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Abstract

Motivation: Transcriptomics is a common approach to identify changes in gene expression induced by a disease
state. Standard transcriptomic analyses consider differentially expressed genes (DEGs) as indicative of disease
states so only a few genes would be treated as signals when the effect size is small, such as in brain tissue. For tissue
with small effect sizes, if the DEGs do not belong to a pathway known to be involved in the disease, there would be
little left in the transcriptome for researchers to follow up with.

Results: We developed RNA Solutions: Synthesizing Information to Support Transcriptomics (RNASSIST), a new ap-
proach to identify hidden signals in transcriptomic data by linking differential expression and co-expression net-
works using machine learning. We applied our approach to RNA-seq data of post-mortem brains that compared the
Alcohol Use Disorder (AUD) group with the control group. Many of the candidate genes are not differentially
expressed so would likely be ignored by standard transcriptomic analysis pipelines. Through multiple validation
strategies, we concluded that these RNASSIST-identified genes likely play a significant role in AUD.

Availability and implementation: The RNASSIST algorithm is available at https://github.com/netrias/rnassist and
both the software and the data used in RNASSIST are available at https://figshare.com/articles/software/RNAssist_
Software_and_Data/16617250.

Contact: ychen@netrias.com or meslami@netrias.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptomic analysis is a powerful tool to quantify changes in
gene expression induced by treatments or disease states. The results
of a transcriptome can be used to develop molecular signatures or
biomarkers of diseases (Han and Jiang, 2014; Hong et al., 2020). A
standard transcriptomic analysis workflow consists of quantification
of transcripts and computing differential expression between test
and control conditions (Conesa et al., 2016). A cutoff for fold
change and statistical significance values are then used to find differ-
entially expressed genes (DEGs). By design, the threshold for DEGs
is a moving target. jlog2(fold change)j > 2 and adjusted P-values <
0.05 as the threshold is commonly used but there is no strict rule
against a different cutoff (Eswaran et al., 2012; Guo et al., 2013;
Kaczkowski et al., 2016). To then interpret the results, functional
profiling, such as pathway analysis, is performed on DEGs (Conesa
et al., 2016). For well-annotated genes, a DEG is considered relevant

if previous literature supports its role in a function related to the dis-
ease under investigation.

The challenge with the standard transcriptomic analysis is that
not all the transcriptomic data have similar effect sizes. For example,
the largest size of the differential expression for substance abuse and
psychiatric disorders in brain could be as small as jlog2(fold change)j
< 1 while for diseases like cancers, jlog2(fold change)j could be as
large as 10 or more (Eswaran et al., 2012; Guo et al., 2013; Huggett
and Stallings, 2020; Kaczkowski et al., 2016; Ramaker et al., 2017).
For transcriptomes with small effect sizes, many potentially import-
ant transcripts would be erroneously considered as noise and filtered
out by standard analyses since they have no clear link to the disease.
This process ignores the genes that regulate or are regulated by the
disease which are not differentially expressed. Furthermore, even if
a gene is differentially expressed, if it does not belong to a biological
pathway known to play a role in the disease, it is likely ignored.
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Many biological pathways are annotated with general terms such as
kinase signaling or DNA replication and have not been linked to
specific disease states. Unless researchers have prior knowledge of
the involvement of these pathways, it is not trivial to elucidate their
roles in diseases. New techniques and functional validation are thus
required to discover the underlying structure in the transcriptomic
data that can link to disease phenotype.

In this article, we describe a new approach to analyze transcrip-
tomics by developing RNA Solutions: Synthesizing Information to
Support Transcriptomics (RNASSIST), an analytical workflow to
use the evident parts of the signal (DEGs) to extract overlooked sig-
natures that are potentially linked to disease phenotypes. RNASSIST
is based on the idea that genes do not work in isolation and we can
take advantage of the regulatory knowledge provided by a co-
expression network to connect each gene with DEGs to understand
a potential role of these genes that are not differentially expressed in
the disease of interest (Langfelder and Horvath, 2008; Williams,
2015). The input data for RNASSIST include both differential ex-
pression analysis (DEA) (Fig. 1A) and co-expression network
(Fig. 1B). Using graph embedding (Fig. 1C) and machine learning
methods (Fig. 1D), RNASSIST links the structure in the network to
differential expression. The extracted features are then used to iden-
tify signals relevant to a disease from the network (Fig. 1E).

For the algorithm development, we chose the transcriptomic
data from Kapoor et al. as it is the largest publicly available tran-
scriptomics dataset for Alcohol Use Disorder (AUD), a psychiatric
disorder with small effect sizes (Kapoor et al., 2019). This study uti-
lized RNA-sequencing (RNA-seq) from post-mortem samples of
dorsolateral prefrontal cortex (PFC), a region known to be involved
in AUD. Importantly, metadata from individuals with recorded al-
cohol traits including Alcohol Use Disorder Identification Test
(AUDIT), drinking years and alcohol drinking per day are available
for linking the signals to alcohol drinking behavior. The abundant
information in this dataset allowed us to focus on extracting signals
based on alcohol traits. Furthermore, given that the jlog2(fold
change)j for this dataset was under 0.4, a commonly used cutoff of
jlog2(fold change)j > 2, no genes would pass the threshold for differ-
ential expression. Thus, this dataset was used to demonstrate the
power of RNASSIST in finding additional gene candidates for AUD.

RNASSIST identified 829 candidate genes called the critical
genes that likely play important roles in AUD that are not necessar-
ily differentially expressed. Of the 829 genes, only 30 were DEGs
with adjusted P-value < 0.05. This indicates that 799 AUD-related
genes would not have been found by existing transcriptomic ana-
lysis. In addition, 34 of the critical genes were also the genes that
regulate DEG based on database search. Correlations between the
critical genes, DEGs and alcohol traits suggest that the identified

critical genes are correlated to alcohol traits to the same extent as
the top 50 DEGs sorted by jlog2(fold change)j. Finally, a comparison
of the critical genes identified in this study with previously identified

alcohol-related genes from mice showed that the critical genes and
the neighbor genes overlap with known alcohol genes in mice,

whereas human DEGs had no overlap. We believe that this finding
reflects the inherent reproducibility limitations of common tran-
scriptomics analysis approaches. As Łabaj and Kreil (2016) shows

that the percentage of genes identified as differentially expressed in
the same direction could be as low as 20% when different sequenc-

ing sites and algorithms for mapping the reads were used. These
observed results indicate that the candidate genes overlooked by the
standard transcriptomic analyses could be captured by RNASSIST.

2 Materials and methods

2.1 Differential expression analysis (DEA) and WGCNA

network analysis
We obtained the differential expression analysis and the Weighted
correlation network analysis (WGCNA) network data directly from

Kapoor who published the results and the detailed analyses can be
found in the study by Kapoor et al. (2019). Briefly, the DEA was
done by filtering out the low expression genes and adjusted for the

chosen covariates including DSM4 alcohol classification þ sex þ
age þ PMI þ RIN þ batch.

The network was constructed with the WGCNA package in R
(Langfelder and Horvath, 2008) and the network modules were
determined by hierarchical clustering with the minimum module

size¼100, cutting height¼0.99, deepSplit¼TRUE. The modules
were merged if they the eigengenes had correlation >75%.

2.2 Network embedding
The Topological Overlap Matrix (TOM) network output from the
WGCNA from Kapoor et al. was embedded with GGVec with

n_components ¼ 64, order ¼ 1, max_epoch ¼ 100, learning_rate ¼
0.1, negative_ratio ¼ 0.15 and total_samples ¼ 75 (Ranger, 2021).

2.3 Percentage of significant genes per module/cluster

for each alcohol trait group
AUD and the matched control samples were manually grouped for
each alcohol trait to measure the percentage of genes that were sig-
nificantly different across the alcohol trait groups. The samples were

grouped into 4 AUDIT classes: below 25, between 25 and 50, be-
tween 50 and 100 and above 100. AUDIT is a standard tool to
screen for alcohol abuse during the past year (Babor et al., 2001).

The alcohol intake per day was divided into 4 classes: under 50, be-
tween 50 and 100, between 100 and 300 and above 300. The drink-

ing years were also grouped into 4 classes: under 20, between 20
and 30, between 30 and 40 and above 40. All of the above classes
were determined so each class had approximately equal number of

samples.
For each module/cluster, we evaluated if the gene expression was

different among the alcohol trait group. For example, we deter-
mined if the genes in each module were statistically different among

the four AUDIT classes by one-way ANOVA. The percentage of the
genes that were significant was then calculated. The same procedure
was repeated for alcohol intake per day and drinking years.

2.4 Module/cluster and alcohol trait correlation
The method is the same as the moduleEigengenes() and cor() in the

WGCNA library that quantifies module-trait associations
(Langfelder and Horvath, 2008). We implemented the method in
Python. In brief, eigengene expression for each module/cluster was

obtained using the first principal component of all the genes in that
module/cluster. The correlation of the eigengene with each alcohol

trait was then calculated by Pearson correlation.

Fig. 1. Motivation for the development of RNASSIST. State-of-the-art approaches

can extract transcriptional signals from noise through techniques such as differential

expression and co-expression network analyses (A and B). The challenge with gene

expression data is that the effect size is small in tissues like the brain. This leads to

most of the transcripts to be in the noise (black dots in A) with no clear link to the

disease phenotype. Techniques such as co-expression network analysis (B) provide

structure to transcriptomic data that can link non-DEGs to DEGs. Here, we present

a technique that uses network embedding (C) and machine learning (D) to integrate

network structure with DEGs to identify critical genes that are relevant to disease

phenotypes where the majority of them are not differentially expressed (E)
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2.5 Critical genes/neighbor genes/DEGs and alcohol

trait correlation
Similar to the ‘Module/cluster and alcohol trait correlation’
described above, the correlation for the genes were simply the corre-
lations of critical gene expression, neighbor gene expression or DEG
expression with each alcohol trait calculated by Pearson correlation.

2.6 Machine learning to predict each gene as an impact

gene or a non-impact gene
The genes were labeled as impact if the jlog2(fold change)j is in the
top 8% of all the differential expressions in the data and the rest
would be non-impact. 8% in the Kapoor et al.’s data was jlog2(fold
change)j of 0.1. Once the genes were labeled, non-impact genes
were downsampled to be equal in number as the impact genes to ob-
tain a balanced dataset. We used max_iter ¼ 1000 for Logistic re-
gression (LR) with other settings as default. Random forest classifier
(RF) and XGBoost classifier (XGB) were used with default settings.
LR and RF were implemented through the scikit-learn library and
XGB was implemented through XGBoost Python package. The bal-
anced data were split into 80% for training and 20% for testing.
The feature importance was the model coefficient for LR and the
feature_importances_ attribute for RF and XGB. Each model was
repeated three times.

2.7 Critical gene identification algorithm
Input: G ¼ list of impact genes, E ¼ network embedding matrix
(gene x feature), Dk ¼ a list of important dimensions determined by
the model k, for k�f1,. . .Mg, r ¼ distance cutoff
Output: CG_count ¼ a list of critical genes with counts of nearby
impact genes

For k in f1, . . . Mg
Ek ¼ E [:, Dk] (embedding with only the important

dimensions)
Sk ¼ Euclidean(ei, ej) (pairwise Euclidean similarity on all the

genes (rows) of Ek)
SI ¼ Sk [:, G] (keep only the distance between genes

and impact genes)
CG[:, k] ¼ count (SI < r) (count number of impact genes with-

in the distance cutoff)
CG_count ¼ sort(

PM
i¼1 CG[:, i]) in descending order (sum and

sort counts for all models)
Output CG_count

2.8 Neighbor gene identification algorithm
Input: G ¼ impact genes, T ¼ TOM network adjacency matrix
(gene x gene), E ¼ edge weight cutoff
Output: Neighbor_count ¼ a list of neighbor genes with counts of
nearby impact genes

TI ¼ T [:, G] (keep only the TOM between genes and im-
pact genes)

N ¼ count (TI > E) (count number of impact genes within
the cutoff)

Neighbor_count ¼ sort (N) in descending order (sort counts)
Output Neighbor_count

3 Results

3.1 Workflow of an RNASSIST to identify critical genes
The RNASSIST workflow is shown in Figure 2. The preprocessing
steps for RNASSIST include DEA (step 1) and co-expression net-
work construction by the WGCNA package (step 2) (Langfelder and
Horvath, 2008) from transcriptomic data. RNASSIST (shaded blue)
then takes outputs from steps 1 and 2 as inputs and uses a graph
embedding to convert the co-expression network to a 64-dimension-
al vector representation of the network (step 3). RNASSIST com-
pares the network and embedding to ensure that the embedding
preserves information from the network (step 4), trains three ma-
chine learning (ML) models: logistic regression (LR), random forest

classifier (RF) and XGBoost classifier (XGB) to determine the im-
portance of each dimension in the embedding (step 5) (Breiman,
2001; Chen and Guestrin, 2016; McCullagh, 1984), identifies critic-
al genes using the important dimensions found in the previous step
(step 6) and, validates the roles of critical genes in AUD (step 7).

3.2 Comparison of embedding clusters to network

modules validate that the embedding preserves

biological meaning from the network
ML requires its input to be vectorized so before applying an ML
model on the network, we converted the network to a 64-dimen-
sional vector representation called an embedding. As a network
graph and its embedding are structurally different, we compare the
network modules and the embedding clusters as a proxy for compar-
ing the network and the embedding to ensure that the embedding
preserves information from the network. A network module is a
group of genes clustered together based on connectivity while an
embedding cluster is a group of genes clustered together based on
distance in the embedding. If the embedding preserves a significant
amount of information from the network, the embedding clusters
should resemble the network modules.

We first performed network module detection by hierarchical
clustering (Supplementary Fig. S1A) and Louvain algorithm
(Supplementary Fig. S1B). The hierarchical clustering is the module
detection method in the WGCNA package, also a standard ap-
proach for module detection for a co-expression network.
Hierarchical clustering is sensitive to the height where the dendro-
gram is cut and has a time complexity of O(n2) (Langfelder and
Horvath, 2012). In contrast, Louvain modularity for the module de-
tection has a computational cost of O(nlog n) and the module as-
signment did not change as dramatically when different parameters
were used (Blondel et al., 2008). We chose to use Louvain for the
module detection method for this dataset. Next, we performed
embedding on the whole network using an ultrafast embedding al-
gorithm (Ranger, 2021). Once computed, the genes in the 64-dimen-
sional embedding are clustered by k-means clustering. We used the
number of modules detected by the Louvain algorithm as the k for
k-means which will allow for direct comparison between the mod-
ules and clusters. In the embedding, the genes are a lot more evenly
distributed among the clusters than in the modules (Supplementary
Fig. S1B and C). This suggests that the embedding connects the
genes more effectively than in the network.

Next, we used the biological context such as correlation with al-
cohol traits to determine whether the embedding preserved relevant

Fig. 2. Workflow of RNASSIST to extract critical genes. RNASSIST workflow takes

differential expression data (Step 1) and its co-expression network (Step 2) as inputs.

RNASSIST (shaded blue) uses network embedding to convert the network to a ma-

trix representation of the network (Step 3). Embedding quality is checked by com-

paring the network and embedding to ensure that the embedding preserves

information from the network (Step 4). RNASSIST then trains three ML models

(LR, RF and XGB) to determine the importance of each dimension in the embedding

(Step 5), identifies critical genes using the important dimensions based on the dis-

tance to impact genes (DEGs with a higher threshold) (Step 6) and validates the

roles of critical genes in AUD (Step 7)

RNASSIST 399

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab673#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab673#supplementary-data


information from the network. We compared the percentage of dif-
ferentially expressed genes (DEGs) in each network module versus
the percentage of DEGs in each embedding cluster. DEGs were
defined by having adjusted P-values < 0.05 by DESeq2 analysis
(Love et al., 2014). The majority of DEGs aggregated into one net-
work module (Fig. 3A), whereas the DEGs aggregated into three
embedding clusters (Fig. 3B). This analysis informed us that the
embedding retained information from the network by keeping the
majority of the DEGs in a small subset of the clusters.

Another way to evaluate the embedding quality is to determine
the correlation between the alcohol traits and the eigengenes in each
network module/embedding cluster (Langfelder and Horvath,
2008). Eigengenes are the first principal component of the gene ex-
pression in each network module, a standard feature used in the
WGCNA package to measure module and trait correlation. The
Pearson correlation is calculated on the eigengenes and the values of
each alcohol trait (Fig. 3C and D). To quantify the similarity of the
cluster and trait correlation, the correlation coefficients from all the
network modules and the embedding clusters are compared and the
statistical differences are calculated with t-tests. None of the alcohol
traits show statistical significance (P<0.05) between the network
modules and the embedding clusters (Fig. 3E). Based on these meas-
ures, we determined that the embedding provides us a biologically
relevant representation of the network that can be used to find crit-
ical genes.

We also determined if the embedding maintains similar patterns
for their correlation with alcohol-related traits as in the network
data. This is done by grouping the samples based on their traits
including the AUDIT score category, the alcohol intake category
and drinking years (see Section 2 for details). We then calculated the
percentage of genes in a module that were significantly different
across the four AUDIT groups (Supplementary Fig. S2A). We
repeated the same method for the embedding clusters
(Supplementary Fig. S2B). To quantify if the percentage of signifi-
cant genes are statistically different between the network modules
and the embedding clusters, we performed t-tests between all the
modules/clusters for each trait. None of the traits shows a significant
difference between the modules and clusters (Supplementary Fig.
S2C). The result confirms that the embedding could represent the
network for ML.

3.3 ML To extract important dimensions and identify

critical genes
We sought to use ML to predict if a gene is an impact gene to iden-
tify the features that contributed to distinguishing between DEGs
and non-DEGs. An impact gene is defined as a DEG with jlog2(fold

change)j > 0.1. We set this threshold for two reasons: first, most of
the genes had small jlog2(fold change)j. Differentiation between
these genes as DEGs and non-DEGs would be challenging without a
threshold. Second, this threshold is in the 90th percentile of the fold
changes that make up the DEGs and is more likely to extract fea-
tures that are more relevant to AUD than a lower threshold.

The goal of using ML is to integrate the DEA and network ana-
lysis to extract the most important embedding dimensions that dis-
criminate between the impact genes and non-impact genes. We
trained three ML models to predict each gene as impact or non-
impact. RF and XGB both achieved 78% accuracy while LR
achieved 55% in accuracy (Fig. 4A). These models were chosen be-
cause they are explainable and readily provide the contribution of
each feature (dimension) to the model’s performance. The import-
ance of each of the 64 dimensions in the embedding was provided as
the model outputs (Fig. 4B). We then ranked the dimensions by the
importance from highest to lowest and took the top dimensions that
summed up to at least 50% of the total importance. These dimen-
sions are then defined as ‘top dimensions’ and used in the down-
stream analyses. To determine if the threshold of 50% of total
importance is truly crucial for the learning, we used only the top
dimensions to train and test the same ML models. We then com-
pared the accuracy of using only the top dimensions in each of the
three ML models to using the 64 dimensions. The best accuracies
ranged between 93% and 97% of the original accuracy scores so
were sufficient to capture the majority of the features the models
used (Fig. 4C). Once the important dimensions were found, critical
genes were identified based on their proximity to the impact genes
in the important dimensions by Euclidean distances (see Section 2
for details). For visualization purposes, only the two most important

Fig. 3. Comparison of network modules and embedding clusters found that the net-

work embedding preserves the biological contexts from the network. (A) Percentage

of DEGs in each network module. (B) Percentage of DEGs in each embedding clus-

ter. The embedding preserves information about the network and so the majority of

the DEGs are kept in a few subsets of clusters. (C) Percentage of genes in each mod-

ule that are significantly different by alcohol trait categories. The significance was

determined by one-way ANOVA. (D) Percentage of genes in each cluster that are

significantly different by alcohol trait categories. (E) Kernel density estimate (KDE)

plots to show the percentage of significant genes for each alcohol trait between the

network modules and embedding clusters from C and D. P-values are determined

by two-sided t-test statistics

Fig. 4. Use of ML to predict impact or non-impact genes in the embedding as a way

to extract the important features from the dimensions. (A) Accuracy of three ML

models: LR, RF and XGB with RF and XGB performed significantly better than LR.

(B) Heatmaps show the importance of the features (dimensions) in the 64 dimen-

sions of the embedding for each model. Importance is measured by the dimension’s

contribution to the predictive performance of the model. (C) To validate that the

top dimensions are truly critical for the model, the top dimensions that make up

>50% of the predictive capability of the model were used to train and test the same

ML models (compare with A). (D) As a means of ‘objective-driven dimensionality

reduction,’ the top dimensions are used to identify critical genes, which are genes

that are close to impact genes from the perspective of the ML model. Impact genes

are the top 8% differentially expressed genes. For this dataset, 8% is jlog2 (fold

change)j > 0.1. A 2D scatter plot using the two most important dimensions identi-

fied by ML is shown as an example. The red star is a critical gene because it is close

to multiple impact genes in the most important dimensions. Only two dimensions

are shown but the top dimensions with importance sum up to 50% are used for crit-

ical gene identification. (E) The critical genes are ranked by the number of nearby

impact genes. A critical gene is considered to play an important role if it is near mul-

tiple impact genes. Top 10 critical genes are shown
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dimensions are shown (Fig. 4D). A critical gene (red) was identified
because it was close to multiple impact genes (blue) in these dimen-
sions. The top ten critical genes are shown in Figure 4E.

3.4 Validation of the AUD role of the critical genes
Gene co-expression can be used to identify regulatory roles (van
Dam et al., 2018). Thus, to validate that the identified critical genes
indeed play a role in AUD, we compared them with a separate list of
genes called the neighbor genes which will be treated as the positive
control. The neighbor genes are directly connected to the DEGs in
the co-expression network (Fig. 5A) and do not need ML to be iden-
tified. We hypothesized that these DEG neighbors which share
strong co-expression patterns with the DEGs would likely play a
role in AUD or regulate AUD genes. We set a weight cutoff to get
the number of neighbor genes that would be equal to the number of
critical genes. This provided a list of 829 genes for each gene list. 80
of the critical genes were also neighbor genes, so each gene list had
749 unique genes (Fig. 5B). Ingenuity Pathway Analysis (IPA) was
used to find regulators of DEGs. We then determined how many of
the critical genes/neighbor genes are these DEG regulators. Thirty-
four of the neighbor genes were DEG regulators and 33 of the critic-
al genes were DEG regulators (Fig. 5C). Between the 34 and 33 reg-
ulators, only 4 overlapped. This means that 29 critical genes that
were also DEG regulators would not be found by a different ap-
proach. To evaluate if getting 33 or more DEG regulators from a list
of 829 genes was due to a random chance, we performed a hyper-
geometric test and found that the probability of having 33 or more
DEG regulators was < 0.03, meaning that it was unlikely the
observed number of overlap was due to random chance.

3.5 Validation of link between AUD and critical genes

with two complementary datasets
We also validated the link between AUD and the critical genes using
two complementary datasets that are independent of the one used to
discover the critical genes. We first used the Genotype-Tissue
Expression (GTEx) v8 frontal cortex mRNA resource which repre-
sents another post-mortem brain dataset with 209 subjects (Aguet
et al., 2020). The purpose of using a separate but related dataset is
to show that if we can find co-expression patterns of the critical
genes and AUD DEGs, it would suggest that the critical genes are
likely to regulate or be regulated by DEGs. If these critical genes
regulate AUD DEGs, then they are likely to play a role in AUD. The

subjects for the frontal cortex samples in GTEx had no specific
causes of death and were distributed across age groups and both
sexes (Supplementary Fig. S3). We found that the average absolute
correlation coefficients between the neighbor genes and the DEGs
were 0.36 (Fig. 6A). For the critical genes, it was 0.29 (Fig. 6B). As
expected, the neighbors of the DEGs discovered in the co-expression
network were more correlated than the critical genes. However,
when we overlaid the absolute correlation coefficients from these
two comparisons, there was no statistical significance between them
(Fig. 6C). Despite the neighbor genes being the apparent regulatory
candidates since they are direct neighbors of the DEGs in our data-
set, the critical genes identified by the RNASSIST algorithms were
as correlated with the DEGs in the complementary dataset and
therefore, gave us more confidence that the critical genes play a role
in AUD.

Second, we compared the identified critical genes with genes
known to be important for alcohol-related behaviors in mice
(Mayfield et al., 2016). Out of 111 mouse genes that share human
homologues in the alcohol gene list, 7 are the critical genes, 8 are the
neighbor genes and none are the DEGs (Table 1). The results further
support that the critical genes identified in our study are likely to be
involved in AUD.

3.6 Validation of AUD role of the critical genes based on

correlation with alcohol traits
We also measured the correlation between the expression levels of the
critical genes and the alcohol traits to determine the involvement of
the critical genes in AUD. The DEGs and the neighbor genes are the
apparent signals so they serve as the positive control groups.
Interestingly, we found the correlation patterns are similar among the
critical gene and the DEG groups (Supplementary Fig. S4A and C).
We quantified the difference in their absolute correlation coefficients
with one-way ANOVA and found that the DEGs and the critical
genes have no statistical difference in terms of their correlation to al-
cohol traits (Supplementary Fig. S4D). Only the neighbor genes
showed statistically higher correlation coefficients than the other two
gene lists for AUDIT (adjusted P-values < 0.001). These results em-
phasize that although 96.4% of the critical genes are non-DEGs, they
show a similar level of correlation with the alcohol traits as DEGs.

3.7 Validation of robustness of the RNASSIST algorithm

on a second dataset
To test the robustness of the RNASSIST algorithm, we applied the
same workflow to an independent publicly available dataset which
were microarrays that compared the PFC of binge-like drinking

Fig. 5. The link between AUD and the critical genes is validated by IPA to be poten-

tial upstream regulators of the DEGs in this dataset. (A) A neighbor gene (orange) is

identified if it is close to several impact genes (blue). ‘Close’ is defined by having the

edge weight that connects the neighbor gene and the DEGs above a specific cutoff

(see Section 2 for detail). The cutoff was set at a value so that the number of neigh-

bor genes would be equal to the number of critical genes. (B) 80 of the critical genes

were also neighbor genes. (C) We used IPA to find the genes that regulate DEGs and

call them the DEG regulators. Then, we determined how many of the neighbor

genes and the critical genes were also these DEG regulators. 34 neighbor genes (or-

ange) and 33 critical genes (green) were also DEG regulators. Of the 34 and 33

genes, only 4 were in common. 29 of the critical genes which were DEG regulators

would not have been found in this transcriptomic dataset by standard analysis

Fig. 6. The critical genes share similar correlation with the DEGs as the neighbor

genes in an independent and complementary data source (GTEx v8 brain frontal

cortex mRNA). (A) The correlation heatmap to show the relationship between the

top 50 neighbor genes (x-axis) and the top 50 DEGs (y-axis). The average absolute

correlation coefficient is 0.36. (B) The expression correlation between the top 50

critical genes (x-axis) and the top 50 DEGs (y-axis). The average absolute correl-

ation coefficient is 0.29. (C) Overlaying all the absolute correlation coefficients for

the critical genes (CG) and the neighbors show that the critical genes are similarly

correlated to the AUD DEGs as the neighbors. For calculating the statistics, the ab-

solute correlation coefficients were used instead of the raw coefficient values because

the goal was to compare the size of the correlation not the direction of the correl-

ation. Two-sided t-test determined that the correlation coefficients were statistically

insignificant with a P-value ¼ 0.275
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mice and the controls (Ferguson et al., 2019). Alcohol traits for this
dataset were not available because the mice were ethanol-naive so
the workflow was applied by removing all the steps with alcohol
traits involved. We found that the embedding preserved significant
information from the network as the percentage of DEGs aggregated
into a similar number of clusters of the embedding as in the modules
of the network (Supplementary Fig. S5A and B). ML achieved 86-
88% of accuracy for the three models (Supplementary Fig. S5C). By
comparing to the previous literature, critical genes had the most
overlap with the known alcohol-related genes than DEGs and the
neighbor genes in this dataset (Supplementary Table S1). This con-
firmed that the RNASSIST algorithm not only works well with
RNA-seq data, but also with microarray data across species.

4 Discussion

RNASSIST uses ML models to find features to connect genes to
DEGs in a transcriptomic dataset and identifies a list of critical genes
that likely play important roles in disease under investigation. Here,
RNASSIST found 829 AUD critical genes with only 30 of them
being differentially expressed. Through various validation
approaches, we determined that it was likely that these critical genes
regulate and co-express with DEGs. Many of these critical genes
would likely be missed by standard transcriptomic analyses. Note
that, the identified critical genes can be either DEGs or non-DEGs as
long as they are the closest neighbors of impact genes in the import-
ant dimensions. Researchers may combine the top DEGs and the top
critical genes for downstream analysis to ensure a maximal number
of signals are considered.

For the network embedding approach, we used an ultrafast
embedding method to vectorize the entire co-expression network
that had 19911 nodes (genes) with almost 4 million edges. Since it is
typical for an organism to have tens of thousands of expressed
genes, the ultrafast embedding is considered more appropriate than
techniques such as DeepWalk or Node2Vec (Grover and Leskovec,
2016; Perozzi et al., 2014). We originally used Node2Vec as our

network embedding method as it has parameters to balance between
breadth-first search and depth-first search for its random walks.
However, using Node2Vec to embed a network with millions of
edges was too computationally intensive (�40 minutes for a network
with 10000 edges using 32 GB RAM Intel Core i7-1065G7 CPU 4
cores). We tried sub-selecting the whole network and embedded in-
dividual subnetworks with Node2Vec. This led to issues on how to
best sub-select the network to ensure the information lost during the
network sub-selection process was negligible. As a result, we decided
to use the ultra-fast embedding method called GGVec (Ranger,
2021). How GGVec could achieve rapid embedding is beyond the
scope of this article but we found that embedding the whole net-
work did preserve more information than when the network was
sub-selected and then embedded.

In a WGCNA network, the local information would be the co-
expression patterns of the genes and their neighbors. One way to de-
scribe the global structure of the network is to look at the network
modules, which are treated as gene sets enriched with functions or
pathways (Langfelder and Horvath, 2016). When the network is
converted to the embedding, both the local and the global structures
are taken into account (Ma et al., 2018; Nelson et al., 2019). As a
result, we believe the features in the embedding encode information
to preserve the co-expression patterns and the biological functions
of the network. However, what the important dimensions extracted
by the ML models that were used to find critical genes means bio-
logically is unclear at this point. This would be an interesting ques-
tion to explore in the future.

RNASSIST used an approach different from a standard tran-
scriptomic analysis workflow to identify additional AUD candi-
dates. However, RNASSIST does not replace the existing
transcriptomic analysis. The algorithm depends on normalized ex-
pression and DEA as inputs. Identification of both the neighbor
genes and the critical genes rely on the knowledge of DEGs in the
dataset discovered by the standard transcriptomic analysis. The
main goal of RNASSIST is to extract as many signals as possible
from a high-throughput dataset rather than replacing the existing

Table 1. Validation of the role of DEGs, critical genes and neighbor genes by comparing to the previously known alcohol-related genes in

mice (Mayfield et al., 2016)

j Overlap genes No. of overlap Hypergeometric P-value (The probability

of observing # or more overlap

due to random random)

Known mouse alcohol-related

genes versus DEGs

None 0 1

Known mouse alcohol-related

genes versus critical genes

CHRNA4, CHRNA6, CRHR2,

FYN, GRM4, TLR2, TRPV1

7 0.092

Known mouse alcohol-related

genes versus neighbors

ADIPOR2, AGT, CHRNA6,

GABRA1, MAOA, NTSR2,

SLC1A3, TGFA

8 0.042

Note: The hypergeometric test was used to determine the probability of observing the number or more overlap. A small probability (P-value) means it is unlike-

ly the observation is due to random chance.

Table 2. RNASSIST removes places where prior knowledge and subjective decisions are required to identify candidate genes

j Candidates Need prior Knowledge for

module functional annotation

Manual cutoff for

network modules

Commonly used approach: DEGs

þ network modules with

enriched DEGs

Restricted mostly to DEGs Yes Yes

RNASSIST Not restricted to DEGs No No

Note: ‘Candidates’: top candidates found by the algorithm. ‘Need prior knowledge for module functional annotation’: this means that a common approach

requires existing knowledge to functionally annotate the modules before determining if a module is relevant. If a module fails to meet that criterion, even if it

could play a role in the disease, it is often ignored. ‘Manual cutoff for network modules’: the height where the dendrogram is cut is a manual decision and this de-

cision could affect if a gene belongs to a functionally relevant module or not.
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methods. We summarized the main differences between the standard
transcriptomic workflows and RNASSIST in Table 2. In short,
RNASSIST removes places where prior knowledge and subjective
decisions are required and allows an unbiased method to discover
unknown signals.

The DEA for the two transcriptomic datasets used in this study
were analyzed with DESeq2 and limma, respectively (Love et al.,
2014; Ritchie et al., 2015). Comparison of DEA tools has shown
that different tools will likely yield different sets of DEGs with over-
lap between them. The extent of the overlap depends on which tools
are being compared (Costa-Silva et al., 2017; Seyednasrollah et al.,
2015; Zhang et al., 2014). Since RNASSIST relies on impact genes,
DEGs with a higher jlog2(fold change)j cutoff, to find other signals,
it is likely that these impact genes would be shared across DEA
tools. We recommend that if a DEA method is known to have better
performance on the tissue or organism researchers work with, using
that tool would likely be beneficial to identify the critical genes as
RNASSIST depends on the DEGs to link other signals.

In summary, this work not only provides direct impact to the al-
cohol research community by finding AUD-related genes that would
not otherwise be found, but also demonstrates the power of a new
approach to identify hidden signals in a large transcriptomic dataset
that is applicable to all transcriptomic work.

Acknowledgements

The authors thank Manav Kapoor for providing the normalized expression

data, network data and WGCNA module assignment of the network.

Author Contributions

M.E. and R.D.M. conceived the RNASSIST method. Y.-P.C. and M.E. led the

analysis. Y.-P.C. and N.A.S. performed the analyses. R.D.M., N.A.S. and

L.B.F. provided technical guidance on the research. G.Z. containerized the

analytical modules and constructed the analysis pipeline. Y.-P.C. wrote the

article and all authors reviewed the article.

Data availability

All the codes for the analysis are available at https://github.com/netrias/rnas

sist. The transcriptomic data including the human DEA and network analysis

from Kapoor et al. (2019) and the mouse DEA and network analysis from

Ferguson et al. (2019) were provided to us by the authors. The processed

data are available at https://figshare.com/articles/software/RNAssist_

Software_and_Data/16617250. The raw human data are available on

Sequence Read Archive under the accession ID PRJNA530758 and the raw

mouse data are available on Gene Expression Omnibus under the accession

ID GSE93311.

Funding

This work was supported by the National Institutes of Health

[75N94020C00002 to N.A.S.].

Conflict of Interest: none declared.

References

Aguet,F. et al. (2020) The GTEx Consortium atlas of genetic regulatory effects

across human tissues. Science, 369, 1318–1330.

Babor,T. et al. (2001) The Alcohol Use Disorders Identification Test:

Guidelines for Use in Primary Care. World Health Organization, Geneva.

Blondel,V.D. et al. (2008) Fast unfolding of communities in large networks.

J. Stat. Mech. Theory Exp., 2008, P10008.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Chen,T. and Guestrin,C. (2016) XGBoost: a scalable tree boosting system. In:

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD ’16). Association for Computing

Machinery, New York, NY, USA, pp. 785–794. DOI:https://doi.

org/10.1145/2939672.2939785.

Conesa,A. et al. (2016) A survey of best practices for RNA-seq data analysis.

Genome Biol., 17, 13.

Costa-Silva,J. et al. (2017) RNA-Seq differential expression analysis: an

extended review and a software tool. PLoS One, 12, e0190152.

Eswaran,J. et al. (2012) Transcriptomic landscape of breast cancers through

mRNA sequencing. Sci. Rep., 2, 264.

Ferguson,L.B. et al. (2019) Dissecting brain networks underlying alcohol binge

drinking using a systems genomics approach. Mol. Neurobiol., 56,

2791–2810.

Grover,A. and Leskovec,J. (2016) Node2vec: Scalable Feature Learning for

Networks. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD ’16).

Association for Computing Machinery, New York, NY, USA, pp. 855–864.

doi:https://doi.org/10.1145/2939672.2939754.

Guo,Y. et al. (2013) Large scale comparison of gene expression levels by

microarrays and RNAseq using TCGA data. PLoS One, 8, e71462.

Han,H. and Jiang,X. (2014) Disease biomarker query from RNA-Seq data.

Cancer Inf., 13, 81–94.

Hong,M. et al. (2020) RNA sequencing: new technologies and applications in

cancer research. J. Hematol. Oncol., 13, 166.

Huggett,S.B. and Stallings,M.C. (2020) Genetic architecture and molecular

neuropathology of human cocaine addiction. J. Neurosci., 40, 5300.

Kaczkowski,B. et al.; FANTOM5 Consortium. (2016) Transcriptome analysis

of recurrently deregulated genes across multiple cancers identifies new

pan-cancer biomarkers. Cancer Res., 76, 216–226.

Kapoor,M. et al. (2019) Analysis of whole genome-transcriptomic organiza-

tion in brain to identify genes associated with alcoholism. Transl.

Psychiatry, 9, 89.

Łabaj,P.P. and Kreil,D.P. (2016) Sensitivity, specificity, and reproducibility of

RNA-Seq differential expression calls. Biol. Direct, 11, 66.

Langfelder,P. and Horvath,S. (2016) Tutorials for the WGCNA Package.

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/

WGCNA/Tutorials/ (15 June 2021, date last accessed).

Langfelder,P. and Horvath,S. (2008) WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics, 9, 559.

Langfelder,P. and Horvath,S. (2012) Fast R functions for robust correlations

and hierarchical clustering. Journal of Statistical Software, 46, 1–17.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-seq data with DESeq2. Genome Biol., 15, 550.

Ma,Y. et al. (2018) Local and global information preserved network embed-

ding. In: Proceedings of the 2018 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining, ASONAM 2018.

Mayfield,J. et al. (2016) Genes and alcohol consumption: studies with mutant

mice. Int. Rev. Neurobiol., 126, 293–355.

McCullagh,P. (1984) Generalized linear models. Eur. J. Operat. Res., 16,

285–292.

Nelson,W. et al. (2019) To embed or not: network embedding as a paradigm

in computational biology. Front. Genet., 10, 381.

Perozzi,B. et al. (2014) DeepWalk: online learning of social representations.

In: Proceedings of the 20th ACM SIGKDD international conference on

knowledge discovery and data mining (KDD ’14). Association for

Computing Machinery, New York, NY, USA, pp. 701–710. doi:https://doi.

org/10.1145/2623330.2623732

Ramaker,R.C. et al. (2017) Post-mortem molecular profiling of three psychi-

atric disorders. Genome Med., 9, 72.

Ranger,M. (2021) Nodevectors. https://Github.Com/VHRanger/Nodevectors

(15 June 2021, date last accessed).

Ritchie,M.E. et al. (2015) Limma powers differential expression analyses for

RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.

Seyednasrollah,F. et al. (2015) Comparison of software packages for detecting

differential expression in RNA-seq studies. Brief. Bioinf., 16, 59–70.

van Dam,S. et al. (2018) Gene co-expression analysis for functional classifica-

tion and gene-disease predictions. Brief. Bioinf., 19, 575–592.

Williams,G. (2015) Database of gene co-regulation (dGCR): a web tool for

analysing patterns of gene co-regulation across publicly available expression

data. J. Genomics, 3, 29–35.

Zhang,Z.H. et al. (2014) A comparative study of techniques for differential

expression analysis on RNA-seq data. PLoS One, 9, e103207.

RNASSIST 403

https://github.com/netrias/rnassist
https://github.com/netrias/rnassist
https://figshare.com/articles/software/RNAssist_Software_and_Data/16617250
https://figshare.com/articles/software/RNAssist_Software_and_Data/16617250
https://doi.org/10.1145/2939672.2939754&hx200C;. 
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://Github.Com/VHRanger/Nodevectors

	tblfn1
	tblfn2

