility [5] and (5) degrading anti-nutritional factors with enzymes, such as phytase,
xylanase, cellulase, and glucanase enzymes [6]. Besides this, the probiotics and metabolites
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produced during the fermentation process could reduce the colonization of gut pathogenic
microorganisms via competitive exclusion and the secretion of antibacterial substances
(like bacteriocin), and thus exert beneficial effects on animals [7].

Gut integrity and function are essential factors in maintaining animal health and
production performance. Intestinal morphology is an important criterion for evaluating
intestinal health of animals. Villus height and crypt depth were related to nutrient digestion
and poultry performance [8]. The composition and diversity of intestinal microorganisms
also have a profound impact on the gut health of poultry. Colonization of harmful bac-
teria will disrupt the intestinal microbial balance, and then affect the host’s physiology,
immunity, and nutritional metabolism [9]. Probiotic fermentation has been regarded as
an effective method to enhance gut health [10] and it has been widely used in pig rations
for several years [11]. Recently, there have been more studies on the utilization of fer-
mented products in poultry industry, particularly focusing on gut health and production
parameters of birds. It was reported that the use of fermented feed had a positive impact
on the production performance and egg quality of 16 wk Babcock pullets [12]. Semjon
et al. [13] observed that fermented wheat bran supplementation could improve broiler
performance and meat quality. Fermented feed has been demonstrated to be beneficial to
the maintenance of gut microbial ecosystems and intestinal morphology, possibly due to
low pH, elevated numbers of probiotics, high short-chain fatty acid concentrations and
reduced pathogens [14,15]. In addition, fermented feed could modulate gut microbiota
by providing energy and nutrients to probiotics in the microbial community [16]. There-
fore, fermented feed was speculated to exert beneficial effects on gut health by altering
intestinal microbial composition and subsequently contributed to improvements in laying
hen performance. However, the effects of fermented feed on intestinal community and gut
health of laying hens remain unclear.

In China, fermented feed mainly refers to the fermented single feed material, such
as soybean meal [17], rapeseed meal [15] and cottonseed meal [18]. However, there were
few studies evaluating the effectiveness of corn–soybean meal mixed feed in laying hens.
Based on the results of previous studies, we hypothesized that a certain concentration of
fermented corn–soybean mixed feed could improve the gut health of laying hens. Therefore,
the present study was carried out to assess the physicochemical characteristics of mixed
feed following fermentation and then to investigate the effects of graded levels of fermented
feed on gut morphology and mechanical and immunological barriers, as well as the cecal
microbiota of laying hens.

2. Materials and Methods
2.1. Preparation of Fermented Mixed Feed

The probiotic purchased from Baide Biotechnology Co., Ltd. (Shandong, China), was
a lyophilized powder containing Bacillus 2 × 109 CFU/g, Lactobacillus 3 × 109 CFU/g,
Saccharomyces cerevisiae 5 × 108 CFU/g. The probiotic powder was dissolved in 1 L sterile
water at 37 ◦C, and stirred evenly to make a probiotic solution. The basal substrate
(12 kg) included 60% corn, 20% soybean meal and 20% wheat bran, which was mixed and
inoculated in probiotics with probiotic solution. The fermentation process according to
the method of Shi et al. [19], with appropriate adjustments made to adapt to the actual
situation of the experimental farm. Sterile water was added to the mixed substrate to
reach a moisture content of 30%, and aerobic fermentation was carried out in a fermenter
vessel at 37 ◦C for 24 h. After the first stage, a mixture of aerobic fermented mixture
was transferred to a plastic drum equipped with a gas-pressure opening valve for 37 ◦C
anaerobic fermentation, then fermented under anaerobic conditions at 37 ◦C for 5 days (the
second stage of fermentation). The same proportion of 37 ◦C sterile water was added to
the unfermented mixture and sealed for 5 days as control. Fermented feed was produced
every week, and the feed intake of laying hens was measured once a week to adjust the
amount of fermented feed.
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2.2. Chemical Analysis of Fermented Mixed Feed

Fermented and unfermented feed were collected and dried at 65 ◦C for 48 h. Feed
samples (n = 3) were tested to determine their crude fiber (CF; AOAC #978.10), crude
protein (CP; AOAC #984.13) and ether extract (EE; AOAC #2003.05) contents according to
AOAC International guidelines [20]. Phytic acid levels were determined as in a previous
study [21]. Trypsin inhibitor and β-glucan in fermented and unfermented mixture were
tested using a commercial kit (Jianglai Bio Company, Shanghai, China). To determine pH,
5 g of fermented and unfermented mixed feed were dissolved in 50 mL distilled water.
After centrifuging at 4000× g for 5 min, the supernatant pH was tested using a probe
style-pH meter (H170 Hach pH meter, Hach, Loveland, CO, USA). Protein extraction
and SDS-polyacrylamide gel electrophoresis (PAGE) of the feed samples were performed
according to the method described in reference [22].

2.3. Birds, Housing and Dietary Treatments

The trial was carried out in the non-antibiotic breeding demonstration plant of Chun-
manyuan Farm (Tongchuan, Shaanxi, China). A total of 360 Jingfen No.6 layers aged
22 weeks were randomly assigned to four numerically equal groups, with 6 replicates
per treatment and 15 birds per replicate. The layers had a similar body weight and good
health. The feeding period lasted 10 weeks, commencing when the layers were 25 weeks
of age and ending when they were 35 weeks of age, with an addition of 3 weeks for feed
adaptation. During the experiment, three laying hens were kept in each cage and had ad
libitum access to feed and water. Proper indoor temperature (15~22 ◦C) and humidity
(30%~50%) were maintained.

According to the NRC (1994) layer feeding standard, the corn–soybean meal basal
diet (antibiotic-free) was designed based on the actual situation of layer feeding in the
experimental chicken farm. Unfermented corn, soybean meal, and wheat bran were
replaced in the basic diet with increasing levels of fermented mixed feed (0, 4%, 6% and 8%;
F0, F4, F6 and F8, respectively). The ingredients were mixed in a mixer for 15 min. Feed
composition and nutrient content of the experimental diets are shown in Table 1.

Table 1. Composition and nutrient levels of experimental diets (air-dry basis, %).

Items
Group

0 4% 6% 8%

Ingredients
Corn 56.00 56.00 56.00 56.00

Soybean meal 20.60 20.60 20.60 20.60
Wheat bran 2.40 2.40 2.40 2.40

Fermented feed 0.00 4.00 6.00 8.00
Unfermented feed 8.00 4.00 2.00 0.00

Stone powder 7.50 7.50 7.50 7.50
Soybean oil 0.50 0.50 0.50 0.50

Premix 1 5.00 5.00 5.00 5.00
Nutrient levels 2

ME(MJ/kg) 12.09 12.09 12.09 12.09
Crude protein 15.99 16.00 16.01 16.01

Calcium 3.60 3.60 3.60 3.60
Total phosphorus 0.42 0.42 0.42 0.42

Lys 0.94 0.94 0.94 0.94
Met 0.44 0.44 0.44 0.44
Thr 0.70 0.70 0.70 0.70

1 The premix composed of: Vitamin A 10,000 IU, Vitamin D 31, 800 IU, Vitamin E 10 IU, Vitamin K 10 mg, Vitamin
B 125 ug, Vitamin B1 l mg, Vitamin B24.5 mg, calcium pantothenate 50 mg, niacin 24.5 mg, pyridoxine 5 mg,
biotin 1 mg, folic acid 1 mg, choline 500 mg, iodine 0.4 mg, ferrum 80 mg, copper 8 mg, selenium 0.3 mg. 2 Crude
protein of the 0 group was measured, and the rest was calculated.

2.4. Sample Collection

At 35 wk, 24 chickens (one with an average body weight from each replicate pen) were
selected to collect samples. All birds were killed by cervical dislocation and small intestinal
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(duodenum, jejunum and ileum) mucosa was scraped off at the forepart of individual small
intestinal segments with a glass microscope slide on ice and frozen and stored immediately
at −80 ◦C liquid nitrogen tanks for further analysis. About 3 cm of the mid-portion of
the small intestines were excised carefully and washed in saline solution before storing in
formalin (10%). The cecal contents were gathered using sterile spatulas into sterile plastic
tubes, immediately refrigerated (maximum 2 h) and stored at −80 ◦C refrigeration until
the DNA extraction.

2.5. Morphological Investigations

Three-centimeter lengths from the medial portions of duodenum, jejunum and ileum
from chickens were fixed with 10% formalin for 24 h. Tissues were later embedded in
paraffin wax blocks, mounted onto glass slides, and then stained with Haematoxylin &
Eosin (H&E). The fixed segments were sectioned and observed under the light microscope,
and the villus height VD, crypt depth CD and the ratio of VD and CD evaluated.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA) and Real-Time Polymerase Chain
Reaction (PCR)

Secretory immunoglobulin A (sIgA) content of mucous membrane samples of the
duodenum, jejunum, and ileum were measured by ELISA kits (Cloud-Clone Crop Bio-
logical Technology Co., Ltd., Wuhan, China) according to the kit instructions. Total RNA
was extracted from the snap-frozen jejunal tissue samples with a RNeasy mini kit (Qiagen,
Germantown, MD, USA), following the instructions. Complementary DNA (cDNA) was
synthesized from 1 µg of total RNA using MMLV reverse transcriptase (TaKaRa, Dalian,
China). Then, the transcriptional changes were identified by quantitative PCR using Premix
Ex TaqTM with SYBR Green (TaKaRa, Dalian, China) and the Bio-Rad CFX 96™ Real-Time
Detection System (Bio-Rad Laboratories, Richmond, CA, USA). The thermocycle protocol
lasted for 30 s at 94 ◦C, followed by 40 cycles of 5 s denaturation at 94 ◦C, 34 s anneal-
ing/extension at 60 ◦C, and then a final melting curve analysis to monitor the purity of the
PCR product. The 2−∆∆Ct method was used to estimate mRNA abundance (Livak et al.,
2002). Relative gene expression levels were normalized using β-actin as an internal control.
The primers were synthesized by the Xi’an Qingke Biological Company, and the sequences
are shown in Table 2.

Table 2. Gene name, primer sequences.

Gene Primers Sequence (5′–3′)

β-actin F: ACACCCACACCCCTGTGATGAA
R: TGCTGCTGACACCTTCACCATTC

ZO-1
F: TATAGAAGATCGTGCCGCCTCC

R: GAGGTCTGCCATCGTAGCTC

Occludin
F: ACAGCCCTCAATACCAGGATGTG

R: ACCATGCGCTTGATGTGGAA

MUC2
F: TTCATGATGCCTGCTCTTGTG

R: CCTGAGCCTTGGTACATTCTTGT
F = forward primer; R = reverse primer. .

2.7. 16S rRNA Gene Sequencing

Total genomic DNA was extracted from samples using the CTAB/SDS method and
then stored at −80 ◦C until sequencing analysis. The V3 + V4 fragments of the 16S rRNA
gene were amplified using the Phusion® High-Fidelity PCR Master Mix (New England
Biolabs, Cambridge, MA, USA) and primers F341 and R806. The 30 µL reaction system
was used in PCR reactions with 15 µL Mix, 0.2 M of forward and reverse primers, and
about 10 ng template DNA. Thermal cycling consisted of initial denaturation at 98 ◦C
for 1 min, followed by 30 cycles of denaturation at 98 ◦C for 10 s, annealing at 50 ◦C for
30 s, elongation at 72 ◦C for 30 s and a final elongation at 72 ◦C for 5 min. The amplicons
were examined using 2% agarose gel electrophoresis, and then the GeneJET Gel Extraction
Kit was used (Thermo Fisher Scientific, Waltham, MA, USA) to purify the excised target
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fragments. Finally, 16S rRNA gene sequencing was performed using the Illumina NovaSeq
6000 PE250 (Illumina, Santa Clara, CA, USA) with the MiSeq Reagent Kit from Novogene
Bioinformatics Technology Co., Ltd., Beijing, China.

2.8. Statistical Analysis

Alpha diversity (Shannon and Simpson indices) and abundance (Chao1 and ACE
indices) were analyzed withQiime v.1.7.1. (http://qiime.org/index.html). Data regard-
ing alpha diversity indices, intestinal morphology, total sIgA concentration and relative
mRNA expression levels among all treatments in this study were analyzed by one-way
ANOVA with SPSS 22.0. Differences among groups means were determined by Duncan’s
multiple comparison test. The significance of differentiations in microbial structure among
groups was assessed by ANOSIM using R package “vegan”. t-test was used to compare
the chemical composition of feed and cecal microflora at the phylum and genus level.
The correlations between the cecal microbial composition and gut health were assessed
by Spearman’s correlation analysis using GraphPad Prism version 8.00. p < 0.05 was
considered statistically significant and 0.05 < p ≤ 0.10 a trend.

3. Results
3.1. Chemical Composition of Fermented Mixed Feed

The chemical composition of unfermented mixed feed and fermented mixed feed are
summarized in Table 3. The pH value and phytic acid, trypsin inhibitor and β-glucan
concentrations in fermented mixed feed were lower than in unfermented mixed feed.
Moreover, the fermentation of feed significantly increased the crude protein content. Fur-
thermore, there were no significant differences of the total ether extract and crude fiber
among the two different kinds of feed. As shown in Figure 1, unfermented mixed feed
contained greater amounts of large- (>60 kDa) and medium-size (20–60 kDa) peptide than
fermented mixed feed.

Table 3. Chemical composition of unfermented mixture and fermented mixture.

Unfermented
Mixed Feed

Fermented
Mixed Feed SEM p-Value

pH 6.23 a 4.49 b 0.40 <0.01
Crude protein, % 15.90 b 16.18 a 0.07 0.016

Crude fiber, % 3.33 3.20 2.80 0.680
Ether extract, % 0.57 1.09 0.15 0.060
Phytic acid, % 0.65 a 0.37 b 0.07 0.025

Trypsin inhibitor, µg/g 359.29 a 216.39 b 32.04 <0.01
β-glucan, µg/g 1588.89 a 1204.32 b 86.35 <0.01

Composition of fermented mixture: corn 60%, soybean meal 20%, wheat bran 20%;. a,b There are statistically
significant differences in the mean values per line for different superscripts (p < 0.05).
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3.2. Intestinal Morphology

The measurement of intestinal morphology is a common way to judge the integrity
and function of the intestinal barrier. The results on villi height (VH), crypt depth (CD) and
the villi height:crypt depth ratio (VH/CD) are displayed in Table 4. In the duodenum, three
levels of fermented mixed feed significantly decreased the CD and increased the VH/CD
ratio. In the jejunum, dietary supplementation with fermented mixed feed significantly
increased the VH and VH/CD ratio compared to the control group. However, the 4%
fermented mixed feed group significantly increased CD compared with all other treatments.
In the ileum, no significant effect of dietary fermented mixture supplementation was
observed on the VH, CD and VH/CD ratio.

Table 4. Effect of fermented mixed feed on intestinal morphology in laying hens.

Fermented Mixed Feed
SEM p-Value

0% 4% 6% 8%

Duodenum
VH 1, µm 1767.04 1731.68 1774.26 1753.69 21.83 0.889
CD 2, µm 294.56 a 256.96 b 254.26 b 221.31 c 4.24 <0.01

VH/CD 3, µm/µm 6.18 bc 6.86 b 7.16 b 8.02 a 0.13 <0.01

Jejunum
VH, µm 922.89 c 1315.79 a 1079.89 b 1121.96 b 19.41 <0.01
CD, µm 177.47 b 222.91 a 180.14 b 169.85 b 3.94 <0.01

VH/CD, µm/µm 5.28 b 6.23 a 6.28 a 6.88 a 0.12 <0.01

Ileum
VH, µm 882.98 936.10 968.38 961.42 15.84 0.208
CD, µm 136.40 145.14 145.96 138.04 1.97 0.201

VH/CD, µm/µm 6.57 6.64 6.63 7.13 0.11 0.241
1 VH: villi height. 2 CD: crypt depth. 3 VH/CD: villi height: crypt depth ratio. a–c There are statistically significant
differences in the mean values per line for different superscripts (p < 0.05).

3.3. Total sIgA Concentration and Physical Barrier mRNA Abundance in the Intestinal Mucosa

Secretory IgA (sIgA) acts as the first immune defense for intestinal epithelium and
maintains the homeostasis of the gut. Therefore, we assessed the intestinal immune
function by measuring the intestinal sIgA contents. As shown in Figure 2a, no statistical
differences in sIgA content were observed in the duodenum and ileum. However, the
jejunal sIgA content was significantly higher in the 6% and 8% fermented mixed feed group
compared to the other treatments. In the presence of intact epithelial cell layers, intercellular
paracellular pathways must be closed. This function is effectuated through physical
barriers—especially by tight junctions [23]. In addition, mucin 2 (MUC2) is the most
abundant mucin, which creates the first defense line against invading microorganisms [24].
Thus, we focused on the mRNA expression levels of zonula occludens 1 (ZO-1), occludin
(OCLN) and MUC2 in jejunal mucosa to further explore the physical barriers of laying
hens. Figure 2b showed that fermented mixed feed at three levels all significantly increased
MUC2 gene expression compared with the control group, whereas 4% fermented mixed
feed significantly decreased the mRNA expression of ZO-1.
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3.4. Cecal Microbial Diversity and Community

As the microbial community plays an important role in the intestinal health and
barrier function of laying hens, the composition of the cecal microbial community was
analyzed using the 16S rRNA gene amplicon sequence. After filtering, an average of
60,788 ± 6481 reads were obtained for each sample. In the 16S amplicon data analysis,
the Shannon and Simpson indices were used to assess the community diversity, and the
ACE and Chao1 indices reflected the community richness. Therefore, alpha diversity
was measured using these four indices, and there were no significant differences in cecal
feces microbiome taxon abundance and diversity (p > 0.05; Table 5) among the groups,
indicating that fermented mixed feed did not change the alpha diversity of the microbiota
of the chicken cecum. Beta diversity was illustrated via principal component analysis
(PCA) in Figure 3, showing fermented mixed feed treatment significantly affected cecal
microbiota composition. The composition of the microbiota was similar between the 6%
and 8% fermented mixed feed group. ANOSIM results, shown in Table 6, indicated that
the variations of the inter-group microbiota composition of the 6% and 8% group were
considered significant (p < 0.05) to the control group and were larger than those of the
inner-group (R > 0.05). Hence, to illuminate how fermented mixed feed served to improve
the gut health of laying hens, the 6% group was selected as the representative group
among the 3 treated groups to identify the roles of fermented mixed feed in regulating the
cecal microbiota.

Since pairwise comparisons (0 and 6%) and the data were in accordance with normal
distribution, t-test analysis was used to evaluate the differential bacteria (relative abun-
dance > 0.1%) on the phylum and genus (Figure 4). Compared with the basal diet, at the
phylum level, supplementation with 6% fermented mixed feed significantly improved the
Tenericutes abundance but reduced the abundance of Actinobacteria; at the genus levels,
the abundance of Parasutterella, Butyricicoccus, unidentified_Erysipelotrichaceae and Mail-
hella were found to be significantly increased and Alloprevotella, Gallibacterium, Romboutsia
(p < 0.05) and Enterococcus were significantly decreased in the 6% fermentation group when
compared with the 0% control group (p < 0.05).

Table 5. Effect of fermented mixed feed on α-diversity of cecal microflora in layers.

Fermented Mixed Feed
SEM p-Value

0% 4% 6% 8%

Chao1 693.32 682.26 712.44 731.14 10.61 0.398
Ace 702.49 694.70 723.97 740.77 10.52 0.419

Shannon 6.42 5.90 6.41 6.68 0.12 0.137
Simpson 0.97 0.94 0.96 0.97 0.01 0.287
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Table 6. Comparison of similarities in microbiota composition between the three treatments by
ANOSIM analysis.

Treatment R-Value p-Value

F0–F4 0.07407 0.4
F0–F8 0.6 0.016
F4–F8 0.4769 0.025
F0–F6 0.3457 0.045
F4–F6 0.2099 0.214
F6–F8 −0.02667 0.563
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3.5. Correlations between Microbiota and Gut Health

In order to explore the specific bacteria related to gut health, the Spearman correlation
coefficient (Figure 5) was used to analyze the correlation between the abundance of the
cecal microbiota and the intestinal barrier. This analysis can identify species that are signif-
icantly correlated with certain environmental factors. The heatmap revealed significant
positive correlations between intestinal morphology (higher villi height VH, shorter crypt
depth CD and lager villi height:crypt depth VH/CD indicate superior development) and
unidentified_Lachnospiraceae, unidentified_Spirochaetaceae, Barnesiella Helicobacter, Parasut-
terella and Synergistes. In contrast, the intestinal morphology was negatively correlated
with Bacteroides, Megamonas, Desulfovibrio, Alistipes, Tyzzerella, Fournierella Succinatimonas,
Gallibacterium and Elusimicrobium significantly. In addition, the abundance of genus Fae-
calibacterium and Desulfovibrio were negatively correlated with the jejunal sIgA contents,
and the abundance of genus Sutterella and Lachnoclostridium were negatively correlated
with the duodenal sIgA content. Moreover, Fournierella was positively correlated with ileal
sIgA contents.
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4. Discussion

The corn–soybean meal diet is the most widely applied in poultry production in
China. However, ordinary corn–soybean meal diets contain some anti-nutritional factors,
for instance, phytic acid, soybean antigenic protein and soy oligosaccharides, which may
compromise the nutrient bioavailability and exhibit negative effects on animal health [25].
Solid-state fermentation was proposed to improve the nutritional properties of coarse plant
materials and improve their application in animal feeds [26].

Among a variety of parameters, pH is an important reference to estimate the quality
of fermented feed, because lower pH may favor the digestion of intestinal nutrients and
inhibit the growth of pathogenic microorganisms in feed [27]. Our results showed that
the pH of mixed feed following fermentation decreased from 6.23 to 4.49, indicating that
the fermented feed has reached a low pH requirement. In addition, compared to the
control, the fermented feed contained higher concentrations of crude protein, which was
similar to previous research [28]. The increase in CP concentration might be related to the
synthesis of microbial protein or the loss of dry matter during fermentation. Furthermore,
the decreased contents of phytic acid, trypsin inhibitor and β-glucan in mixed feed were
observed after fermentation, which have been considered as the major anti-nutritional
factors in the current feed industry negatively affecting nutrient digestion and absorption
of laying hens. A decreased amount of phytic acid in fermented feed may be due to the
production of phytase by microorganisms [29]. The reduction of β-glucan could be a
possible reason for the soluble fraction of the polymer [30]. Probiotics in fermented feed
could decompose proteins, including trypsin inhibitors, through the secretion of proteases,
which may have a beneficial impact on intestinal health [31]. In addition, SDS-PAGE
analysis showed that large-sized protein contents in fermented mixed feed were reduced,
consistent with the study of Shi et al. [19]. This indicated that large-sized proteins can
be degraded into small-sized proteins or peptides during fermentation, presumptively
assisting intestinal protein digestion in laying hens [32].

This study found that fermented mixed feed could partially improve the intestinal
morphology of laying hens. This was consistent with the past study of Missotten et al. [33],
who noticed higher villi height, lower crypt depth and increased villus crypt ratios in
broilers fed fermented moist feed. Similar results were also shown by Li et al. [34] in the
duodenum and jejunum of broilers fed 10% fermented soybean meal. Gut morphology
parameters, including villus height VH, crypt depth CD, and villus crypt VH/CD ratios,
are regarded as gold standards for assessing intestinal health status [8]. The increase of
villi height suggested a greater area addressed to the absorption of available nutrients [35],
which was conducive to enhanced intestinal function. On the contrary, shortening of villi
and deepening of crypts could cause malabsorption of nutrients and consequently compro-
mise the production performance of laying hens [36]. The positive impact of fermented feed
on gut morphology is likely attributed to its regulatory roles in gut microbiota balance and
microbial metabolites, which can promote enterocyte differentiation and proliferation [37].
It might be also related to the reduction of anti-nutrient factors in the fermented feed, as
supported by the negative correlation between trypsin inhibitor in soybean meal and villi
height [38]. Surprisingly, fermented mixed feed addition at 4% has opposite effects on
jejunum morphology (i.e., the increased villi height and crypt depth) and the exact reasons
for this phenomenon need further exploration.

The gut barrier can prevent the intestinal tract from the colonization of pathogens,
and sIgA is the critical component of the immune barrier, limiting epithelial contact with
pathogens and other antigens [39]. In this study, we observed a significant improvement in
jejunum sIgA concentration with the addition of 6% and 8% fermented feed, indicating
positive effects of fermented feed on the barrier function of gut mucosa to reduce the
adverse effects on gut health. This was in combination with the improvements in jejunum
morphology, suggesting that the fermented feed played a role in the intestinal mucosa
health in the jejunum of laying hens. Jejunum, the longest part of the small intestine with the
longest retention time of nutrients [40], is considered the best segment for exerting favorable
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effects of fermented feed on gut health. Therefore, the jejunum was chosen for further study.
OCLN and ZO are unique proteins that form the extracellular barrier of the gut [41]. This
barrier is famous for tight junctions, which make up a wall against invading pathogens
in the intestine [42]. MUC2, the main mucin of the intestinal mucosa, is involved in
providing nutrients and attachment sites for host bacteria, and it can contribute to selecting
species-specific gut microbiota [43]. Little information is available on physical barrier
gene expression in birds fed with fermented feed. This study indicated that fermented
feed can apparently increase the gene expression of MUC2, suggesting that fermented
feed may prevent intestinal epithelial cells from pathogen invasion by modulating MUC2
expression in the jejunum. Fermentation products, including probiotics [44] and organic
acids [45], have been proven to significantly improve the expression of poultry gut barrier-
related genes, but the mechanism of their action is complex and needs to be studied in
depth. However, this study showed no significant effects on the expression of OCLN. In
particular, the addition of 4% fermented mixed feed significantly downregulated ZO-1
gene expression, in accordance with the observations that 4% fermented feed significantly
increased crypt depth. It is necessary to research an in vivo pathogenic attack model as a
further study to confirm the influences of fermented feed on gut barrier functions.

To further explore the underlying mechanism of its modulation on gut health, we
have used Illumina MiSeq sequencing to analyze the cecal microbiota. The present study
revealed no significant effect on the α-diversity of the cecal microbiota, whereas the β-
diversity analysis showed significant clustering between the 6% and 8% groups and
controls, indicating that the cecal microorganism community profiles in the 6% and 8%
fermented groups could be altered following fermented feed addition. This was in line
with the results on the intestinal morphology and the barrier-related gene expression,
indicating that the 6% and 8% fermented feed could significantly improve intestinal health
with no remarkable difference between the two groups. It was possible that fermented
mixed feed at levels above a certain threshold (which was 6% in this study) could result in
changes of the gut microflora and subsequently improve intestinal morphology and barrier
functions. Therefore, control and 6% groups were selected for further analysis. At the
genus level, Parasutterella, Butyricicoccus, unidentified_Erysipelotrichaceae and Mailhella were
identified as the main microbes with increased abundances in response to the addition
of fermented feed. The increased proportion of Parasutterella has been reported to be
beneficial to intestinal mucosal homeostasis [46]. Similarly, our results also confirmed a
positive correlation between Parasutterella abundance and villus height VH and VH/CD
ratio. Butyricicoccus, as butyrate producers, are assumed to improve growth performance,
inhibit the proliferation of pathogens and relieve intestinal inflammation in broilers [47].
Erysipelotrichaceae may be associated with the degradation of feed ingredients and the
production of short-chain fatty acids [48]. On the other hand, the decreased abundances of
Alloprevotella, Gallibacterium, Romboutsia and Enterococcus were observed in 6% fermented
feed group compared to the control. Gallibacterium has been recognized as a main cause
of peritonitis and salpingitis in laying hens [49], which leads to decreased productive
performance. Alloprevotella is known as an opportunistic pathogen; however, previous
studies have noted that the increased abundance of Alloprevotella genera was linked to
better intestinal health [50]. Besides this, the genus Romboutsia is a valuable intestinal
biomarker maintaining host health, and Enterococcus with natural antimicrobial probiotic
properties could prevent diarrhea in animal production [51]. However, their roles in gut
health and functions of birds need to be explored. Gallibacterium is directly associated with
poultry intestinal disease, which was also confirmed in this study by a negative relationship
between abundance and villus height [52]. Therefore, the ameliorated gut morphology
and enhanced epithelial barrier functions might be mainly attributed to the increased
abundances of some health-promoting bacteria in the fermented feed supplementation
group. Further investigations based on metabolomics should be done to detect changes in
metabolites caused by fermentation and their effects on gut health in a future study.
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5. Conclusions

In conclusion, fermented mixed feed could improve the morphology and barrier
functions of the intestine, and alter the cecal microflora. This study demonstrated that
fermented mixed feed could be used as a novel feed ingredient for laying hens, and that
their favorable effects could be exhibited at addition levels of≥6%. The specific mechanism
of fermented feed-changing of cecal microflora of laying hens needs further study.
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