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Abstract

Background: It is usually possible to identify the sex of a pre-pubertal child from their voice, despite the absence of sex
differences in fundamental frequency at these ages. While it has been suggested that the overall spacing between formants
(formant frequency spacing - DF) is a key component of the expression and perception of sex in children’s voices, the effect
of its continuous variation on sex and gender attribution has not yet been investigated.

Methodology/Principal findings: In the present study we manipulated voice DF of eight year olds (two boys and two girls)
along continua covering the observed variation of this parameter in pre-pubertal voices, and assessed the effect of this
variation on adult ratings of speakers’ sex and gender in two separate experiments. In the first experiment (sex
identification) adults were asked to categorise the voice as either male or female. The resulting identification function
exhibited a gradual slope from male to female voice categories. In the second experiment (gender rating), adults rated the
voices on a continuum from ‘‘masculine boy’’ to ‘‘feminine girl’’, gradually decreasing their masculinity ratings as DF
increased.

Conclusions/Significance: These results indicate that the role of DF in voice gender perception, which has been reported in
adult voices, extends to pre-pubertal children’s voices: variation in DF not only affects the perceived sex, but also the
perceived masculinity or femininity of the speaker. We discuss the implications of these observations for the expression and
perception of gender in children’s voices given the absence of anatomical dimorphism in overall vocal tract length before
puberty.
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Introduction

Adults can discriminate the sex of adult [1] and of children [2,3]

speakers by listening to their voice only. Sex identification in adult

voices is substantially determined by acoustic differences in

fundamental frequency (F0) and in the overall pattern of formant

frequencies (DF, or formant spacing), which in turn reflect

anatomical dimorphisms in the vocal apparatus between the two

sexes. During male puberty, the testosterone-related growth of the

laryngeal cartilages [4–6], and the associated lengthening and

stiffening of the vocal folds [7,8] cause men’s F0 to drop by almost

50% compared to women’s (men’s F0: 120 Hz; women’s: 200 Hz

[8]), conferring men their characteristically lower-pitched voices.

Moreover, the testosterone-induced differential body height, with

men being on average 7% taller than women [9], coupled with the

male-specific secondary descent of the larynx [10], result in men

having longer vocal tracts and thus narrower DF (15–20% [11,12])

than women, conferring a disproportionately more baritone

quality to the male voice [10].

The voices of pre-pubertal children are also acoustically and

perceptually different, and perceptual studies show that adults are

able to correctly identify gender from the voice in children as

young as four [3]. Several acoustic investigations have shown that,

while children of both genders speak with similar F0s ([13–15]; but

also see [16]) boys speak with lower formants and consequently

narrower DF than girls [2,3,13,14,17,18] despite the absence of

overall differences in vocal tract length between the two sexes

before puberty [10,19–21]. This dimorphism has led to the

suggestion that pre-pubertal sex differences in DF have a

behavioural basis (for example boys may round their lips or lower

their larynx when they speak to lengthen their vocal tracts –

[2,14]).

Taken together, these studies indicate that the between-sex

dimorphism in the voice frequency characteristics (DF only in

children and both DF and F0 in adults) is perceptually relevant to

categorize the sex of speakers. Moreover, at least in adult voices,

between-speaker variation in these parameters appears to also

influence the perception of gender, a term which encompasses the

biological and social attributes which a given society deems typical

of either male (masculine attributes) or female (feminine attributes)

sex [22]. For example, listeners consistently rate adult voices with

naturally or artificially lower F0, lower DF, or both, as belonging

to more masculine individuals than their raised versions [23,24].

While variation in F0 and DF, which are both sexually dimorphic

in adult voices, has been shown to influence listeners’ attributions
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of adults’ sex and gender characteristics, to our knowledge the

effect of naturalistic variation in DF on sex and gender attributions

has not been investigated in children’s voices, despite the fact that

this trait is sexually dimorphic.

Here we investigate whether small increments of DF in

children’s voices affect sex (male, female), as well as gender

(masculine, feminine) attributions by adult listeners. In the first

experiment (sex identification) we resynthesize DF along gender

continua within the observed natural variation of this parameter

and ask listeners to identify the sex of the speakers. We expect the

identification function to be characterized by a gradual change

from the male to the female category. In the second experiment

(gender rating), we ask listeners to rate each voice stimulus on a

scale that combines sex and gender information (from ‘‘masculine

boy’’ to ‘‘feminine girl’’). We expect that small, consecutive

increments in DF will elicit a gradual increase in listeners’ ratings

from "masculine boy" to "feminine girl".

Materials and Methods

Ethics statement
Written consent from children’s guardians as well as verbal

consent from children were obtained prior to the recording of the

voice stimuli. All adult subjects taking part in the psychoacoustic

experiments gave written informed consent. Both procedures

(voice recording and psychoacoustic experiments) were reviewed

and approved by the Ethics Committee of the University of Sussex

(authorization codes: DRVC0709 and DRVC0711).

Subjects
252 second-year Psychology students (74 males, 178 females)

from Sussex University took part in the psychoacoustic experi-

ments (as part of their practical coursework in a Cognitive

Psychology level two module). All subjects were fluent English

speakers.

Stimuli
Speech utterances were recorded using a Shure SM94 micro-

phone and a Tascam DR07mkII handheld recorder at a primary

school in Sussex, as part of a previous study of gender expression

in children’s speech. During these recordings, two girls and two

boys aged eight were asked to read out seven short words (‘‘bed’’,

boot’’, ’’book’’, ‘‘box’’, ‘‘duck’’, ‘‘hat’’, ‘‘pig’’). The recorded single-

syllable words were individually standardized to 65 dB and

concatenated prior to acoustic analysis and resynthesis.

Acoustic analyses
We extracted F0 and formant frequencies using PRAAT

v.5.1.19 freeware [25]. F0 was extracted using the command ‘to

Pitch’, with analysis parameters set to: time-step 0.01 s; pitch floor,

60 Hz; pitch ceiling, 500 Hz. The frequency values of the first

three formants (F1, F2, F3) were extracted using linear predictive

coding (LPC) via the ‘LPC: To Formants (Burg)’ command, with

analysis parameters set to: maximum number of formants, 5;

maximum formant frequencies, 6000–6600 Hz; window of

analysis, 0.025 s. Formant spacing ((1) DF = Fi+1 - Fi) was derived

from F1–F3 values, by modelling the vocal tract as a uniform tube

closed at the glottis and open at the mouth [26,27]. Under such

model, Fi are expressed as:

(2) Fi~
(2i{1)c

4VTL

Where i is the formant number, c is the speed of sound in a

mammal vocal tract (35,000 cm/s), VTL is the vocal tract length

(in cm) and Fi is the frequency (in Hz) of ith formant. From (1) and

(2), it follows that DF = Fi+1 - Fi = c/2VTL (3). By replacing c/

2VTL with DF in equation (2), DF can be derived as the slope of a

regression model with the observed Fi values (y-axis) plotted

against the expected formant positions:

(4) Fi~
(2i{1)

2
DF

and the apparent vocal tract length (aVTL), as its inverse acoustic

correlate measured in cm (aVTL = c/2DF). Therefore the longer

the vocal tract, the lower the formant frequencies, and the

narrower their overall frequency spacing. All extracted and

derived acoustic values are reported in Table 1.

Re-synthesis
Following acoustic analysis, the stimuli were resynthesized using

the "change gender" command in PRAAT. This command uses

PSOLA, a resynthesis algorithm that allows the independent

manipulation of formant frequency spacing (DF), mean funda-

mental frequency (F0), F0 variation and signal duration while

keeping the values of all the other acoustic parameters (amplitude,

noisiness etc.) unchanged. The mean fundamental frequencies

were all standardised to 260 Hz (the average F0 measured in our

sample). In order to remove possible intonation cues to gender, F0

variation was flattened by adjusting F0 values to the mean F0 (thus

making the voice monotonous). Formant values were scaled up or

down in increments of 2%, mimicking equivalent variations of DF

(and thus aVTL) in speakers’ voices. An increase of 2% of formant

frequencies (achieved in the 102% stimuli) equates to a 2%

increase in DF (corresponding to a 2% shortening of the vocal

tract), and is expected to feminise the voice. As formant

frequencies in our sample were on average 6% lower in the boy

exemplars than in the girl exemplars, just below the gender

difference reported in the literature for children of similar age (9–

10% - [3,18]) male voices were rescaled from 88% to 118%, while

female voices were rescaled from 82% to 112%. The resulting

continua were therefore not identical, but largely overlapping: the

boys’ continuum ranged from 1526 Hz to 1138 Hz (aVTLs from

11.5 cm to 15.5 cm), while the girls’ continuum ranged from

1542 Hz to 1129 Hz (aVTLs from 11.4 cm to 15.5 cm).

Supplementary online material includes audio files of example

stimuli for one girl (Audio S1) and boy (Audio S2) exemplar. The

resulting continua are within the range of DF variation observed in

pre-pubertal children, as derived from published F1–F3 values

[14], with aVTLs ranging from 11.4 cm to 15.9 cm for 5–12 year

Table 1. Acoustic variables (F0, Fi, DF in Hz) and apparent
Vocal Tract Length (aVTL in cm) characterising the 4
exemplars (measured on concatenated strings of CVC words).

Exemplars F0 F1 F2 F3 DF aVTL

Girl 1 237 921 2125 3381 1383 12.7

Girl 2 304 859 2099 3370 1372 12.8

Boy 1 237 786 1933 3175 1283 13.6

Boy 2 262 768 2015 3194 1302 13.4

Average DF was 1377 Hz (aVTL 12.7 cm) for the two girl exemplars and 1293 Hz
(aVTL 13.5 cm) for the two boy exemplars.
doi:10.1371/journal.pone.0081022.t001

Perception of Gender in Children’s Voices
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old children. They are also consistent with anatomical variation

reported in [10], where VTLs for boys and girls, measured during

quiet respiration, varied from 9.7 cm at age 5 to 14.0 cm at age

12. In summary, we generated 64 audio stimuli consisting of 16 re-

synthesised variants of the single-syllable word lists by the two boys

and the two girls. Figure 1 shows spectrograms of the vowel ‘‘?’’

spoken by one of the exemplars, in which the formants (dark bands

of energy in the spectrogram) are shifted compared to the original

signal, while signal duration, F0 and F0 variation remain

unchanged.

Procedure
Participants completed the identification experiment first.

Stimuli were presented using a PRAAT Multiple Forced Choice

(MFC) experiment script and for each stimulus participants were

asked to decide if the speaker was male or female (the instruction

was: ‘‘Please identify the sex of the speaker’’) by clicking the

respective button on the screen (labelled ‘‘male’’ or ‘‘female’’). A

total of different 64 stimuli (16 variants from four exemplars) were

presented once in a pseudo-random order. Participants were given

an opportunity to pause after each series of 32 presentations. This

experiment lasted approximately 10 minutes. In the second

experiment, participants were asked to rate the same 64 voice

stimuli from the sex identification task (also presented in a pseudo-

random order using a MFC experiment script). The instruction

was: ‘‘Rate the voice of the speaker on a scale of 1 to 7’’ and

buttons were labelled as 1 = masculine boy, 2 = boy, 3 = feminine

boy, 4 = neutral, 5 = masculine girl, 6 = girl, 7 = feminine girl.

Statistical analyses
Because different sets of resynthesis variants (different formant

scaling factors) were used for male and female exemplars, data are

analysed and reported separately by exemplar’s sex.

In order to test the effect of stimuli variant and listener sex on

sex identification, we ran Generalised Linear Mixed Models

(GLMM) with stimuli variant (scale), listener sex (nominal) and

their interaction as fixed factors, exemplar id and subject id as

random factors, and sex identification score (0 = male, 1 = female)

as a binomial target variable. In order to test the effect of stimuli

variant and listener sex on gender ratings we ran Linear Mixed

Models (LMM) with stimuli variant (scale), listener sex (nominal)

and their interactions as fixed factors, exemplar id and subject id

as random factors, and gender rating as a scale outcome variable

(from 1 = masculine boy to 7 = feminine girl).

Simple logistic regressions (one for boy exemplars and one for

girl exemplars) were then used to illustrate the relationship

between formant frequency spacing and identified sex with

average score (over all participants) as the dependent variable

and stimuli variant as the independent variable. Logistic models

provide estimates for the slope of the category (here ‘male’ to

‘female’) transition (b1 coefficient, ranging between 0 and 1, with

lower values reflecting steeper transitions) [28–30] and for the

perceived category boundary (where 50% of stimuli are catego-

rised a male, and 50% as female). The category boundary was

computed using the formula -Ln(b0)/Ln(b1) where b0 is the

constant of the logistic curve and b1 is the coefficient related to the

slope [30,31]. Simple linear regressions with stimuli variant as the

predictor variable and average gender ratings (over all the

participants) as the outcome variable were used to illustrate the

relationship between formant frequency spacing variant and

perceived gender. All the statistical analyses were performed using

SPSS v.20.0.

Results

Sex identification experiment
The results of the GLMM on sex identification scores of boy

exemplars revealed a significant main effect of stimuli variant,

F1,8.060 = 2,696.66, p,.001, while no significant main effects of

listener’s sex, F1,8.060 = 2.50, p = .114, and of its interaction with

stimuli variant, F1,8.060 = 3.47, p = .063, were found. A logistic

regression (Fig. 2 – black line) provided a strong statistical fit for

the observed relationship between stimuli variant and average sex

identification scores, R2 = .95, F1,14 = 240.43, p,.001. The rela-

tively shallow transition (b1 = .65) from one response category to

the other indicates that the percentage of stimuli identified as

female increases progressively as DF increases. Using this model,

Figure 1. Spectrograms of vowel ‘‘ ’’ (from ‘‘book’’) created from girl exemplar 1. Spectrogram settings: window length = .025 s,
maximum number of formants, 5; maximum formant frequencies, 6000–6600 Hz. The formants (labeled F1–F4) are shifted down by 18% (A) and up
by 12% (C) in comparison to the original signal (B), while all other acoustic parameters, including fundamental frequency, remain unchanged.
doi:10.1371/journal.pone.0081022.g001

Perception of Gender in Children’s Voices

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e81022



the estimated ‘‘male-female’’ boundary fell between stimulus 11

and 12 (2Ln(127.43)/(.65) = 11.25, where b0 = 127.43 and

b1 = .65, corresponding to 108%–110% variants or

DF,1400 Hz).

The results of the GLMM on sex identification scores of girl

exemplars revealed a significant main effect of stimuli variant,

F1,8.060 = 1,869.28, p,.001, while no significant main effects of

listener’s sex, F1,8.060 = 1.99, p = .158, and of its interaction with

stimuli variant, F1,8.060 = 2.04, p = .153, were found. A logistic

regression (Fig. 3 – black line) provided a strong statistical fit for

the observed relationship between stimuli variant and average

identification scores, R2 = .97, F1,14 = 382.14, p,.001. The rela-

tively shallow transition (b1 = .67) from one response category to

the other indicates that the percentage of stimuli identified as

female increases progressively as DF increases. Using this model,

the estimated ‘‘male-female’’ boundary fell between stimulus 7 and

8 (2Ln(17.37)/Ln(.67) = 7.13, where b0 = 17.37 and b1 = .67,

corresponding to 94%–96% variants or DF,1300 Hz).

Gender rating experiment
The results of the LMM on gender ratings of boy exemplars

revealed a significant main effect of stimuli variant,

F15,7781 = 692.41, p,.001. No significant main effect of listener’s

sex, F1,250 = 2.24, p = .136, and of its interaction with stimuli

variant, F1,7781 = 1.136, p = .317, were found. The results of the

LMM on gender ratings of girl exemplars revealed a significant

main effect of stimuli variant, F15,7781 = 626.87, p,.001. No

significant main effect of listener’s sex, F1,250 = .196, p = .658, and

of its interaction with stimuli variant, F1,7781 = .714, p = .773, were

found. Simple linear regressions (Figures 2 and 3 – grey straight

lines) provided strong statistical fits for the observed correlation

between variant number and average gender rating scores,

showing that scores increased (from masculine boy to feminine

girl) as formant frequency spacing increased (male exemplars:

R2 = .99, F1, 14 = 893.04, p,.001, female exemplars: R2 = .97, F1,

14 = 459.94, p,.001).

Figure 2. Identification and rating scores of boys’ voices along the gender continua. Scores were averaged across listeners on voice
stimuli (numbered 1–16 on the x-axis) for the boys’ exemplars. The mean identification scores are plotted from 0 = male to 1 = female (left y-axis) and
fitted with the logistic curve (black line). The vertical lines illustrate the location of the estimated sex boundary (where 50% of the listeners rate the
stimuli as female) and the location of the prototypical boy voice stimulus (100%). The percentage of stimuli identified as female follows an S-shaped
pattern along the continuum of resynthesis variants. The sex identification curve is characterised by a lower plateau for stimuli 1 to 6 (DFs of 1138–
1267 Hz), where less than 10% of the stimuli are identified as female, indicating that stimuli variant with the lowest DF are mostly identified as male.
The percentage of stimuli identified as female then increases gradually and linearly, and while no upper plateau is reached, average scores for stimuli
14 to 16 (DFs of 1474–1526 Hz) varied from 76% to 85%, indicating that boys’ voices with the highest DF are mostly classified as female. Average
gender rating scores are plotted from 1 = masculine boy (or girl) to 7 = feminine boy (or girl) (right y-axis) and fitted with a linear function (straight
grey line). Mean gender ratings of male voices ranged from 1.78 (SE = .07) for the lowest DF variants to 5.36 (SE = .08) for the highest DF variants.
doi:10.1371/journal.pone.0081022.g002
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Discussion

The results of the sex identification and gender rating

experiments show that DF is an important cue for the perception

of sex and gender in the pre-pubertal human voice, in line with the

previously reported acoustic dimorphism of this parameter in pre-

pubertal speakers [8,14,17,32]. More specifically, the absence of a

sharp boundary between the sex categories in the identification

experiment, in which listeners were asked to identify the child

speaker as male or female, suggests that small, sex-related acoustic

variation in DF proportionally affects the probability of voices to

be perceived as either male or female by raters. Additionally, the

gradual slope in voice ratings from ‘‘masculine boy’’ to ‘‘feminine

girl’’ in the second experiment shows that small linear increments

in DF also proportionally affect listeners’ attributions of speakers’

gender (from masculinity to femininity). Similar results have been

reported in studies of gender perception in adult voices. A study

using a combination of identification and discrimination para-

digms [29] found that variations along a male-female continuum

of F0 and DF, the main cues to sex in adult voices, were not

remapped by listeners into separate psychological (male or female)

categories, indicating that the perception of voice sex was not

categorical. Moreover, psychoacoustic studies have shown that

both men’s and women’s voices with naturally low, or artificially

lowered, F0 and DF (or both), are rated as more masculine

[23,24,33].

In the present study, while the resynthesis continua used for boy

and girl exemplars were largely overlapping (boys: 1138–1526 Hz;

girls: 1129–1542 Hz) and both comprised within the range of DF

values achievable by both genders before puberty [10,14], the

effect of the rescaling of DF differed between boy and girl voice

exemplars, suggesting that the resynthesis of this parameter was

not sufficient to produce a voice systematically perceived as

belonging to the opposite sex, despite the standardisation of F0

and its variation. In the sex identification experiment, the

perceived sex boundary between male and female identification

estimated by the logistic model is ,100 Hz higher in boy voice

exemplars than in girl voice exemplars (Figure 2 – vertical lines),

revealing that a greater upward shift in DF was required for

Figure 3. Identification and rating scores of girls’ voices along the gender continua. Scores were averaged across listeners on voice stimuli
(numbered 1–16 on the x-axis) for the girls’ exemplars. The mean identification scores are plotted from 0 = male to 1 = female (left y-axis) and fitted
with the logistic curve (black line). The vertical lines illustrate the location of the estimated sex boundary (where 50% of the listeners rate the stimuli
as female) and the location of the prototypical boy voice stimulus (100%). The percentage of stimuli identified as female also follows an S-shaped
pattern along the continuum of resynthesis variants. The sex identification curve is characterised by a lower plateau for stimuli 1 to 3 (DFs of 1129–
1184 Hz), where between 10% and 15% of the stimuli are identified as female, indicating that stimuli variant with the lowest DF are mostly identified
as male. The percentage of stimuli identified as female then increases gradually and linearly until it reaches an upper plateau from stimuli 12 to 16
(DFs of 1432–1542 Hz), with average scores varying from 92% to 95% and indicating that girl voices with the highest DF are mostly classified as
female. Average gender rating scores are plotted from 1 = masculine boy (or girl) to 7 = feminine boy (or girl) (right y-axis) and fitted with a linear
function (straight grey line). Mean gender ratings of female voices ranged from 2.33 (SE = .02) for the lowest DF variants to 6.10 (SE = .06) for the
highest DF variants.
doi:10.1371/journal.pone.0081022.g003
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resynthesized stimuli from the voices of the two boy exemplars to

be perceived as female. The identification curve (Figure 2 – black

line) for the male exemplars is also shifted downwards relative to

that of the female exemplars (Figure 3 – black line), with a wider

plateau at the lower (male) end of the continuum, and no plateau

at the upper (female) end of the continuum. Further, the boys’

rating function (Figure 2 – grey straight line) from the gender

rating experiment is shifted downwards compared to girls’,

revealing that stimuli from boy exemplars were perceived as more

masculine than those from girl exemplars. One possible explana-

tion for the observed perceptual differences is that listeners were

affected by acoustic factors other than those manipulated (DF) or

factored out (F0 and its variation) in the present experiments. For

example, Klatt & Klatt [34] report that women are perceived to

have more breathy voices than men, corresponding to increased F1

bandwidths and decreased F1 amplitude, while breathy voices are

judged as more feminine than less-breathy voices [35], suggesting

that, at least in adults, breathiness may be a contributing factor to

the perception of sex and gender. The potential role of parameters

such as F0, F0 variation and breathiness [8,34], which are sexually

dimorphic in adults, but not in pre-pubertal children [13–15], in

the attribution of sex and gender to children’s voices, is an

important area for future research.

Independently from other hypothetical voice cues to sex and

gender attributions of pre-pubertal children’s voices, this study

clearly identifies a substantial effect of DF variation on adults’

ratings of gender in pre-pubertal speakers, with lower DF being

consistently rated as belonging to more masculine children. DF

variation has also been shown to affect judgements of body size

and age in adult speakers, with listeners rating lower DF as

belonging to older and larger individuals [36–39]. These

perceptual differences in turn appear to relate to actual differences

in age and size of speakers [39–41]. By extending the present

paradigm to include age and body size ratings, future studies could

investigate the perceptual linking of age-related size and gender

dimensions, for example whether children that are perceived to be

more masculine are also perceived to be older and bigger than

their more feminine counterparts. Moreover, the use of natural

(rather than re-synthesised) stimuli from children of different ages,

body sizes and masculinities (i.e. as assessed by children’s personal

attributes questionnaires [42]), and of raters of different ages,

would help clarifying the extent to which DF reliably cues for these

dimensions throughout the lifespan.

Our observations that baseline DF variation within the natural

range of children’s voices affects listeners’ sex and gender

attributions (despite the absence of a clear anatomical basis for

such variation) lends further support to the hypothesis that sex and

gender expression in pre-pubertal children’s voices have a strong

behavioural, acquired dimension (with children learning to adjust

their VTL in order to sound more or less feminine/masculine).

Future studies using i.e. structural cine 3D structural MRI are now

needed to further test this hypothesis.

Furthermore, it has been shown that children can also

spontaneously modify DF (and F0) when asked to sound more or

less like a boy or girl (Cartei, Cowles, Banerjee and Reby,

unpublished data), suggesting that children can also control the

gender-related characteristics of their voices. The extent to which

this ability affects the expression of gender in everyday speech, in

line with varying gendered roles (i.e. to affiliate with same-sex

peers) and contexts (i.e. when speaking to a male or female), and its

perceptual relevance in gendered attributions remains to be

investigated.

Supporting Information

Audio S1 This audio file contains three variants derived
from one of the two girl exemplar voices (exemplar 2), in
which formant spacing was resynthesized from low
(longer vocal tract – more masculine sounding voice) to
high (shorter vocal tract – more feminine sounding
voice) values (DFs: 88%,102%,110%).

(WAV)

Audio S2 This audio file contains three variants derived
from one of the two boy exemplar voices (exemplar 4), in
which formant spacing was resynthesized from low
(longer vocal tract – more masculine sounding voice) to
high (shorter vocal tract – more feminine sounding
voice) values (DFs: 94%, 104%, 112%).

(WAV)
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