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Most antimicrobial peptides (AMPs) and anticancer peptides
(ACPs) fold into membrane disruptive cationic amphiphilic α-
helices, many of which are however also unpredictably
hemolytic and toxic. Here we exploited the ability of recurrent
neural networks (RNN) to distinguish active from inactive and
non-hemolytic from hemolytic AMPs and ACPs to discover new
non-hemolytic ACPs. Our discovery pipeline involved: 1)
sequence generation using either a generative RNN or a genetic

algorithm, 2) RNN classification for activity and hemolysis, 3)
selection for sequence novelty, helicity and amphiphilicity, and
4) synthesis and testing. Experimental evaluation of thirty-three
peptides resulted in eleven active ACPs, four of which were
non-hemolytic, with properties resembling those of the natural
ACP lasioglossin III. These experiments show the first example
of direct machine learning guided discovery of non-hemolytic
ACPs.

Introduction

Machine learning (ML) is ideally suited to assist drug design
whenever a large corpus of structure-activity data is available,
but the underlying structure-activity relationships are difficult
to rationalize.[1–3] This is the case for membrane disruptive
peptides documented to act against various microorganisms,
cancer cells and red blood cells.[4,5] Indeed, while most of these
peptides form cationic amphiphilic α-helices,[6,7] this design
feature is not sufficient to predict activity, let alone the
selectivity among different cells and microorganisms. Interest-
ingly however, ML classifiers trained with sequence activity
data, which is available in various open-access databases,[8–11]

can distinguish active from inactive and hemolytic from non-
hemolytic peptides with good performance.[12–15] Such ML
classifiers have been implemented to discover new membrane
disruptive peptides by selecting actives either from random
sequences, or from sequences produced by generative ML
models trained with activity data. Most of these ML guided
peptide designs focused on antimicrobial peptides (AMPs),
which is the most frequently reported activity type.[16–20]

Similar approaches have also been applied to the much less
abundant data on anticancer peptides (ACPs).[21–31] However,
only two of these provided experimental data in addition to
computational validation of the method on pre-established
datasets.[32,33] The ACPs identified with the two ML approaches
were also hemolytic, and their selectivity had to be improved
by iterative mutation and testing. Although both bacterial and

cancer cells differ from non-cancerous cells such as red blood
cells by a higher density of negatively charged lipids on the
extracellular side of their membranes,[34–36] the difficulty to
obtain non-hemolytic membrane disruptive ACPs by ML
probably reflects the challenge to distinguish between closely
related eukaryotic cells rather than between bacteria and
eukaryotes, as well as the sparsity of data on ACPs to train ML
models.

Herein we report two ML approaches to identify membrane
disruptive ACPs supported by data from the database of
antimicrobial activity and structure of peptides (DBAASP), which
lists sequences and activity information on 18,405 bioactive
peptides.[8,9] In our first approach, we generated a set of
tentative ACPs by sampling a generative recurrent neural
network (RNN). The RNN was trained with active sequences
from DBAASP, which lists peptides with various activities
comprising antimicrobial and anticancer peptides, and fine-
tuned towards ACP generation by transfer learning[37] with a
small set of ACPs reported to be active on HeLa cells, an activity
which we could easily test experimentally. In a second
approach, we used our recently reported PDGA (peptide design
genetic algorithm),[38] which evolves random sequences towards
any target molecule by rounds of mutation and selection
according to a measured similarity, to generate analogs of the
known ACP lasioglossin III (LL-III), also with a reported activity
on HeLa cells.[39] In both approaches we filtered the generated
peptides using RNN classifiers for activity and hemolysis, which
were trained with DBAASP data and previously shown to have
good performance compared to other methods.[15] We finally
selected sequences based on novelty as well as on their
predicted α-helicity and amphiphilicity to favor the expected
membrane disruptive mechanism of action. As detailed below,
synthesis and testing of the selected peptides allowed us to
identify non-hemolytic membrane disruptive α-helical ACPs
from both approaches.
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Results and Discussion

ML guided design. In our first approach, we selected 53
sequences in DBAASP which were reported to be active against
HeLa cells, a common type of cancer cells which can be easily
assayed. We used these 53 ACPs in a transfer learning step to
fine-tune our previously reported general RNN generative prior
model,[15] which had been trained with 4,774 peptides reported
with any type of bioactivity in the database. We then sampled
50,000 sequences from this fine-tuned generative model. To
refine this set, we applied our previously reported RNN activity
classifier trained with 6,641 active peptides from DBAASP.[15]

This activity classifier labeled approximately 20% of the
sampled sequences (11,458) as potentially active.

Considering that 46 of the 53 ACPs used for transfer
learning were predicted to be hemolytic, we did not apply a
hemolysis classifier to this set. Nevertheless, we filtered
sequences to be short (�15 residues), as well as novel yet
within the classifier’s applicability domain (at least 5 mutations
relative to test set and 6 to 7 mutations from the training set).
We further restricted the selection to sequences containing
only L-enantiomeric residues and predicted to be >80% α-
helical using helicities predicted by SPIDER3,[40] a neural network
trained with data from the Protein Data Bank, and with a
calculated hydrophobic moment[41] >0.3 (corresponding to
median values of DBAASP active sequences: 0.83 and 0.31). This
procedure retained 202 peptide sequences (as anticipated, 94%
of these were predicted hemolytic by our classifier), from which

we selected thirteen by clustering for synthesis and evaluation
(Figure 1a).

For our second approach, we aimed to select non-hemolytic
ACPs directly. In view of the sparsity of training data for non-
hemolytic ACPs, we focused on LL-III due to its short length (15
residues) and documented non-hemolytic ACP activity below
200 μM.[39,42–44] To generate LL–III analogs, we used PDGA[38] with
the molecular fingerprint MAP4 as similarity measure. This
fingerprint is well-suited for virtual screening of molecules of
any size range including peptides.[45] The MAP4 driven PDGA
generated 715,658 LL-III analogs, which we then passed
through our RNN general activity classifier and our RNN
hemolysis classifier, leaving 6,300 sequences (0.88%) as poten-
tially active and non-hemolytic. Applying the same sequence
length, novelty, predicted helicity and hydrophobic moment
criteria as above further reduced the list to 153 peptides, from
which we selected 20 sequences by clustering for synthesis and
evaluation (Figure 1b). Note that randomly mutating lasioglos-
sin III, although not taking chemical similarity into account as
PDGA does, generated a population of sequences that was
similarly trimmed town by the activity and hemolysis classifiers
(see Supporting Information for details).

Synthesis and bioactivity testing. We prepared the 33
selected peptides, as well as the reference ACP LL-III, by semi-
automated high-temperature Fmoc solid-phase peptide syn-
thesis and obtained pure samples by preparative HPLC. All
peptides were well-behaved in terms of aqueous solubility, in
line with the presence of two to seven cationic residues (lysine
or arginine) in each sequence (Table 1). To measure potential

Figure 1. In silico generation, evaluation, filtering, and clustering of ACP-like peptide sequences. (a) First approach: a prior generative model trained with
AMPs and ACPs was fined-tuned with 53 ACPs active against Hela cancer cells. 50,000 sequences were sampled from the fined-tuned model and evaluated
using an RNN classifier trained to distinguish ACPs and AMPs from inactive peptides. The 11,458 sequences predicted to be active were further filtered to be
short, novel, within the applicability domain of the classifier, containing only natural amino acids, predicted α-helical and amphiphilic. Finally, the obtained
202 sequences were clustered based on their sequence similarity so that the sequences within each cluster were at a maximum of 10 mutations away from
each other, 13 were picked for synthesis. (b) Second approach: PDGA was used to find analogs of LL-III. 10 runs of 12 hours each led to 715,658 unique
sequences with a MAP4 Jaccard distance (JD) from the query below or equal to 0.6. The generated sequences were then evaluated using the same activity
classifier used in the first approach and a hemolysis classifier trained to distinguish between hemolytic and non-hemolytic peptides. The 6,300 sequences
predicted to be active and non-hemolytic were then filtered and clustered as in the first approach, and 20 sequences were selected for further synthesis.
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ACP activity, we exposed HeLa cells to 50 μM of each peptide
for 72 h and quantified remaining live cells with Alamar Blue.
We performed full IC50 determination for active sequences
under the same conditions and similarly profiled HEK293 cells
as a model for non-cancer cells. Finally, we determined peptide
concentrations causing 50% hemolysis (HC50) on human red
blood cells (hRBC) by serial 2-fold dilution.

Seven of the thirteen peptides in the RNN generated series
showed substantial ACP activity on HeLa cells, with IC50 values
in the range 8–19 μM. However, the peptides lacked selectivity
against HEK293 cells as a model of non-cancer cells. Further-
more, except for the most active peptides, they were all
strongly hemolytic, in line with the fact that most ACPs used for
transfer learning were predicted to be hemolytic. In the PDGA
generated series by contrast, only 3 of the 20 LL-III analogs
showed activity against HeLa cells, again with IC50 values in the

low micromolar range, and an approximately 2-fold selectivity
against HEK293 cells, in line with the properties of the parent
ACP LL-III. In this case however, the peptides were all non- or
only weakly hemolytic, presumably reflecting the effect of the
hemolysis classifier on the selection. Additional testing of the
three most active ACPs identified, namely A1, B1 and B2,
showed comparable single digit micromolar activities against
MCF-7 (breast cancer) and MB-MDA-231 (triple-negative breast
cancer) cell lines and 2-fold selectivity against MCF-10a (non-
cancerous breast) cells line (Table S2).

Considering that many ACPs are also antibacterial,[46] we
determined minimum inhibitory concentrations (MIC) on Pseu-
domonas aeruginosa (PAO1) and Acinetobacter baumannii, two
Gram-negative bacteria which are often sensitive to membrane
disruptive AMPs.[15,47,48] Indeed, all but one of the synthesized
peptides from the first series showed substantial antibacterial

Table 1. Synthesis and activity of peptides.

Toxicity[b]

IC50/μM
Hemolysis[c]

HC50/μM
MIC[d]

μg/mL
CD[e] % Vesicle leakage[f]

nr. Sequence[a] HeLa HEK 293 hRBC PAO1 A. baumannii % α-helix PC PG

A1 FAKKFFKKFAKFAFK 8.2�0.5 15�0.7 >200 8 8 72 79 43
A2 WFKRILKYLKKLV 8.4�0.5 7.8�0.2 60�8 8 4 66 78 29
A3 WLNALKKILGHLIRH 8.2�0.8 13�0.7 30�5 16 4 79 100 37
A4 KYLKYLVRLVGRLYR 12�1.4 13�1.1 61�10 16 4 68 96 56
A5 WKRIVRIIRWIRKYY 18�0.2 14�0.6 93�4 >16 >16 74 100 46
A6 FAARILRAWFRFLRR 11�2 7.5�0.5 23�2 >16 16 75 93 35
A7 SISRLWHSLLRHLLH 19�1 19�4 23�3 >16 4 76 100 100
A8 KNFKKLMKKVASVL >50 >50 >400 8 4 51 16 97
A9 SFSKWMGKLKNIFKK >50 >50 >400 8 8 50 18 32
A10 LLRHCLRRIRDRLV >50 >50 >400 16 8 70 56 67
A11 KWRSKIKKIMRTFK >50 >50 >400 16 16 46 11 32
A12 GLLGRLAKLLANS >50 >50 >400 16 16 49 1 3
A13 VFRQWQKIMRRLVRR >50 >50 >400 >16 16 49 2 5
LL–III[g] VNWKKILGKIIKVVK 6.0�0.5 15�3 >200 4-8 4 74 99 72
B1 ANWKKWIGKVIKLVK 5.5�0.8 12�2 >200 4 4 70 99 77
B2 NWKKILGKILDHLAC 7.0�1.4 6.7�0.5 322�27 >16 8 68 94 100
B3 ANWKKILKRLCDI 22�0.5 28�5 166�4 >16 16 71 62 99
B4 NWKKILGKICR >50 >50 >400 4 4 49 51 99
B5 KNWKKIIKKVVK >50 >50 >400 4 16 35 11 99
B6 VNVWKKIGRLVKIVK >50 >50 >400 8 4 60 50 74
B7 NEWKKIKKIIKIVK >50 >50 >400 16 16 49 24 28
B8 KWRQLGKKIIKVAK >50 >50 >400 16 16 51 12 99
B9 NWKKIRKLGKVVKKI >50 >50 >400 16 16 40 28 80
B10 VVNNWKKKIIKVIK >50 >50 >400 >16 >16 48 3 66
B11 DWHKIGKKVIKVIK >50 >50 >400 >16 >16 53 14 99
B12 KWNNILGKLGKLAR >50 >50 >400 >16 >16 46 4 14
B13 NVVGRLGKIVKIVK >50 >50 >400 >16 >16 46 1 30
B14 NPKVFLKKIIKVVK >50 >50 >400 >16 >16 54 0 0
B15 ADVWKKVIKVIK >50 >50 >400 >16 >16 42 2 16
B16 WRGKIGKIIKAVK >50 >50 >400 >16 >16 60 16 21
B17 NWKKILGRLGEKG >50 >50 >400 >16 >16 26 0 13
B18 KNWKKIVHDIKNS >50 >50 >400 >16 >16 38 1 14
B19 NWKKILGKVIDDMKM >50 >50 >400 >16 >16 58 16 95
B20 DKFSEKLGKIIKIVK >50 >50 >400 >16 >16 62 5 51
DLL-III vnwkkilgkiikvvk 5.0�0.7 14.5�2.0 >200 4 2 74 n.d. n.d.
DA1 fakkffkkfakfafk 7.9�0.3 15.0�2.3 >200 4 4 71 n.d. n.d.
DB1 anwkkwigkviklvk 6.2�1.1 13.1�2.8 >200 4 2 71 n.d. n.d.

[a] All peptides were synthesized with C-terminal amidation. [b] IC50 was determined after 72 h incubation at 37 °C in DMEM high glucose medium
supplemented with 10% FBS. [c] HC50 was measured on human red blood cells in 10 mM phosphate buffer saline, pH 7.4, 25 °C. Triton X-100 was used as a
positive control. [d] MIC was determined after incubation for 16–20 h at 37 °C in MH medium. [e] Circular dichroism spectra were measured at concentration
100 μg/mL of peptides in 10 mM phosphate buffer, pH 7.4 in a presence of 5 mM DPC. Percentage of α-helical structure was calculated by DichroWeb. [f]
Fluorescein leakage from phosphatidyl choline (PC) or phosphatidyl glycerol (PG) vesicles was measured in buffer (10 mM TRIS, 107 mM NaCl, pH 7.4) in the
presence of 10 μg/mL of peptides. 0.012% Triton in buffer was used as positive control. [g] Parent peptide lasioglossin III (LL-III) used for PDGA was
synthesized for comparison. n.d.– not determined.
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activities (MIC�16 μg/mL) independent of their hemolytic
activities. In the second series, 8 of the 20 peptides as well as
LL-III also showed substantial antibacterial activity.

Taken together, the bioactivity data showed that both
approaches led to new, active and partly non-hemolytic ACPs.
However, the hemolysis classifier apparently worked against
ACP activity since applying this classifier in the PDGA set
resulted in fewer active sequences compared to the RNN
generated set used without hemolysis classifier. The most active
ACPs discovered were the non-hemolytic peptides A1 from the
RNN generated series and B1 from the PDGA series, which
showed a comparable activity to the reference ACP LL-III.

Mechanistic studies. In view of the selection procedure
applied, we anticipated that our peptides would behave as
membrane disruptive α-helices similar to most known
ACPs.[5,49,50] Although the activities of the synthesized peptides
varied strongly, inspection of helix-wheel models showed that
all the sequences synthesized could indeed be expected to
form amphiphilic and potentially membrane disruptive α-
helices, in line with our selection for high predicted hydro-
phobic moment (Figure 2a and S6). To investigate whether this
was the case, we measured circular dichroism (CD) spectra in
neutral phosphate buffer, with optional addition of 5 mM
dodecyl phosphocholine (DPC), which mimics the membrane
surface and induces folding of α-helical amphiphilic peptides.
The peptides indeed behaved as typical α-helical amphiphiles
by showing an unordered conformation in neutral phosphate
buffer but a substantial α-helical fraction in the presence of

5 mM DPC (Figure 2b, S7–S8, Table 1). However, contrary to the
predicted α-helicity, which was equally high for all synthesized
peptides, experimental helicity varied strongly between the
different peptides and was correlated with ACP and AMP
activity. For instance, helicity was higher in sequences with
anticancer activity (66–79% α-helix) compared to those show-
ing only antibacterial effects (35–70% α-helix) and those lacking
any activity (26–60% α-helix).

To measure membrane disruptive activities directly, we
performed fluorescein leakage assays with vesicles made from
either phosphatidyl glycerol (PG) as an anionic lipid mimicking
bacterial and cancer cell membranes, or phosphatidyl choline
(PC) as a zwitterionic lipid mimicking the neutral membrane of
healthy eukaryotic cells (Figure 2c/d, S9–S10, Table 1). In the
RNN series, all active ACPs showed strong leakage activity at
10 μg/mL on PC vesicles. Furthermore, all peptides from this
series except the least active A12 and A13 were also active on
PG vesicles. In the PDGA series, only the most active ACPs (LL-
III, B1 and B2) showed strong activity against PC vesicles, while
activity on PG vesicles was visible in the most active AMPs (LL-
III, B1–B9) as well as in two inactive peptides (B10 and B11).
Overall, these data showed that the experimental percentage of
α-helix also varied with membrane disruptive effects on vesicle
model systems. The fact that the most active ACPs discovered,
peptides A1 and B1, were among the most α-helical and
showed very strong vesicle leakage activity, was consistent with
a membrane disruptive mechanism of action.

Figure 2. Helical properties of ACPs A1, B1 and LL-III. (a) Helix properties predicted by HeliQuest.[51] Circle size proportional to side-chain size, blue indicates
cationic residues, red indicates anionic residues, yellow indicates hydrophobic residues, grey indicates alanine and glycine, pink indicates asparagine. Arrows
represent the helical hydrophobic moment. (b) CD spectra of hit peptides (100 μg/mL) in 10 mM phosphate buffer pH 7.4 in a presence of 5 mM DPC. (c)
Vesicle leakage experiment using 5(6)-carboxyfluorescein, induced by selected peptides at 10 μg/mL. Fluorescein leakage assay from egg yolk phosphatidyl
choline (PC) lipid vesicles. (d) Fluorescein leakage assay from egg yolk phosphatidyl glycerol (PG) lipid vesicles. Vesicles were suspended in buffer (10 mM
TRIS, 107 mM NaCl, pH 7.4) and compounds were added after 45 sec. After 240 seconds 1.2% Triton X-100 was added for full release of fluorescein.
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The fact that our ACPs were non-hemolytic and antibacterial
raised the possibility that they might act by penetrating the cell
and inducing apoptosis by disruption of the mitochondrial
membrane,[46] which resembles the bacterial membrane, rather
than by direct disruption of the cell membrane. To investigate
this point, we focused on HeLa cells and the most active
peptides A1 and B1. Similar to LL-III, the anticancer as well as
the antibacterial activity of A1 and B1 was preserved in their D-
enantiomers DA1 and DB1, and hemolytic, helical properties
were comparable to L-enantiomers (Figure 2b, Table 1). Flow
cytometry experiments of fluorescent analogs FA1, FB1, FDA1
and FDB1, FLL-III, FDLL-III obtained by acylation of N-termini
with 5/6-carboxyfluorescein showed that the peptides bound to
HeLa cells (Figure 3a) and permeabilized the cell membrane to
propidium iodide (Figure 3b, S12), leading to cell death in the
range 5–10 μM corresponding to their IC50 values. The compara-
ble cell permeabilizing activity of both enantiomers was
consistent with membrane disruption.

On the other hand, confocal imaging with FB1 and analogs
showed that the peptides penetrated into cells and colocalized
with mitochondria and partly the nucleus, similar to previous
reports with LL-III[42,53,54] (Figure 3d, Figure S11). However, we
could not detect apoptosis by Annexin V staining reliably due

to a faster cell death induced by disruption of the cell
membrane. Furthermore, we detected mitochondrial membrane
potential (MMP) depolarization by flow cytometry but only at a
concentration (15 μM) higher than their IC50 values (Figure 3c,
S13). Taken together, these experiments suggested that the
newly discovered ACPs A1 and B1 killed HeLa cells primarily by
disruption of the cytoplasmic membrane.

Chemical space analysis. To better understand the selection
procedure applied to identify our ACPs, we analyzed the amino
acid composition of relevant peptide sets and subsets and
mapped the chemical space covered by the source database
DBAASP and the selected peptides (Figure 4, Table S1, Fig-
ure S1–S2). DBAASP peptides contained predominantly cationic
amphiphilic sequences, as evidenced by the amino acid
composition showing an unusually high percentage of cationic
(lysine and arginines) and hydrophobic residues (leucine,
alanine, isoleucine, valine and phenylalanine, Figure 4a). A
similar prevalence of lysine and leucine was also apparent in
the peptides selected in the first (RNN, Set A, Figure 4b) and
second approach (PDGA, Set B, Figure 4b). Compared to
random sequences with the same composition, a much higher
fraction DBAASP peptides were predicted to form α-helices
with a slightly higher amphiphilicity (Figure 4c/d). The selected

Figure 3. Interaction of ACPs with HeLa cells. (a) Cellular internalization of fluorescein-labelled peptides. HeLa cells were treated with 10 μM of fluorescein-
labelled peptides, incubated for 3 h and analyzed by flow cytometry. (b) Propidium Iodine (PI) entrance to HeLa cells, treated by 10 μM of peptides and
incubated for 15 min, was detected by flow cytometry. (c) Mitochondrial Membrane Potential (MMP) depolarization as detected by flow cytometry. HeLa cells
were treated by 1 μM (pink),15 μM (blue) of peptides and incubated for 120 min and 15 min respectively. UTC – untreated cells, Carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) 50 μM was used as a positive control. (d) Colocalization analysis of fluorescein-labelled peptides with mitochondria
(live cells). HeLa cells were treated with 10 μM of peptide-fluorescein and incubated for 1 h. Images were taken on a Zeiss LSM 880 confocal microscope with
Oil compatible lens x63/1.3. cDDM: Co-Density Distribution Map, built by coDDMaker software.[52]
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peptides from both approaches were skewed towards high
values in both predictions as a consequence of the applied
filters, however it should be noted that the experimental
helicities of the synthesized peptides spanned a broad range of
values similar to the spread in DBAASP (56�13% α-helix,
Table 1).

The above analysis showed that the amino acid composition
as well as predicted helicity and amphiphilicity of the selected
peptides reflected the source DBAASP. However, there was no
significant difference in terms of these three parameters
between active and inactive peptides as well as between
hemolytic and non-hemolytic peptides from DBAASP, showing
that these parameters were not sufficient to define ACP activity
(Figure S3–S5). On the other hand, comparing active versus
inactive as well as hemolytic versus non-hemolytic sequences in
DBAASP in a Tree-map (TMAP)[55] calculated using the MAP4
fingerprint showed that these different categories formed small
clusters, indicating common features, which were most likely

the features learned by the corresponding RNN classifiers
(Figure 4f). The TMAP also showed that the peptides originating
from the RNN generative model trained on the entire DBAASP
(first approach) were scattered across the entire map, as were
our previously reported AMPs selected by a similar approach, in
line with the fact that the RNN generative model learned
features across the entire database (Figure 4e). By contrast, the
LL-III analogs generated using PDGA (second approach) were
grouped around the source LL-III sequence, reflecting the more
focused generation of the genetic algorithm optimizing
similarity to a given target.

Conclusion

Despite of the many previous reports showing that ML methods
can classify bioactive peptides including membrane disruptive
ACPs, experimental ML based searches reported to date yielded

Figure 4. Chemical space analysis of DBAASP and the selected ACPs. (a) Mean amino acid fractions and standard deviations of all sequences contained in the
DBAASP and random sets. (b) Mean amino acid fractions and standard deviations of all sequences contained in set A (from RNN generative model, fist
approach) and set B (from PDGA, second approach). (c) Distributions of the fraction of helical residues predicted with SPIDER3[40] in sequences from DBAASP,
random set, set A and set B. (d) Distributions of hydrophobic moment calculated according to Eisenberg et al.[41] in sequences from DBAASP, random set, set
A and set B. (e–f) TMAP calculated on the MAP4 fingerprint for a combined set containing DBAASP sequences, set A and set B from this work, and a previously
reported set of AMPs discovered by ML (label “Literature”).[15] Color-coding indicates either compound category (e) or hemolysis classification (f). An interactive
version of the TMAP featuring additional color-codes is accessible at https://tm.gdb.tools/map4/anticancer_peptides_tmap/
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hemolytic ACPs, requiring additional optimization to reduce
their hemolysis.[32,33] Here we showed that combining an RNN
generative model or a genetic algorithm with activity and
hemolysis classifiers allows to identify new non-hemolytic ACPs
directly. Detailed investigations showed that these new ACPs
formed amphiphilic α-helices and displayed membrane dis-
ruptive activities on model vesicles, significant antibacterial
activities, and killed cancer cells by disruption of the outer
membrane, thereby reproducing the properties of LL-III, a
known and typical natural ACP.

The experimental evaluation was essential to identify true
actives, and revealed that predictions of activity, hemolysis, and
α-helicity, which were all based on neural networks, had only
limited predictive power for the sequences tested, probably
because these sequences reside at the interface between two
incompatible regions of chemical space, namely non-hemolytic
sequences, which are mostly non-amphiphilic, non-membrane
disruptive, and ACP active sequences, which are mostly
amphiphilic and membrane disruptive (our hemolysis classifier
was 73% correct on the 33 peptides tested here, and a very
recently reported hemolysis prediction tool achieved 79%
correct predictions on the same set).[56] Importantly, our experi-
ments delivered new sets of actives and inactives that can now
be used to refine ML models in this critical region of sequence
space. We therefore envision that iterative rounds of ML-guided
design and experiments might allow to expand the currently
very limited set of non-hemolytic ACPs and eventually lead to a
better understanding of activity and selectivity in this class of
compounds.

Experimental Section
Recurrent Neural Network (RNN) models. The RNN activity and
hemolysis classifier and the prior generative model used in this
study were previously developed for the recently published work
[11]using activity and hemolysis data of APCs and AMPs extracted
from the manually curated DBAASP (Database of Antimicrobial
Activity and Structure of Peptides).[30,31] Sequences with a registered
activity measure below 10 μM, or 10 000 nM, or 32 μg/mL towards
at least one reported target were labeled as active. When present,
activity against human erythrocytes was used to label the
sequences as hemolytic or non-hemolytic. The concentration was
normalized to μM and sequences causing less than 20% of
hemolysis with a concentration equal or above 50 μM were flagged
as non-hemolytic. In the present study, the RNN prior generative
model was fine-tuned using transfer learning (TL) and 53 linear and
natural peptides active against HeLa cancer cells extracted from the
DBAASP.TL consisted in a second training of the prior model using
the 37 out of the 53 peptides against HeLa which were present in
the training set previously used for the training of the prior model.
The remaining 16 sequences were used as test set. Negative log-
likelihood loss (NLLL) and Stochastic gradient descent with a
momentum of 0.9 and a learning rate of 0.00001 were used and the
training was stopped when the NLLL of the validation set reached
its minimum. 50,000 peptide sequences were sampled from the
fine-tuned generative model.

Peptide Design Genetic Algorithm (PDGA). The peptide design
genetic algorithm (PDGA)[38] was adapted to use the MinHashed
atom pair fingerprint of diameter 4 (MAP4) in its string version.[45]

This version of the MAP4 fingerprint can be calculated using the

parameter “return_strings=True” and it returns the shingles of the
encoded molecules. In its fitness function, the MAP4 PDGA
evaluates each generated peptide structure based on the Jaccard
distance (JD) between the shingles of its MAP4 fingerprint and the
shingles of the MAP4 fingerprint of the given query. The MAP4
PDGA was run 10 times in parallel for 12 hours using the anticancer
peptides Lasioglossin III as query, an initial population of 100
peptides with a randomly generated sequence, a mutation rate and
a generation gap of 0.5, linear topology, and excluding non-natural
building blocks. The runs resulted in the generation of 715,658
unique sequences.

Properties calculation. The Levenshtein distance (LD) from the
nearest neighbor (NN) present in the training and the test used to
implement the RNN activity and hemolysis classifier[15] was calcu-
lated using the Levenshtein Python package.[57,58] Hemolysis and
activity were predicted by the respective classifiers converting the
probabilistic prediction values into binary classification using the
threshold that kept the prediction of false positive below 6%
(0.99205756 for the activity classifier and 0.99981695 for the
hemolysis classifier).The helicity prediction was performed using
SPIDER3,[40] and the helicity fraction was calculated as the number
of residues predicted helical in a peptide sequence divided by the
length of the sequence itself. The hydrophobic moment was
calculated as described by Eisenberg et al.[41]

Peptide sequences selection. The generated sequences sampled
from the fine-tuned generative model in the first approach and
generated with the PDGA in the second approach were filtered
based on multiple criteria. First, to ensure novelty, we have chosen
sequences with LD >5 from the classifiers training sets and LD >4
from the classifiers test set. Second, we removed sequences that
were outside the applicability domain of the classifiers. To do so,
the minimum LD of every test set compound to the training set
was calculated, and the applicability domain of the classifiers was
set to be the 90% quantile. This led to the exclusion of all
generated sequences with a LD distance of 8 or more to the
training set of the classifiers. Only sequences up to 15 residues
were selected to facilitate the synthesis process and due to the low
percentage of D amino acids in the training set, sequences
containing D-residues were excluded. Since helicity and amphiphi-
licity often correlate with antimicrobial activity, we selected
sequences with a predicted helicity fraction above 0.8 and an
Eisenberg hydrophobic moment above 0.3. The thresholds for the
predicted helicity fraction and hydrophobic moment were chosen
based on the median values of the active sequences in the training
and test, respectively 0.83 and 0.31. The filtered sequences were
clustered using the RDKit Butina module with a threshold of 10 and
the Levenshtein distance as distance function, and the center of
each cluster was picked. The workflow resulted in 13 sequences for
the first approach and in 20 sequences for the second approach.

Data retrieval for TMAP visualization. The entire DBAASP was
downloaded from the provided website (https://dbaasp.org) and
sequences containing unnatural or D-enantiomeric amino acids
removed to obtain a total of 12,497 monomeric sequences. Only
the lowest value in the “TARGET ACTIVITY – ACTIVITY (μg/ml)
(Calculated By DBAASP)” column and the highest value in the
“HEMOLYTIC CYTOTOXIC ACTIVITY – ACTIVITY (μg/ml) (Calculated
By DBAASP)” column was kept for each sequence. A threshold of
<4 μg/ml for activity and <200 μg/ml for hemolysis were applied
to determine whether a sequence is active or hemolytic respec-
tively. A random set of 20’000 sequences was generated to match
the relative count of each amino acid in the DBAASP set. The RNN
(202 sequences) and PDGA (153 sequences) sets were composed of
all sequences generated by the RNN and PDGA approach that
passed every selection filter. The literature set contained all tested
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bioactive sequences from our recently published work.[15] Size and
composition of the datasets are listed in the SI (Table S1).

TMAP visualization. The default version of the MAP4 fingerprint
was used to encode all sequences contained in the DBAASP, RNN,
PDGA and literature[15] sets. The indices generated by the MinHash
procedure of the MAP4 calculation were used to create a locality-
sensitive hashing (LSH) forest[59] of 64 trees. Then, for each structure,
the 15 approximate nearest neighbors (NNs) in the MAP4 feature
space were extracted from the LSH forest, and the tree layout was
calculated. The LSH forest and the minimum spanning tree layout
were calculated using the TMAP open-source code. Finally,
Faerun[60] was used to display the obtained layout interactively.

Evaluation metrics. ROC AUC is the area under the ROC curve, and
the ROC curve is obtained by plotting the true positive rate (TPR)
against the false positive rate (FPR):

TPR ¼
TP

TPþ FP

FPR ¼
FP

TPþ FP

where TP stands for true positives, TN for true negatives, FP for
false positives, and FN for false negatives predicted by the classifier.

The F1 score is defined as the harmonic mean of precision and
recall:

Precision ¼ TPR

Recall ¼
TP

TPþ FN

F1 score ¼ 2�
ðPrecision� RecallÞ
ðPrecisionþ RecallÞ

The balanced accuracy is defined as:

Balanced accuracy ¼
TPRþ TN

TNþFN

2

The Matthews correlation coefficient (MCC) is a correlation between
the observed and the predicted class and it is defined as:

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p

Solid-phase peptide synthesis. Linear peptides were synthesized
manually using 150–300 mg of Rink Amide AM LL resin (0.29 mmol/
g) by standard 9-fuorenylmethoxycarbonyl (Fmoc) Solid Phase
Peptide Synthesis at 60 °C under nitrogen bubbling. The resin was
swollen in DMF for 10 min. Double deprotection of the Fmoc group
was performed using a solution containing 5% w/v piperazine, 2%
v/v 1,8 diazabicyclo(5.4.0)undec-7-ene (DBU), 10% v/v of 2-butanol
in DMF during 1 min and 4 min respectively. The resin was washed
with DMF (5×8 mL DMF) after deprotection. Coupling step (2×
8 min) was performed with 3 mL of amino acid (0.2 M), 2 mL of DIC
(0.8 M) and 1.5 mL of Oxyma (0.8 M) in DMF. Resin was washed
with DMF between couplings (2×8 mL) and after second coupling
(3×8 mL). For sequences containing aspartic or glutamic acid
deprotection solution was exchanged to 20% v/v piperidine+0.7%
v/v formic acid in DMF to avoid aspartimide, glutamide and side

products formation. The cleavage from resin was carried out by
treating the resins with 7 mL of a TFA/TIS/DODT/H2O (95/2/2/1, v/v/
v/v) solution for 3 h. The peptide solutions were precipitated with
30 mL of cold tert-butylmethyl ether (TBME), centrifuged for 10 min
at 3500 rpm (twice), evaporated and dried in high vacuum for
60 min. The crude was then dissolved in a H2O/CH3CN (10/1, v/v)
mixture, some drops of MeOH added when needed and purified by
preparative RP-HPLC.

Cell Viability assay by AlamarBlue. HeLa, HEK-293, MCF-7, MDA-
MB-23, MCF-10a cells were seeded into 96 well plates, in amount
4×103, 2×104, 6×103, 5×103, 9×103 cells/well respectively, the day
before the experiment. HEK-293 were seeded into well plates,
pretreated with solution of poly-L-Lysine. The medium was
removed and the compounds at increasing concentration were
added into the wells. The cells were incubated for 72 h in 200 μL/
well at 37 °C in corresponding medium in the presence of 5% CO2.
After incubation time the medium was removed and replaced by
100 μL/well of medium containing 10% AlamarBlue. The cells were
incubated for 3–5 h at 37 °C with 5% CO2 in a humidified
atmosphere. The fluorescence was then measured on a Tecan
Infinite M1000 Pro plate reader at λex 560 nm and λem 590 nm.
The value was normalized according to the untreated cells.

Hemolysis assay. Compounds were subjected to a hemolysis assay
to assess the hemolytic effect on human red blood cells (hRBCs).
The blood was obtained from Interregionale Blutspende SRK AG,
Bern, Switzerland. 1.5 mL of whole blood was centrifuged at
3000 rpm for 15 min at 4 °C. The plasma was discarded, and the
hRBC pellet was re-suspended in 5 mL of PBS (pH 7.4) then
centrifuged at 3000 rpm for 5 min at 4 °C. The washing of hRBC was
repeated three times and the remaining pellet was re-suspended in
10 mL of PBS. The samples were prepared as the initial concen-
tration of 2000 μg/mL in PBS, added to the first well of 96-well
microtiter plate and diluted serially by 1=2, having 100 μL of sample
in every well. Controls on each plate included a blank medium
control (PBS 100 μL) and a hemolytic activity control (0.1% TritonTM

X-100). 100 μL of hRBC suspension was incubated with 100 μL of
each sample in PBS in V-shape 96-well plate. After the plates were
incubated for 4h at room temperature, 100 μL of supernatant was
carefully pipetted to a flat bottom, clear 96-wells plate. Hemolysis
was measured by analyzing the absorbance of free hemoglobin
leaked out of compromised in the supernatants at 540 nm with a
plate reader (Tecan instrument Infinite M1000). The percentage of
hemolysis at each concentration was detected and HC50 was
determined.

Minimal inhibitory concentration (MIC) determination. The mini-
mal inhibitory concentration (MIC) was determined by using broth
microdilution method. Antimicrobial activity was assayed against P.
aeruginosa PAO1 (WT), Acinetobacter baumannii (ATCC19606). A
colony of bacteria was picked and grown in Luria-Bertani (LB)
medium overnight at 37 °C. Stock solutions of 1 mg/mL of the
samples were prepared in sterilized milliQ water and diluted to the
beginning concentration of 128 μg/mL in 300 μL Mueller Hinton
(MH)-medium. The diluted samples were added to first well of 96-
well microtiter plate and diluted serially by 1=2. Bacteria concen-
trations were quantified by measuring the optical density at
600 nm and diluted to OD600 of 0.022 in MH-medium. 4 μL of the
diluted bacterial solution was used to inoculate into the sample
solutions (150 μL) with a final inoculation of about 5×105 CFU/mL.
The plates were then incubated at 37 °C for 18 h. For each assay,
sterility (broth only) and growth control (broth with bacterial
inoculum, without antibiotics) were checked with two columns in
the plate. The next day, 15 μL of MTT solution was added to each
well of the plate, such a way that MIC was defined as the lowest
concentration of the peptide that inhibited visible growth of the
tested bacteria.
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Circular dichroism spectroscopy. Circular dichroism (CD) spectra
were recorded on a Jasco J-715 Spectropolarimeter. All the experi-
ments were performed using Hellma Suprasil 110-QS 0.1 cm
cuvettes. Stock solutions (1.00 mg/mL) of peptides were freshly
prepared in 10 mM phosphate buffer (PB, pH 7.4). The PB buffer
was degassed for 10 min under high vacuum before each set of
experiments. For the measurement, the peptides were diluted to
100 μg/mL with PB buffer and dodecylphosphocholine (DPC) was
added to final concentration 5 mM if needed. The range of
measurement was 185–260 nm, the scan rate was 20 nm/min, pitch
0.5 nm, response 16 sec and bandwidth 1.0 nm. The nitrogen flow
was kept >8.5 L/min. After each measurement, the cuvettes were
washed successively with 1 M HCl, milli-Q H2O and PB buffer. The
baseline was recorded under the same conditions and subtracted
manually. Percentage of different secondary structure types was
calculated by DichroWeb.[61]

Lipid vesicle leakage assays. Egg Yolk Phosphatidylcholine (EYPC),
Egg Yolk Phosphatidylglycerol (EYPG) thin lipid layers were
prepared by evaporating a solution of 100 mg Egg PC or Egg PG in
4 mL MeOH/CHCl3 (1 : 1) on a rotary evaporator at room temper-
ature and then dried in vacuo overnight. The resulting film was
then hydrated with 4 mL buffer B (50 mM 5(6)-carboxyfluorescein,
10 mM TRIS, 10 mM NaCl, pH 7.4) for 30 min, subjected to freeze-
thaw cycles (7x) and extrusion (15x) through a polycarbonate
membrane (pore size 100 nm). Extra vesicular components were
removed by gel filtration (Sephadex G-50) with buffer A (10 mM
TRIS, 107 mM NaCl, pH 7.4). Final conditions: ~2.5 mM Egg PC or
Egg PG; inside: 50 mM 5(6)-carboxyfluorescein, 10 mM TRIS, 10 mM
NaCl, pH 7.4; outside: 10 mM TRIS, 107 mM NaCl, pH 7.4. Egg PC or
Egg PG stock solutions (37.5 μL) were diluted to 3000 μL with a
buffer A (10 mM TRIS, 107 mM NaCl, pH 7.4) in a thermostated
fluorescence cuvette (25 °C) and gently stirred (final lipid concen-
tration ~31 μM). 5(6)-carboxyfluorescein efflux was monitored at
λem 517 nm /λex 492 nm as a function of time after addition at t=

45 sec of 30 μL of peptide stock solution (1 mg/mL stock in buffer
A), having final concentration 10 μg/mL. Finally, 30 μL of 1.2%
Triton X-100 was added to the cuvette (0.012% final concentration)
at t=240 sec to reach the maximum intensity. Fluorescence
intensities were then normalized to the maximal emission intensity
using I(t)= (It–I0) / (I∞–I0) where I0 = It at peptide addition, I∞= It at
saturation of lysis.

Confocal microscopy of cells treated with fluorescein-labelled
peptides. 8-well chambered cover glass plates were treated with
poly-L-Lysine for 1 h, dried at RT and the day prior treatment HeLa
cells were plated at 2×104 cells per well. The medium was
removed, and cells were treated with fluorescein-labelled peptides
(10 μM in complete DMEM, 250 μL/well), incubated for 3 h at 37 °C
in a humidified atmosphere in 5% CO2 following the removal of the
complete growth medium. Then, cells were washed with pre-
warmed PBS twice and the cell membrane was labelled with
CellMask Deep Red plasma membrane stain in PBS (0.25 μL in
0.25 mL/well) and nucleus was stained with Hoechst 33258 in PBS
(0.25 μL in 0.25 mL/well) for 30 min at 37 °C. After the incubation
cells were washed with PBS twice and prewarmed Glycergel
Mounting Medium was added. Images were taken on a Zeiss LSM
880 confocal microscope with Oil compatible lens x63/1.3.

Colocalization studies with mitochondria. To 8-well chambered
cover glass plates HeLa cells were seeded at 2×104 cells per well
and incubated overnight. Then the medium was removed, and cells
were treated with fluorescein-labelled peptides (10 μM in complete
DMEM, 250 μL/well), incubated for 1 h at 37 °C in a humidified
atmosphere in 5% CO2 following the removal of the complete
growth medium. Then cells were washed with prewarmed PBS
twice and nucleus was stained with Hoechst 33258 in PBS (0.25 μL
in 0.25 mL/well) for 30 min at 37 °C. Mitochondria were stained with

Mitotracker Red (Thermo Fisher Scientific) according to manufac-
ture protocol (100 nM) at 37 °C for 30 min. Staining solution was
replaced with fresh prewarmed FluoroBrite DMEM Medium. Images
were taken on a Zeiss LSM 880 confocal microscope with Oil
compatible lens x63/1.3. Colocalization was processed with coDDM
Maker Software.[52]

Flow cytometry studies. HeLa cells were plated into 96 well plate,
3×104 cells/well, and allowed to adhere overnight. Medium was
removed and cells were treated with fluorescein-labelled peptides
(200 μl of 10 μM solution in complete growth medium), following
by incubation at 37 °C for 2 h. Untreated cells were used as a
control. Then the cell medium was removed, cells were washed
with PBS, trypsinized, and trypsinization was quenched with 100 μL
of complete growth medium (DMEM, 10% FBS). Cells were
centrifuged at 500 g for 5 min at 15 °C and supernatant was
decanted. The cells were resuspended in 100 μL 2% FBS PBS
solution and analyzed by Beckman Coulter CytoFLEX™. CytExpert
2.0 (Beckman Coulter, Miami, FL, USA) was used for acquisition and
FlowJo™ Software (Ashland, OR: Becton, Dickinson and Company;
2021) for data processing.

Propidium iodine (PI) internalization. HeLa cells were plated into
96 well plate, 3×104 cells/well, and allowed to adhere overnight.
Medium was removed and cells were treated with selected
peptides (10 μM in DMEM, 200 μL/well) and incubated for 10 min at
37 °C in a humidified atmosphere in 5% CO2. Then the medium was
removed, cells were trypsinized (30 μL/well, 0.025%), trypsinization
was quenched by 100 μL of complete growth medium (DMEM, (� )
Phenol Red, 10% FBS). Cells were directly stained with PI according
to manufacture protocol for 10 min and analyzed by Beckman
Coulter CytoFLEX™.

Mitochondrial membrane depolarization assay. HeLa cells were
plated into 96 well plate, 3×104 cells/well, and allowed to adhere
overnight. Medium was removed and cells were treated with
selected peptides (1 and 15 μM in DMEM, 200 μL/well) and
incubated for 120 and 15 min at 37 °C in a humidified atmosphere
in 5% CO2. Untreated cells and cells treated with 50 μM FCCP
(15 min) were used as negative and positive controls. The medium
was removed, cells were washed with PBS, trypsinized, trypsiniza-
tion was quenched by 100 μL of complete growth medium (DMEM,
(� ) Phenol Red, 10% FBS) and stained by TMRE-Mitochondrial
Membrane Potential Assay Kit (Abcam, Cambridge, UK) according
to manufacture protocol (100 nM) for 15 min. Right after cells were
analyzed using Beckman Coulter CytoFLEX™.
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