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Background. Systemic inflammatory response syndrome (SIRS) accompanied by trauma can lead to multiple organ dysfunction
syndrome (MODS) and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow
mesenchymal stem cells (BMSCs), as a novel therapy modality, have been shown to reduce inflammatory responses in human
and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay
(ELISA) to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS) in human umbilical
cord endothelial cells (HUVECs) and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory
response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor
(TLR) 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-𝛼 in both cells. Coculture with
BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate
that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

1. Introduction

Traumatic injury is the leading cause of morbidity and
mortality, which affects many parts of the body, including the
brain, extremities, and internal organs. The incidence of life-
threatening complications, such as systemic inflammatory
response syndrome (SIRS) and acute lung injury (ALI),
in severely injured trauma patients remains between 30%
and 50% [1, 2]. SIRS induced by severe trauma or other
injuries is a clinical syndrome initiated by dysregulation of
inflammation, which could lead to various tissue injuries
culminating in multiple organ dysfunction/failure syndrome
(MODS/MOF).

Bone marrow-derived mesenchymal stem cells (BMSCs),
also referred to as marrow stromal cells, are a multipo-
tential lineage characterized by the capacity for extracor-
poreal expansion and the ability to differentiate into bone,
cartilage, and adipose tissues. BMSCs appear to function
as potent immunomodulators. Numerous studies indicated
that BMSCs can be an effective modality for cell-based
immunomodulatory therapies in various diseases, such as
sepsis, endotoxemia, diabetes, and lung injury [3–9], espe-
cially for reducing of inflammation [4, 5, 10]. Several clinical
trials assessing the efficacy of BMSCs in immune-mediated
diseases are currently underway. However, how BMSCs
attenuate inflammatory reaction is poorly understood.
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Quick and efficient response to microbial infections is
driven by recognition of molecules broadly shared by a
variety of pathogens, which are distinguishable from host
molecules named pathogen associated molecular patterns
(PAMPs). Pattern-recognition receptors (PRRs) that contain
membrane-bound PRRs, including toll-like receptors (TLRs)
and other cytoplasmic proteins, recognize the PAMPs [10].
Upon binding with the PAMPs, TLR2 and TLR4 then activate
NF-𝜅B and subsequently promote cytokine synthesis, which
include IL-1, IL-6, and TNF-𝛼 [11, 12]. The network of TLRs
and PRRs mediates the response of BMSCs to inflammatory
stimuli, such as LPS [13, 14]. However, how TLRs modulate
the BMSC activity is not clearly elucidated. Since TLR2
and TLR4 response to acute otitis through activation of
NF-𝜅B [15], we hypothesized that BMSCs ameliorate the
inflammation damage of alveolarmacrophages andHUVECs
through the inhibition of TLR2 and TLR4 mediated NF-𝜅B
pathways.

2. Materials and Methods

2.1. Cell Culture. Alveolar macrophages and HUVECs were
purchased from Chi Scientific, Inc. (China). The cells were
cultured in RPMI 1640 medium (Sigma Chemical Co., St.
Louis, MO) supplemented with 10% fetal bovine serum (FBS)
(Gibco, Carlsbad, CA, USA) and 1% penicillin/streptomycin
(Solarbio, Beijing, China) at 37∘C in a humidified atmosphere
of 5% CO

2
. BMSCs obtained from Cyagen Biosciences

Inc. (Suzhou, China) were cultured in 10% FBS-DMEM-LG
(Gibco, Carlsbad, CA, USA).The surface markers for BMSCs
differentiation of adipocytic, osteogenic, and chondrogenic
lineages were characterized as previously reported [16]. Only
passages 3–7 of the cells were used for experiments.

2.2. Endothelial Permeability Assay. Monolayer permeability
was quantitated by spectrophotometric measurement of the
flux of Evans blue-albumin across HUVECs as described
previously [17]. HUVECs (1 × 105) were seeded in 24-well
Transwell inserts (5 𝜇m pore size, Corning Incorporated,
NY, USA) and cultured with 10% FBS DMEM overnight
and then changed with serum-free medium for another 24
hours. The various numbers of BMSCs were seeded at the
bottom of the same 24-well plate with serum-free media. LPS
was added to the Transwell inserts at a final concentration
of 100 ng/mL for different time points (1, 3, 6, 12, and
24 h). After that, the BMSCs were digested by trypsin-EDTA
solution to terminate the effects of BMSCs and 100 𝜇L Hank’s
solution containing Evans blue- (EB-) conjugated bovine
serum albumin (final concentration 0.67mg/mL) was added
to the Transwell inserts, while 600 𝜇L 4% BSA was added
to the lower plate chamber. After incubation at 37∘C for
1 hour, 100 𝜇L BSA solution from the lower chamber was
harvested and measured for the absorbance at 620 nm. The
HUVECs permeability capacity was calculated as follows:
Evans blue dye-labeled albumin (EB-albumin) leak rate =
OD620leaked EB-albumin/OD620total EB-albumin × 100%.

2.3. Alveolar Macrophages/HUVECs-BMSC Coculture Exper-
iments. Alveolar macrophages or HUVECs (1 × 106/well)

were seeded in a 6-well plate, after 24-hour incubation,
BMSCs (2 × 105/well) were seeded in the 6-well Transwell
inserts (5 𝜇m pore, Corning Incorporated, NY, USA) at the
indicated time points (1, 3, 6, 12, and 24 h). LPS (100 ng/mL)
was then added to the lower chamber for 1 h. Alveolar
macrophages or HUVECs lysate was collected for RNA and
protein analyses, and the cell-free supernatants were collected
for ELISA detection.

2.4. Western Blot Analysis. Alveolar macrophages/HUVECs
were lysed in the RIPA buffer (Thermo Scientific, Rockford,
USA) supplemented with 1% PMSF and 1% protein phos-
phatase inhibitor mixture (P1260, Applygen, Beijing, China).
The concentration of the proteins was measured with the
Bicinchoninic Acid Kit (Thermo Scientific, Rockford, USA).
Rabbit anti-TLR2, TLR4, and phosphorylated p65 unit of NF-
𝜅B antibodies were obtained from Cell Signaling Technol-
ogy. Horseradish peroxidase- (HRP-) conjugated goat anti-
rabbit antibodies were purchased from Bio-Rad. ECL-Plus
Chemiluminescent Reagent (Thermo Scientific, Rockford,
USA) was used to visualize the specific proteins. Relative
concentration of proteins was quantitated using the Image J
Software (National Institutes of Health, Bethesda, USA).

2.5. Gene Expression Analysis. Total RNA was isolated from
cells using the TRIzol RNA Isolation Reagents (Life Tech-
nologies). The first-strand cDNAs were converted using the
SuperScript III reverse transcriptase (Invitrogen, Carlsbad,
CA) according to the manufacturer’s protocols. Real-time
RT-PCR analysis was performed on ABI 7500 Sequence
Detection System using the UltraSYBR Mixture (CW Bio
Co. Ltd, Beijing, China). Transcript expression was nor-
malizedwith the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) housekeeping gene. The PCR primer sequences
are GAPDH forward 5-TGGAGTCTACTGGCGTCTT-
3, reverse 5-TGTCATATTTCTCGTG GTTCA-3; TLR4
forward 5-CTGCATAGAGGTAGTTCCT-3, reverse 5-
TCCAGCC ACTGAAGTTCTGA-3; TLR2 forward 5-
GGAGACTCTGGAAGC ATG-3, reverse 5-GCATCCT
GAAGCCTGTG-3.

2.6. ELISA Analysis. The supernatants collected from cocul-
ture system were centrifuged for 10 minutes at 1000 g
(4∘C) to remove cell debris. The levels of TNF-𝛼 and IL10
were measured using commercially available enzyme-linked
immunosorbent assay (ELISA) kits (BD Biosciences, San
Diego, CA, USA) according to the instructions provided by
the manufacturer.

2.7. Statistical Analysis. SPSS 17.0 software was used to per-
form the statistical analysis and values are presented as the
means ± standard deviations (SD); all experiments were
repeated at least three times. The one-way ANOVA was used
to determine the significance of differences between various
groups.𝑃 < 0.05was considered to be statistically significant.

3. Results

3.1. BMSCs Inhibit LPS to Induce Hyperpermeability in
HUVECs. To assess how BMSCs affected HUVECs perme-
ability induced by LPS, HUVECs with or without coculture
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Figure 1: Effect of BMSCs on the barrier permeability of HUVECs.
HUVECs were stimulated by LPS at a dosage of 100 ng/mL (black
bars). In addition, HUVECswere coculturedwith indicated concen-
trations of BMSCs: low (1 × 103 cells/mL, dark grey bars), median (1
× 104 cells/mL, light grey bars), and high (1 × 105 cells/mL, white
bars) for 1, 3, 6, 12, and 24 h followed by measuring permeability as
described in Section 2. All results are means ± SD of at least three
different experiments. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01.

with BMSCs were stimulated by LPS for the indicated times.
Without coculture with BMSCs, the EB-albumin leaking rate
ranged from 5.35% (at 1 h) to 7.72% (at 24 h) in the LPS group
(Figure 1). Compared with the LPS group, the EB-albumin
leaking rates in the BMSC coculture group were reduced
in a BMSC cell number- and time-dependent manner. The
EB-albumin leaking rate in the 1 × 104/mL BMSCs group
was decreased 3 hours after coculture. The effects were more
significant after coculture for 6 hours to 24 hours. The effects
were less significant in the group with 1 × 103/mL BMSCs
and more significant in the group with 1 × 105/mL BMSCs
(Figure 1).

3.2. BMSCsAttenuate LPS-Induced Expression of TLR2, TLR4,
and p65 in Alveolar Macrophages and HUVECs. To deter-
mine whether LPS stimulated expression of TLR2, TLR4, and
p65 in macrophages and HUVECs was affected by BMSCs,
alveolar macrophages and HUVECs cells were cocultured
with BMSCs for the indicated time followed by LPS treat-
ment. Western blot (Figure 2) and real-time RT-PCR anal-
yses (Figure 3) showed that LPS administration increased
expression of TLR2, TLR4, and p65 within 1 hour after the
treatment. The effect persisted even until 24 hours after the
treatment. However, the activity of LPS was attenuated by
coculture with BMSCs in both alveolar macrophages and
HUVECs (Figures 2 and 3).

3.3. BMSCs Suppress Alveolar Macrophages and HUVECs to
Release IL10 and TNF-𝛼 in Response to LPS Stimulation. To

determine whether BMSCs regulated the release of TNF-
𝛼 and IL10 from alveolar macrophages and HUVECs in
response to LPS stimulation, the conditioned medium was
collected from the coculture system and the concentrations
of IL10 and TNF-𝛼 were assessed by ELISA. It was clear
that concentration of TNF-𝛼 in the medium was increased
after LPS stimulation within 1 hour and the effects lasted for
24 hours. However, the increases were blunted by coculture
with BMSCs. In contrast, IL10 was reduced by LPS stimu-
lation, while coculture with BMSCs increased medium IL10
production. The results indicate that BMSCs suppress LPS-
induced inflammation by decreasing TNF-𝛼 and increasing
IL10 releases (Figure 4).

4. Discussion

BMSCs treatments have been shown to reduce inflammatory
response in human and animal models in response to injury.
However, the detailed mechanism underlying this effect is
not clear. Here, we reported that BMSCs alleviated HUVEC
damage induced by LPS.The results also showed that BMSCs
restricted the inflammatory responses of HUVECs and alve-
olar macrophage stimulated by LPS and therefore protected
HUVECs from damage induced by the endotoxin. The data
indicate that attenuating LPS-induced TNF-𝛼 pathway acti-
vation inHUVECs andmacrophage by BMSCs contributes to
the protection of HUVECs from endotoxin-induced damage
by BMSCs.

Our data demonstrated that LPS increased the perme-
ability of HUVECs monolayers in a time-dependent manner.
Although the extent of the activity was lower than that
after coculture for a longer time, the protection effects were
detectable within one hour. The underlying mechanism of
the protection is not clear. Since BMSCs and HUVECs were
cultured separating by the Transwell membrane, the effects
of BMSCs must be mediated by soluble factors released
from BMSCs. However, we did not rule out the possibility
that BMSCs sequestrated LPS and therefore protected the
endothelial cells. Future efforts are needed to identify these
beneficial secretory factors from BMSCs. Although LPS still
induced HUVECs damage in the coculture, the EB-albumin
leaks were reduced compared with the group without cocul-
ture with BMSCs. This suggests that BMSCs attenuate the
damage. We observed that the protective effect of BMSCs on
HUVEC was cell number-dependent. High concentrations
of BMSCs were more effective than low concentrations
of BMSCs. It appeared that the BMSCs released sufficient
protective molecules to protect endothelial cells within one
hour. Therefore, immediately administration of BMSCs to
SIRS patients shall have beneficial effects. Furthermore, the
results were in line with previous reports that LPS leads
to persistent damage of HUVECs [18, 19]. However, it was
different from the report that the damage of HUVEC by LPS
is not time-dependent [17]. The discrepancy is likely due to
different culture time. We cultured the cells for 24 hours to
reach the confluence, followed by serum starvation for 24
hours and LPS treatment. This method is different from the
published one where the cells were cultured for 4 days prior
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Figure 2: Continued.
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Figure 2: Coculture with BMSCs attenuates the activity of LPS to induce expressions of TLR2, TLR4, and p65 in alveolar macrophages (a)
and HUVECs (b) at the protein level.The total proteins were extracted from the cultured alveolar macrophages and HUVECs treated (1) PBS
control, (2) BMSCs, (3) LPS, and (4) BMSCs and LPS. The expressions of TLR2, TLR4, and p-NF-𝜅B p65 were determined by Western blot.
The density of specific bands was quantitated. Data are expressed as the mean ± SD from three experiments. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01.
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Figure 3: Coculture with BMSCs attenuates the activity of LPS to induce expressions of TLR2 and TLR4 in alveolar macrophages (a) and
HUVECs (b) at themRNA level.The total RNAswere extracted from the cultured alveolarmacrophages andHUVECs treated (1) PBS control,
(2) BMSCs, (3) LPS, and (4) BMSCs and LPS.The expressions of TLR2 and TLR4 were determined by real-time RT-PCR. Data are expressed
as the mean ± SD from three experiments. ∗𝑃 < 0.05, ∗∗𝑃 < 0.01.

to the experiments. Further efforts are needed to clarify this
discrepancy.

TLRs play a pivotal role in defense against invading
pathogens through recognizing PAMPs. It is well docu-
mented that cells use TLR2 and TLR4 to recognize PAMPs
expressed by bacteria. Activation of TLR2 and TLR4 leads
to activation of MAPK and NF-𝜅B pathways and production
of inflammatory cytokines, including IL-1, IL-6, and TNF-
𝛼 [20–22]. In this study, we showed that LPS promoted

expression of TLR2 and TLR4 in alveolar macrophages and
HUVECs. However, how expression of TLR2 expression
was increased by LPS is unknown and deserves future
investigations. TNF-𝛼 and IL10 expressions were also affected
by LPS. Furthermore, the LPS effects were diminished
when the HUVECs and macrophages were cultured with
BMSCs. TNF-𝛼 is a potent inflammatory factor and IL10 is
a key anti-inflammatory cytokine. Downregulation of TNF-
𝛼 and upregulation of IL10 in HUVECs and macrophage
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Figure 4: Coculture with BMSCs attenuates the activity of LPS to induce release of cytokines in alveolar macrophages (a) and HUVECs (b).
Alveolar macrophages and HUVECs with or without coculture with BMSCs were treated with LPS or PBS for 1, 3, 6, 12, and 24 hours. The
cell culture supernatant was then collected for cytokine analysis by ELISA. Data are expressed as the mean ± SD from three experiments.
∗

𝑃 < 0.05, ∗∗𝑃 < 0.01.

indicate that the inflammatory reactions were suppressed.
The results suggest that BMSCs have the ability to alleviate
pathogen-induced inflammation damage in HUVECs and
macrophages.

In conclusion, the results showed that BMSCs attenuated
the activity of LPS on the inflammatory reaction of HUVECs
and alveolar macrophages through inhibiting upregulation of
TLR2, TLR4, and p65 expression, as well as downregulating
TNF-𝛼 release and upregulating IL10 release.
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