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An organizing principle for two-
dimensional strongly correlated 
superconductivity
L. Fratino1, P. Sémon2, G. Sordi1 & A.-M. S. Tremblay2,3

Superconductivity in the cuprates exhibits many unusual features. We study the two-dimensional 
Hubbard model with plaquette dynamical mean-field theory to address these unusual features and 
relate them to other normal-state phenomena, such as the pseudogap. Previous studies with this 
method found that upon doping the Mott insulator at low temperature a pseudogap phase appears. The 
low-temperature transition between that phase and the correlated metal at higher doping is first-order. 
A series of crossovers emerge along the Widom line extension of that first-order transition in the 
supercritical region. Here we show that the highly asymmetric dome of the dynamical mean-field 
superconducting transition temperature dTc , the maximum of the condensation energy as a function of 
doping, the correlation between maximum DTc  and normal-state scattering rate, the change from 
potential-energy driven to kinetic-energy driven pairing mechanisms can all be understood as remnants 
of the normal state first-order transition and its associated crossovers that also act as an organizing 
principle for the superconducting state.

In hole-doped cuprate high-temperature superconductors, d-wave superconductivity shows unusual features that 
cannot be explained by theoretical methods based on weak correlations1,2. This has motivated the hypothesis 
that such unusual features emerge from doping a two-dimensional Mott insulator. Advances in this regard were 
enabled by the development of new theoretical methods such as cluster extensions3,4 of dynamical mean-field 
theory5. A collective effort over the last decade has shown that the key aspects of the phenomenology of cuprates 
are contained in the two-dimensional Hubbard model. Within this theoretical framework, here we show that 
these key aspects rest with a single organizing principle, namely a normal-state first-order transition between 
pseudogap and correlated metal beneath the superconducting dome, identified in ref. 6. Our analysis indicates 
that this emerging phase transition at finite doping shapes not only the normal-state phase diagram, but strik-
ingly leaves its mark on the complex structure of the superconducting condensate that is born out of this unusual 
normal state.

Model and Method
The two dimensional Hubbard model on a square lattice reads
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where σ
+ci  and ciσ operators create and destroy an electron of spin σ on site i, niσ =   σ

+ci  ciσ is the number operator, μ 
is the chemical potential, U the onsite Coulomb repulsion and tij is the nearest neighbor hopping amplitude. 
Neglecting second-neighbor hopping, necessary to capture the correct Fermi surface, minimizes the Monte-Carlo 
sign-problem and does not alter our main findings (see supplementary Fig. S7). Unless specified, the lattice spac-
ing, Planck’s constant, Boltzmann’s constant and t are unity.

We solve this model using cellular dynamical mean-field theory3,4 (CDMFT) on a 2 ×  2 plaquette immersed 
in an infinite self-consistent bath of non-interacting electrons. This plaquette is the minimal cluster that includes 
all two-dimensional short-range charge, spin and superconducting dynamical correlations. We do not take 
into account long-range charge-density waves in light of the recent experimental results where this transition 
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is removed by pressure7. Long-range antiferromagnetism concomitant with long-range superconductivity has 
been treated at T =  0 in previous work8–10. Since we are interested in large values of U, i.e. a doped Mott insulator, 
the most appropriate method to solve the impurity (cluster plus bath) problem is the hybridization expansion 
continuous-time quantum Monte Carlo method11. Sign problems prevent the study of large U with alternate 
quantum Monte Carlo methods11. We use two recent algorithmic improvements to speed up the calculations: a 
fast rejection algorithm with skip-list data structure12 and four point updates that are necessary for broken sym-
metry states like d-wave superconductivity13.

Let us first consider the superconducting phase diagram. We then discuss features of the normal state that 
determine its shape.

Superconducting dome.  Previous studies show that both at half-filling and at finite doping the metallic 
state close to the Mott insulator is unstable to d-wave superconductivity8–10,14–23. In Fig. 1 we map out the super-
conducting state in the U −  T plane for the undoped case and in the δ −  T plane for different values of U. The 
superconducting region is defined as the region of non-zero superconducting order parameter Φ ≡ ↑ − ↓c cK K  
(where the cluster momentum K is (π, 0)). The boundary, Tc

d, is obtained from the mean of the two temperatures 
where Φ  changes from finite to a small value (here |Φ | =  0.002). While there is no continuous symmetry breaking 
in two dimensions at finite temperature, Tc

d physically denotes the temperature below which the superconducting 
pairs form within the cluster14. The actual Tc can be reduced (because of long wavelength thermal or quantum 
fluctuations24 or of competing long range order1) or increased (because of pairing through long wavelength anti-
ferromagnetic fluctuations25), but Tc

d still remains a useful quantity marking the region where Mott physics and 
short-range correlations produce pairing.

As a function of U, Tc
d changes from finite to zero discontinuously at the first-order Mott metal-insulator tran-

sition (red shaded region in panel a). Superconductivity appears in the metastable metallic state near the Mott 
insulator, never in the Mott insulator itself (panels a, b). As a function of doping, Tc

d forms a dome as long as U is 
larger than the critical value necessary to obtain a Mott insulator at half-filling (panels c–g). In our previous  
studies13,14 we left opened two possibilities: as a function of δ, either superconductivity is separated from the Mott 
insulator at δ =  0 by a first-order transition or there is an abrupt fall of Tc

d(δ). By increasing the resolution in dop-
ing near δ =  0, here we find the latter, namely Tc

d(δ) plummets with decreasing δ.
The superconducting dome is highly asymmetric. Tc

d (δ) is zero at δ =  0, initially rises steeply with increasing 
δ, reaching a peak at the optimal doping δopt and then declines more gently with further doping. The global max-
imum Tc

max of Tc
d in the U −  δ −  T space occurs just above UMIT and at finite doping δopt. Further increase of U 

leads to a decrease in Tc
max, as expected if Tc

d (δ) scales with the superexchange energy J =  4t2/U for large enough 
U10,26. As a function of U, the optimal doping δopt departs from δ =  0 for U >  UMIT, increasing with increasing U 
and saturating around δ ≈  0.04 for large U (see also supplementary Fig. S2).

The range of doping where superconductivity occurs at the lowest temperature is consistent13 with results 
obtained with CDMFT at T =  010. The asymmetric superconducting dome with an abrupt fall of Tc

d with decreas-
ing δ is also consistent with dynamical cluster approximation results on larger clusters22. In the latter calculations, 
the increased accuracy in momentum space leads to a Tc that vanishes before half-filling.

Superconducting order parameter.  To analyse the shape of the superconducting phase we turn to the 
superconducting order parameter Φ , whose magnitude is color-coded in Fig. 1 (the raw data is in Fig. S1). While 
Tc

max occurs at finite doping, the overall maximum Φ max is found in the undoped model close to the Mott insula-

Figure 1.  d-wave superconducting phase obtained by the plaquette CDMFT solution of the two-
dimensional Hubbard model. We explore the T −  U −  δ space by taking cuts at n =  1 as a function of U and T 
[panel (a)] and at constant U as a function of δ and T [panels (b–g)]. Superconductivity is delimited by Tc

d (line 
with blue filled circles), the temperature below which the superconducting order parameter Φ  is nonzero. Color 
corresponds to the magnitude of |Φ | (see supplementary Fig. S1 for Φ (U) and Φ (δ) curves at different T). The 
loci of Φ max(δ) are shown by blue triangles. On the right vertical axis we convert temperature to Kelvin by using 
t =  0.35eV. The coexistence region across the first-order Mott metal-insulator transition appears in panel (a) as 
red shaded area. It is obtained from the hysteretic evolution of the double occupancy with U14.
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tor. But as a function of doping, for U >  UMIT, Φ  forms a dome that reaches a peak at δΦ max. At our lowest temper-
ature, δΦmax increases with increasing U, and saturates around δ ≈  0.1110 for large values of U. Notice that δΦ max at 
our lowest temperature does not coincide with δopt, i.e. the doping that optimizes Tc

d. Hence, Tc
d (δ) does not scale 

with Φ (δ, T →  0). Instead, the locus of the maxima of Φ  in the δ −  T plane at fixed U traces a negatively sloped line 
within the superconducting dome (lines with blue triangles) that separates the superconducting dome in two 
regions. The sharp asymmetry of the superconducting dome is thus linked to this negatively sloped line, which in 
turn is related to the phase transition between pseudogap and correlated metal in the underlying normal state, as 
we discuss below.

Superconductivity and pseudogap.  Understanding the normal state has long been considered a prereq-
uisite to a real understanding of high-temperature superconductivity. This comes out clearly from our results. 
Previous normal-state CDMFT studies show that for U >  UMIT and small δ, large screened Coulomb repulsion U 
and the emergent superexchange J lead at low T to a state with strong singlet correlations. That phase has the char-
acteristics of the pseudogap phase6. The fall of the Knight shift as a function of temperature27 is usually associated 
with T*(δ) the onset temperature for the pseudogap. The line with orange filled circles in Fig. 2(a–c) 28 indicates 
the onset of the drop of the spin susceptibility and of the density of states as a function of T and the minimum in 
the T dependence of the c-axis resistivity28 and is thus T*(δ) in our calculation. From our point of view, it is just 
a precursor to a more fundamental phenomenon. T*(δ) exists only if the doping is less than a critical value δ <  δp 
which is the doping for the critical endpoint (δp, Tp) of a first-order transition that appears in Fig. 2a. A number 
of crossover lines are associated with this first-order transition. We will discuss them in turn. For larger values of 
U, Fig. 2b,c, the first-order transition is no-longer visible at accessible temperatures, but the crossovers that are 
left suggest that it is still present29.

The normal-state first-order transition separating a pseudogap phase and a correlated metal persists up to the 
critical endpoint, beyond which only a single normal-state phase exists. Quite generally, different response func-
tions have maxima defining crossover lines emerging from the critical endpoint30. The Widom line is known as 
the line where these maxima join asymptotically close to the critical endpoint30. Here we estimate that line, (red 
open triangles) TW in the upper panels of Fig. 2, as the line where the isothermal electronic compressibility has a 
maximum6,29,31. Let us briefly consider the other crossover lines. A scan in doping at fixed T shows that the local 
density of states at the Fermi energy, the spin susceptibility and the c-axis DC conductivity go through an inflec-
tion point at TW(δ)28. The first-order transition is also a source of anomalous scattering29,31. The blue open dia-
monds indicate the maximum Γmax of the normal state scattering rate Γ . Its magnitude, estimated from the 
zero-frequency extrapolation of the imaginary part of the (π, 0) component of the cluster self-energy, is 
color-coded in Fig. 2a–c. The region where Γ  is large is dark blue. It originates at the transition, extends well above 

Figure 2.  (a–c) Temperature versus hole doping phase diagram for U/t =  6.2, 7 and 9, respectively. 
Superconductivity is delimited by Tc

d (line with blue filled circles). Beneath the superconducting dome, the 
normal-state coexistence region across the first-order transition between a pseudogap and a correlated metal 
appears in (a) as red shaded area. It is delimited by the jumps in the electron density as a function of chemical 
potential and collapses at the critical endpoint (Tp, δp). The Widom line TW emerging from the endpoint is 
estimated by the maxima of the charge compressibility along paths at constant T (line with red triangles)6, and 
the pseudogap onset T* is computed by the maximum of the spin susceptibility (line with orange circles)28. The 
loci of Φ max(δ) are shown by blue triangles and follow TW of the underlying normal state. Color corresponds to 
the magnitude of the scattering rate Γ , estimated from the zero-frequency extrapolation of the imaginary part of 
the (π, 0) component of the cluster self-energy29,31. (d–f) Difference in kinetic, potential and total energies (blue, 
red and green lines respectively) between the superconducting and normal states, for T/t =  1/50, 1/100 (full and 
dashed line, respectively). Shaded bands give standard errors. The loci where the condensation energy is largest 
are shown in the upper panels as green filled squares. They follow TW(δ) and Φ max(δ).
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Tc
d and is tilted towards the Mott insulator. This large Γ  is suppressed upon entering the superconducting state21,32 

(see supplementary Fig. S3).
Even though the first-order transition is absent in the superconducting state, the structure it imposes on 

the normal state shapes the superconducting phase diagram: (a) the maximum of the superconducting order 
parameter Φ max (line with blue filled triangles in Fig. 2a–c) parallels TW and Γ max, hence the highly asymmetric 
shape of the superconducting dome is correlated with the slope of the first-order transition and of its supercritical 
crossovers in the T −  δ plane; (b) Γmax crosses the superconducting dome approximately at δopt, hence a region 
of anomalous scattering broadens as it comes out of the dome; (c) since T* can be detected for doping smaller 
than δp only, superconductivity and pseudogap are intertwined phenomena: superconductivity can emerge from 
a pseudogap phase below δp, or from a correlated metal above δp

14; (d) the normal state also controls the source of 
condensation energy, as we now discuss.

Condensation energy.  The superconducting state clearly has a lower free energy than the normal state 
out of which it is born. In the ground state, the energy difference between both states is known as the con-
densation energy. The origin of the condensation energy is unambiguous only within a given model33,34. In the 
BCS model, superconductivity occurs because of a decrease in potential energy. The kinetic energy increase due 
to particle-hole mixing in the ground state is not large enough to overcome the potential energy drop. In the 
cuprates, analysis of inelastic neutron scattering35 has suggested that superconductivity arises because of a gain in 
exchange energy in the t – J model. Analysis of ARPES36 and optical data37–40 in the context of the Hubbard model 
has suggested that superconductivity is kinetic-energy driven in the underdoped regime34,35,41–43.

In the lower panels of Fig. 2 we plot, for the Hubbard model Eq. 1, the difference in kinetic and potential ener-
gies between the superconducting and normal states (ΔEkin and ΔEpot; blue and red lines respectively) as a func-
tion of doping. The results for the two different temperatures are close enough to suggest we are close to ground 
state values. The net condensation energy, shown by the green line, is always negative, as expected. The doping 
dependence of ΔEkin and ΔEpot on the other hand shows two striking features: it is non monotonic and can display 
a sign change. For U =  6.2,7, Fig. 2d,e, superconductivity is kinetic-energy driven at small doping and potential 
energy driven, as in BCS theory, at large doping. For U =  9, Fig. 2f, superconductivity is kinetic energy driven for 
all dopings, although the potential energy difference ΔEpot can change sign.

Previous investigations23,39,44 have revealed a complex behavior that remained to this day a puzzle, with ΔEkin 
going from negative to positive depending on T and U. What has beeno missing to make sense of this complexity 
is the existence of the normal state first-order transition and its associated supercritical crossovers. By considering 
different values of U, we provide a unified picture of a host of apparently contradictory results. For all U consid-
ered, the largest condensation energy (see green line in bottom panels of Fig. 2 and green squares in top panels of 
Fig. 2) is concomitant with the largest superconducting order parameter Φ (δ) (but not with the maximum Tc

d ) 
and hence correlates with the normal-state pseudogap-to-correlated metal first-order transition, and its associ-
ated supercritical crossovers. For all U, the sign changes are also close to the maximum condensation energy and 
hence also correlated with the same normal-state features. The influence of Mott and superexchange physics 
extends unambiguously all the way to the normal-state first-order transition terminating at the critical endpoint, 
from which supercritical crossovers emerge31. This reflects itself in the superconducting state in a decisive  
manner: the changes in sign of the different sources of condensation energy occur for dopings similar to those 
where the normal-state transition occurs.

Source of condensation energy.  Bottom panels of Fig. 2 (see also Fig. S5) show that in the underdoped 
region, the kinetic-energy change in the superconducting state is close to minus twice the potential energy 
change. This is what is expected if superexchange45 J drives superconductivity there26. The decrease with U of the 
maximum Tc

d, of the magnitude of the individual kinetic and potential energy contributions to condensation 
energy, and of the maximum value of the T =  0 order parameter8–10,18, are also all consistent with the importance 
of J in the effective model that arises from the Hubbard model at large U. The BCS-like behavior in the overdoped 
regime for U =  6.2, 7 probably arises from leftover of the weak-coupling long-wavelength antiferromagnetic 
spin-wave pairing mechanism46, although the effect of the self-consistent rearrangement of the spin-fluctuation 
spectrum in the superconducting state has not been studied yet.

Discussion
Our findings further broaden our understanding of the CDMFT solution of the Hubbard model in the doped 
Mott insulator regime by showing how and to what extent the organizing principle for both the normal state and 
the superconducting state is the finite-doping first-order transition that determines the shape and the properties 
of both phases, even though the transition itself is invisible in the superconducting state. In the T −  δ plane, the 
loci of the maximum order parameter, of the extremum condensation energy, of the maximum normal state scat-
tering relative to the maximum Tc

d, all correlate with crossover lines of the underlying normal state that is unstable 
to d-wave superconductivity.

We speculate that the application of a magnetic field strong enough to suppress Tc and pressures large enough 
to remove density waves may reveal the underlying transition. We also speculate that sound anomalies associated 
with the large compressibility in the underlying normal state above the critical endpoint could appear, in anal-
ogy with what is observed near the half-filled Mott transition in layered organics47–52. The appearance of large 
electronic compressibility near the normal state first-order transition suggests that further studies of ubiquitous 
bond-density waves7 should be undertaken with the same set of methods.
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