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Abstract
The emergence and rapid spreading of novel SARS-CoV-2 across the globe
represent an imminent threat to public health. Novel antiviral therapies are
urgently needed to overcome this pandemic. Given the significant role of the
main protease of Covid-19 for virus replication,we performed a drug-repurposing
study using the recently deposited main protease structure, 6LU7. For instance,
pharmacophore- and e-pharmacophore-based hypotheses such as AARRH and
AARR, respectively, were developed using available small molecule inhibitors
and utilized in the screening of the DrugBank repository. Further, a hierarchi-
cal docking protocol was implemented with the support of the Glide algorithm.
The resultant compounds were then examined for their binding free energy
against the main protease of Covid-19 by means of the Prime-MM/GBSA algo-
rithm. Most importantly, the machine learning-based AutoQSAR algorithm was
used to predict the antiviral activities of resultant compounds. The hit molecules
were also examined for their drug-likeness and toxicity parameters through the
QikProp algorithm. Finally, the hit compounds activity against themain protease
was validated using molecular dynamics simulation studies. Overall, the present
analysis yielded two potential inhibitors (DB02986 and DB08573) that are pre-
dicted to bindwith themain protease of Covid-19 better than currently used drug
molecules such as N3 (cocrystallized native ligand), lopinavir, and ritonavir.
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1 INTRODUCTION

The outbreak of coronavirus disease (COVID-19) has
raised major health concerns to humans worldwide.
The novel severe acute respiratory syndrome corona
virus-2 (SARS-CoV-2) has been identified as the causative
pathogen, which belongs to the family Coronoviridae and
genus Betacoronavirus.1 The global pandemic initiated in
late December 2019 in Wuhan, capital of China’s Hubei
province. Since then, it has swiftly spread across the world
claiming thousands of lives (https://www.who.int/csr/
don/12-january-2020-novel-coronavirus-china/en/). The
virus is most likely originated from a zoonotic transmis-
sion from bats to humans and now has progressed to
transmit from humans to humans. Faced with such a
forbidding situation, World Health Organization is also
determined to working together with transport, travel, and
tourism sectors on emergency preparedness and response.
Therefore, there is an imminent necessity to understand
this novel virus and develop various measures to control
its spread.
Recent studies have proposed that the full-length

genome of SARS-CoV-2 is quite similar to SARS-CoV
based on phylogenetic analysis.2,3 It was also found
to exhibit a putatively similar cell entry mechanism
and human cell receptor utilization to that of SARS-
CoV.4,5 Considering this apparent similarity, scientists
have recently carried out preliminary research to identify
potential vaccine targets for COVID-19 based on SARS-
CoV immunological studies.6 However, no specific thera-
peutics is accessible to treat the infection indicating that
only clinical symptoms along with secondary infections
could be treated with a repurposed antiviral drug. Hence
there is a dire need to develop potent therapeutics and vac-
cines against SARS-CoV-2.
One of the attractive targets for anti-CoV drug design

is coronavirus main protease. It plays a vital role in viral
gene expression and replication through proteolytic pro-
cessing of polyproteins.7 The crystal structure of SARS-
CoV-2 main protease was recently elucidated to enable
the designing of specific protease inhibitors.8 Even though
the main proteases of SARS-CoV-2 and SARS-CoV are
closely related with a sequence identity of 96.1%9,10 the
drugs developed for SARS-CoV could not be suggested
for the treatment as they remained in the preclinical
stage.11 Several studies have been carried out to inves-
tigate the inhibitory activity of repurposed drugs for
SARS-CoV-2 treatment.12,13 However, treating this infec-
tion with drugs, formerly designed for different targets,
might result in adverse side effects and unwanted phar-
macological effects.14 Therefore, in the present study our
team has attempted to screen protease inhibitors by explic-
itly targeting the main protease of SARS-CoV-2. Impor-

Highlights

Given the significant role of the main protease
of Covid-19 for virus replication, we performed a
drug-repurposing study for novel antiviral ther-
apies using the main protease structure, 6LU7.
After screening the DrugBank repository, a hier-
archical docking protocol was implemented and
candidates were examined for their binding free
energy. Machine learning-based AutoQSAR algo-
rithm was then used to predict the antiviral activi-
ties of resultant compounds. Finally, hit molecules
were examined for their drug-likeness, toxicity,
and activity against the main protease. Overall,
analysis yielded two potential inhibitors (DB02986
and DB08573) that are predicted to bind with the
main protease of Covid-19 better than currently
used drug molecules.

tantly, we employed a drug-repurposing approach as it
helps to identify the hidden feature of the existing drug
molecule. Avarol, which is one such notable example, was
originally known as an antibacterial compound, which
was then identified as a potential drug molecule for
Alzheimer’s disease and HIV through drug-repurposing
approaches.15–17 These virtual screening strategies have
shown great promise in identifying bioactive molecules
from large libraries.18–20 In addition to these approaches,
PrimeMM/GBSA (molecularmechanics/generalized born
surface area) analysis, AutoQSAR techniques, andmolecu-
lar dynamics (MD) simulation were performed to contem-
platemore efficacious drugs.We believed that hits resulted
from our integrated approach provide a clue to the control
of the emerging SARS-CoV-2 pandemic.

2 MATERIALS ANDMETHODS

2.1 Preparation of dataset

The protein structure used in our study was obtained from
the Protein Data Bank (PDB ID: 6LU7) and was prepared
using Schrödinger’s protein preparation wizard.21 Hydro-
gen bond optimizations, water removal, protein struc-
ture correction, and finally protein energy minimization
using OPLS_2005 force field were carried out during the
preparation. Subsequently, the position of N3 (cocrystal-
lized native ligand; used as the reference compound) was
defined for grid generation. Further, a set of ninemolecules
consisting of the substructure of the cocrystallized ligand
of SARS-CoV-2 protease, a cocrystallized ligand, three sub-
structures of equivalent SARS-CoV-1 protease inhibitors,

https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/


714 T et al.

and four known SARS-CoV-1 inhibitors with low bind-
ing affinity were extracted from the literature.22 These
molecules were then cleaned using default specifica-
tions of the LigPrep module and utilized for hypothesis
generation.21 Additionally, a phase databasewas generated
from a total of 9591 molecules retrieved from DrugBank
and was utilized for virtual screening application.23

2.2 Generation of structure and
ligand-based pharmacophore models

The potential ligand–based pharmacophore model was
generated with the help of nine main protease inhibitors
retrieved from the literature.22 The nine molecules were
initially divided into actives (five molecules) and inac-
tives (four molecules). The protease inhibitors that cor-
respond to SARS-CoV-2 were considered as actives. On
the contrary, inhibitors of SARS-CoV-1 were considered as
inactives. Note that the present analysis utilizes the high-
confident nine molecules for model development as it pro-
vides a model with high precision. Subsequently, using the
PHASE module of the Schrödinger suite a common phar-
macophore hypothesis (CPH) was generated after a strin-
gent scoring and ranking process.24 Likewise, a structure-
based e-pharmacophore model was generated from the
XP-docked complex structure information associated with
nine other existing inhibitors. By selecting only favor-
able sites that contributed more to the Glide XP energy
terms, a CPH was constructed. Both the generated CPHs
were used as a three-dimensional (3D) query for screen-
ing the phase database. Finally, hierarchical GLIDE dock-
ing consisting of HTVS, SP, and XP was performed against
pharmacophore-based screenedmolecules. This process is
of immense importance to distinguish actives from inac-
tives in a virtual screening application.

2.3 Postscreening analysis

The XP screened out molecules underwent Prime
MM/GBSA analysis where their binding energies were
estimated in order to examine fine levels of compounds
activity against the main protease.25 Despite the number
of energy properties generated by the Prime algorithm, the
present analysis uses the parameter called free energy of
binding to gain insight into the activity of the compounds.
Nonetheless, the ligand strain energy, Coulomb energy,
and Van der Waals energy were also assessed in filtering
of the final hit compounds.

2.4 Machine learning principles using
AutoQSAR

AutoQSAR is a machine-learning algorithm provided by
the Schrödinger suite that builds and appliesQSARmodels

through automation.26 In order to build a predictivemodel,
AutoQSAR takes the one-, two-, and three-dimensional
structural data of a molecule along with a property (e.g.,
IC50) to be modeled as an input. It will then compute the
fingerprints and descriptors usingmachine-learning statis-
tical methods for creating a predictive QSAR model. The
predictive accuracy of themodel is evaluated using various
parameters such as ranking score, root mean square error
(RMSE), standard deviation (SD), Q2, and R2 values.27 It is
worth mentioning that the present analysis utilizes a total
of 100 3C-like proteinase inhibitors for predictive model
development. The details of themolecules along with their
pIC50 values are presented in Table S1 in the Supporting
Information.

2.5 Drug likeness and toxicity
descriptors

Finally, the set of small molecules resulted from all the
screening analyses will be tested for their drug-likeness
and toxicity properties. Of note, the pharmaceutically
relevant key descriptors such as Stars, central nervous
system (CNS), and human oral absorption (HOA) were
analyzed. The QikProp algorithm was employed for this
purpose.28 The prediction results from this toolmainly rely
on the descriptor’s value that corresponds to 95% of the
known drugs available in themarket. For instance, the Star
descriptor provides the number of descriptor outliers, CNS
provides the predicted activity of the molecule in the cen-
tral nervous system, andHOA is the predictor of qualitative
human oral absorption. Understanding of these descrip-
tors is undoubtedly of utmost importance to overcome the
clinical failure of the resultant compounds which in turn
reduce the time and resources associated with the overall
drug development process.

2.6 Molecular dynamics

MD simulations were conducted to forecast the protein’s
dynamicmotions with the bounded ligand. Gromacs pack-
age version 5.1.2 implemented with GROMOS96 43a1 force
field has been employed to generate receptor topologies.29
On the other hand, the GlycoBioChem PRODRG server
was used to generate ligand topologies.30 The solvation box
was designed as the shape of the rhombic dodecahedron
type and solvated using the SPC216 (simple point charge)
water model. Four chlorine counter ions were added to
neutralize the charge of the system during simulation. The
steepest descent algorithm was employed to perform the
energy minimization of the main protease structure using
nsteps and energy step size parameters of 50,000 and 0.02,
respectively. Additionally, the system was calibrated with
the constant temperature (300 K) and pressure (1 bar)
via Berendsen thermostat coupling and default system
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pressure coupling, respectively. Each of the equilibration
steps was carried out for 100 ps. The dynamic simulation
of the complex system was performed for 10 ns after all
the preprocessing phases.31 Root-mean square deviations
(RMSD) were estimated using the MD trajectory to learn
the variations in protein conformation during the various
simulations as well as the total number of intermolecular
hydrogen bonds measured for each protein–ligand com-
plex to gain insights into the binding effectiveness.
Importantly principal component analysis (PCA) of the

system was performed to evaluate the atomic motions
present in the system using the covariance matrix through
gromacs utilities such as g_covar, g_anaeig, and g_sham.
Eigenvalues and Eigenvectors are generated to determine
the directional movements of atoms during different time
periods. Finally, Gibbs energy landscape (FEL) was cal-
culated in order to determine the energy minima con-
formations of ligand during the different motions of the
protein.32

3 RESULTS

3.1 Pharmacophore model generation

The pharmacophore model development was achieved by
means of existing main protease inhibitors reported in the
literature.22 Initially, the structure cleaning (protonation
and chirality assessment) was accomplished using the Lig-
Prep module. With the set of cleaned-up ligands, a con-
formational search will be initiated to generate a set of
conformers for each ligand by the ConfGen option. The
generated conformers are grouped into actives and inac-
tives, and then pharmacophoric sites were created. The
pharmacophores from all conformations of the ligands in
the active set are examined. Subsequently, common phar-
macophores hypotheses were identified using a tree-based
partitioning technique. The hypothesis with the best sur-
vival score was utilized to screen the phase database. Here,
the hypothesis named AARRH, consisting of two hydro-
gen bond acceptors (A), two aromatic rings (R), and one
hydrophobic group (H), was chosen for further analysis.
The generated hypothesis is represented in Figure S1 in the
Supporting Information.

3.2 E-Pharmacophore model generation

On the contrary, the energy-based model is generated by
considering theGlideXPdocked structures of protein com-
plexes as an input. The ligand docked possessing of all
the fragments and their contributions in ligand binding
will be taken into account in this approach of model gen-

eration. The hypothesis was built by mapping energetic
terms of Glide XP on pharmacophoric features. The struc-
tural and energy information present in between the pro-
tein and ligandmolecule were used to compute these ener-
getic terms.33 Consequently, a four-featured model was
generated which consists of two hydrogen bond acceptors
(A) and two aromatic rings (R) (AARR) (Figure S2 in the
Supporting Information). Additionally, during the model
generation process, it was made sure that the features
should exhibit an energy score higher than –0.8 kcal/mol
which was fixed as a threshold. This is essential in pri-
oritizing the crucial sites accountable for effective ligand
binding.

3.3 Virtual screening using the docking
algorithm and primeMMGBSA analysis

In the initial stage of screening, the DrugBank database
was screened independently using AARRH and AARR
hypotheses to retrieve hit molecules with similar phar-
macophore features. A total of 1000 hit molecules were
retrieved from each hypothesis. These hits were then taken
for Glide docking studies. In this process, the hits were
ranked using a three-step hierarchical process, namely,
HTVS, SP, and XP. The use of such hierarchical filters
and associated parameters was highlighted in our earlier
articles.19,34 Initially, HTVS was carried out and 500 (50%)
of the high scoring compounds were selected for the SP
docking. Finally, a total of 250 (50%) molecules from SP
docking were subjected to XP docking. The compounds
frommultistage docking were filtered out based on the XP
score threshold of native ligand (−5.444 kcal/mol). This
filter resulted in a total of 65 and 102 compounds from
the pharmacophore and e-pharmacophore-based hypothe-
sis, respectively. Subsequently, the results from both of our
models were integrated. It is certain that integrating mul-
tiple hypotheses will be useful in eliminating the false pos-
itive prediction in the virtual screening application. This
integration results in a set of 155 molecules. The resultant
compounds with their docking score are reported in Table
S2 in the Supporting Information. In the second stage of
screening, binding free energy was analyzed for the inte-
grated screened set of compounds. It is worth mentioning
that the entire 155 compounds possess better binding free
energy values than native ligand (−36.816 kcal/mol). This
depicts the strong correlation between the observed dock-
ing score and the binding free energy parameter examined
from the Prime algorithm. In essence, 149 compounds from
this set likely to have better binding energy than Ritonavir,
the currently used molecules in the treatment of Covid-19
infection.
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TABLE 1 Statistical parameters correspond to ten best models generated by AutoQSAR

Model code Score SD R2 RMSE Q2

kpls_desc_44 0.7022 0.4104 0.6949 0.3662 0.5604
pls_44 0.6457 0.4598 0.6170 0.3674 0.6481
kpls_radial_25 0.6406 0.4361 0.6391 0.4143 0.4996
pls_45 0.5958 0.4677 0.5926 0.4383 0.5320
Kpls_desc_25 0.5957 0.4711 0.5897 0.4359 0.4461
kpls_desc_200 0.5928 0.4230 0.6684 0.4266 0.5385
kpls_molprint2 0.5920 0.4589 0.5923 0.4430 0.4885
pls_20 0.5896 0.4578 0.6115 0.4399 0.5092
kpls_dpsc_20 0.5928 0.4230 0.6684 0.4266 0.5385
Kpls_sesc_45 0.5790 0.4869 0.5466 0.4188 0.5726

Abbreviations: Kpls, kernel-based partial least squares regression; pls, partial least squares regression; Q2, predictive squared correlation coefficient; R2, correlation
coefficient; RMSE, root-mean-square error; SD, standard deviation.

F IG 1 Scatter plot analysis of best model predicted from
AutoQSAR

3.4 AutoQSAR analysis and interaction
profiling of the screened hits

The screening process further continued with the aid of a
machine learning–based predictive model (pIC50 Calcula-
tion) generated by the AutoQSAR module of Schrodinger.
For instance, the machine learning model was developed
with the help of 3C-like proteinase inhibitors retrieved
from BindingDB. The algorithm generated 10 best mod-
els, and the results are shown in Table 1. In particular, we
have used the highest score as the criteria to select the best
model for the analysis. As stated earlier, the best model
showed the lowest SD and RMSE values than the other
generated model and thus depicted its reliability in the
generated result. The scatter plot depicting predicted pIC50
versus experimental pIC50 for the best generated model is
shown in Figure 1. It is evident from the figure that only
a few of the molecules were scattered away from the pre-
dicted pattern (trend line in Figure 1). These compounds
are likely to be labeled and are unable to fit in a generated

QSAR model. Perhaps, we say that these compounds pos-
sess differentmode/mechanismof interaction patternwith
the target protein.35 However, the generated model dis-
played a minimum number of outliers and thus we believe
that our model (kpls_desc_44) has the ability to predict
the in vitro activity (pIC50) of the compounds with high
precision.
Here, the entire dataset of 155 compounds was tested

for IC50 prediction using the best model. The pre-
diction results for the complete set are presented in
Table S2 together with the docking score and bind-
ing energy. It is interesting to observe that only four
compounds such as DB07800, DB08573, DB03744, and
DB02986 showed better pIC50 values than native lig-
ands and other existing drugs such as ritonavir and
lopinavir. Thus, these four molecules are considered as
lead molecules against the main protease of Covid-19 in
our study. The binding pattern of these lead molecules
together with reference compounds is illustrated in
Figure 2.



T et al. 717

F IG 2 Ligand interaction diagram of references and hit
molecules. References; (A) ritonavir; (B) lopinavir; (c)
N3–inhibitor (native ligand). Hit molecules: (D) DB07800; (E)
DB08573; (F) DB03744; (G) DB02986

3.5 Drug likeness and toxicity
descriptors

Finally, these lead molecules were tested for their drug-
likeness and toxicity analysis using theQikProp algorithm.
The result is shown in Table 2. It is interesting to note that
all the compounds were having satisfactory star values of
less than 5. Thus highlighting that majority of the pharma-
ceutically relevant descriptors are found to be in the accept-
able range for the screened hit compounds. Additionally,
the lead molecules demonstrated significant HOA char-
acteristics than all the reference ligand considered in our
study. For instance, ritonavir, native ligand, and lopinavir
showed the highest star value of 10, 9, and 3, respectively,
in our Qikprop analysis. These data from our study corre-
late well with reported literature evidences. For instance,
evidence states that patients treated with these drugs were
more likely to experience side effects like nausea, vomit-
ing, and diarrhea. Although favorable results are achieved
in the initial trials, a resistance pattern is reported in recent
times in addition to its highly toxic characteristics. More-
over, these drugs certainly cause a lot of adverse effects
and chronic medical problems with long-term usage.36 On
the contrary, the hit compounds resulted from our analysis
demonstrated an excellent safety profile as observed from
the star descriptor than the existing antivirals.

3.6 Simulation and synergism studies

MD simulation of main protease reference docked struc-
ture together with hit complexes such as DB02986,
DB03744, DB07800, and DB08573 were performed by gro-
macs package for 10 ns each to gain insights into the com-
plex structure dynamics perturbations. For instance, riton-
avir was used as a reference compound as it has shown
better docking score, binding free energy, and pIC50 val-
ues than the other known compounds considered in our
analysis. Initially, the trajectory was analyzed using the
RMSD corresponding to proteins Cα atoms to explore the
stability of the complex structures. The results are shown
in Figure 3. The RMSD values of all the investigated com-
plex structures lie in the range of 1–4 Å. For instance, the
ritonavir–protein Cα atoms showed RMSD between ∼1.5
and ∼2.2 Å over a 10 ns trajectory frame. It is interesting
to note that hit compounds such as DB02986 and DB08573
showed a similar trend, stable and constant RMSD value
between ∼1.5 and 2.2 Å over the simulation period. On
the contrary, the complex structures such as DB07800 and
DB03744 showed higher deviation in RMSD values and
attains ∼3.4 Å at the end of the simulation period.
The stability of the complex structures was further

explored by means of hydrogen bond analysis over the 10
ns simulation. The results are shown in Figure 4. Analysis
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of the results is evident that ritonavir is able to maintain
less number of hydrogen bonds than the hit compounds
screened from our analysis. For instance, hit molecules are
able to maintain three to four hydrogen bonds on aver-
age for the whole 10 ns simulation with key binding site
residues of the main protease structure. In particular, the
frequency of hydrogen bondwas significantly higher in the
case of DB02986 and DB08573 than other studied hits. It is
interesting to note that hydrogen bond analysis correlates
well with the RMSD behavior of the respective compounds
and suggested that these molecules had a strong binding
affinity in comparison to the reference molecules.
The compactness and total mobility of the complex

structures were further ascertained by employing PCA
analysis. The covariancematrix corresponds to all the com-
pounds are plotted in Figure 5. The greater incidence of
correlated (red) and anticorrelated (blue)motions between
atoms is depicted by the higher color intensity in the
covariancematrix. The trace covariancematrix of a protein
complex with ritonavir, DB02986, DB03744, DB07800, and
DB08573 was found to be 4.34893, 5.06568, 7.0659, 7.30152,
and 4.36423, respectively. Also the eigenvalues of the pro-
tein complex with ritonavir, DB02986, DB03744, DB07800,
and DB08573 were found to be 0.111, 0.136, 0.134, 0.55, and
0.119 nm2. Interestingly, a trace of the covariance matrix
and eigenvalues of DB02986 and DB08573 are relatively
equivalent to that of ritonavir which highlights high com-
pactness in comparison to DB03744 and DB07800.
Finally, validation of the compounds using FELwas per-

formed, and results are presented as a contour map in Fig-
ure 6. The Gibbs free energy of all the compounds was gen-
erated using Cα atoms of the system. It is evident from
the figure that ritonavir and DB07800 have one confor-
mation of the global energy minima. Other compounds
such as DB02986 andDB03744 exhibit three and two global
energy minima conformations, respectively. Most impor-
tantly, seven global energy minima conformations have
resulted in the case of DB08573 complex structure during
the simulation. The highest number of global energy min-
ima conformation associated with DB08573 and DB02986
signifies its binding efficacy against themain protease than
reference compounds and other molecules studied in our
analysis
Overall, there is a clear-cut correlation was resulted

between the results of MD simulation and other analy-
ses implemented in our study. Thus, we hypothesize from
our simulation results that DB02986 and DB08573 could be
potential repurposed candidate for the treatment andman-
agement of the Covid-19 pandemic situation.
The synergic activity of the hit compounds togetherwith

ritonavir was examined against the target protein. The
choices of the program for the synergism are inspired by
the literature.37 The resultant sequential docked pose of
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F IG 3 RMSD of the complex structures over the
simulation time. Ritonavir (black); DB02986 (red); DB03744
(green); DB07800 (blue); DB08573 (yellow)

F IG 4 Intermolecular hydrogen bond analysis of complex
structures over the simulation time. Ritonavir (black);
DB02986 (red); DB03744 (green); DB07800 (blue); DB08573
(yellow)

the complex structures is visualized in Figure 7. Initially,
both the hits and reference molecule docked individually
against themain protease to understand themode of inter-
action and free energy of binding. The process yielded
binding energy values of−2.34,−3.93, and−4.64 kcal/mol,
respectively, for ritonavir, DB08573, and DB02986. The
binding pose was then examined through PyMOL to gain
insight into the mechanism of interaction. Moreover, the
binding pose in turn utilized for placing the grid position in
the sequential docking. It is interesting to note that sequen-
tial docking demonstrated a favorable affinity for the resul-
tant compounds. Of note, the binding affinity values of
the hit compounds increase to −5.85 and −4.76 kcal/mol
when it is docked alongwith the reference compound. This
shows that the drug combination is indeed effective in the
treatment than considering each drug separately.

4 DISCUSSION

A total of fourmolecules were found to exhibit better dock-
ing scores, binding free energy, and pIC50 values than exist-
ing inhibitors considered in our analysis. Studies high-
light that ligand strain energy is one of the significant
parameters to be analyzed in the case of drug screen-
ing as it depicts an energy cost associated with ligand
binding.38 For instance, the molecules with less strain
energy are likely to exhibit better binding free energy. It
is important to note that all four compounds resulting
from our analysis have yielded less strain energy than
existing antivirals studied in our analysis, thus highlight-
ing the tighter binding of hit molecules against the target
protein. Moreover, Table 2 highlights that Coulombic and
van der Waals interactions provided the most substantial
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F IG 5 Covariance matrix generated using PCA analysis of complex structures. (A) Ritonavir; (B) DB02986; (C) DB03744; (D) DB07800; (E)
DB08573

force for the binding of the inhibitor resulting from our
study.
It is evident from Figure 2 that the binding of all

four molecules mimics the binding pattern of existing
inhibitors. It is interesting to note that GLN189 likely to
play a pivotal role in the binding of lead compounds. The
detailed listing of binding forces is given in Table S3 in the
Supporting Information. Literature evidence highlights
that the existence of Π−Π stacking might increase the sta-
bility and loading capacity of drugs.39 Notably, most of
the compounds resulting from our study are able to main-
tain Π−Π stacking in the binding pocket as like Lopinavir.
Thus, it can exhibit tighter and stable binding with the
main protease of Covid-19.

Furthermore, these four compounds were subjected
to MD simulation and the trajectories were explored
based on RMSD, hydrogen bond, PCA, and FEL data
over 10 ns simulation. Although DB07800 and DB03744
showed promising docking scores and higher binding
free energy, they failed to maintain stable conforma-
tions with the target protein during the simulation
period. On the other hand, lower RMSD values exhib-
ited by hit complexes DB02986 and DB08573 highlight
the stable binding with the target protein during the
simulation in comparison to DB07800 and DB03744.
Note that this result correlates well with observed
less ligand strain energy values during MM/GBSA
calculation.
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F IG 6 Gibbs energy landscape of complexes over the simulation time. (A) Ritonavir; (B) DB02986; (C) DB03744; (D) DB07800; (E)
DB08573

Interestingly, the hydrogen bond data also correlate
well with higher lipophilicity values obtained during
MM/GBSA calculation and alongside RMSD behavior cor-
responds to DB02986 and DB08573. It is also evident
from the literature that lipophilicity of the compound is
crucial for maintaining the hydrogen bond with the part-
ner molecule.40
Moreover, the eigenvalues for ritonavir, DB02986, and

DB08573 complexes were found to be low as compared
to DB03744 and DB07800 complexes which clearly indi-
cate that less fluctuations and high compactness in the
DB02986 and DB08573 bound conformations. Importantly,
DB02986 and DB08573 are able to mimic the binding
conformation of ritonavir as observed by the equiva-

lent trace of the covariance matrix and eigenvalues in
the PCA analysis. Altogether, less atomic movements
observed in the DB02986 and DB08573 complexes indi-
cate better stability of these compounds with the main
protease. On the contrary, the resulting higher values
in the case of DB03744 and DB07800 depict protein’s
larger expansion during its binding. The expansion of
protein may thus be responsible for the lower stability
and compactness. Finally, the highest number of global
energy minima conformation associated with DB08573
and DB02986 clearly depicts the stable binding of these
compounds in the binding pocket of the main protease
than the other molecules such as ritonavir, DB07800, and
DB03744.
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F IG 7 Synergistic binding effect of (A) combination of (1) ritonavir and (2) DB08573; (B) combination of (1) ritonavir and (2) DB02986; (C)
combination of (1) DB08573 and (2) DB02986; (D) combination of (1) ritonavir, (2) DB08573, and (3) DB02986. The circle indicates the
drug-binding sites and the respective docking scores mentioned below. The sequential order of the docking is represented by a numbers

It is interesting to note that the hit compounds obtained
in our study composed of crucial scaffolds, namely
sulfonamide and thiophene scaffolds. The 2D structure
of hit compounds is shown in Figure 8. For instance,
the sulfonamide scaffold is the backbone of the hit com-
pound, DB08573. Notably, sulfonamides moieties can act
as potential medicinal molecules in drug discovery and
drug development with a broad spectrum of biological
applications.41,42 Of interest here, it has been shown on
many occasions that sulfonamide structural units present
within variousmolecules have exhibited interesting antivi-
ral activities. The presence of sulfonamide scaffold within
the various molecules is a common factor among the

active compounds for combating different infectious
viruses.43–45
Studies of DB02986 showed that this compound is found

to act on carbonic anhydrase. It is thought that carbonic
anhydrases have an essential role in the initiation of viral
replication. It is likely that inhibition of the carbonic anhy-
drase increases the concentration of hydrogen ions intra-
cellularly and decreases the pH. This decrease in pH in
turn restricts the binding of the virus in the host cell and
even viral replication. Moreover, inhibitors of carbonic
anhydrase are also reported to have activity against HIV
infection.46,47 It also highlights that hit compounds dis-
played significant structural similarity to that of recently
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discovered main protease inhibitors such as lurasidone
sulfoxide, benzo[B]thiophene-2-carboxamidine.48,49 For
instance, the Tanimoto coefficient value of more than 0.4
was observed in all the studied cases. Overall, these find-
ings provide evidence for the newly identified compounds
that can be potentially developed as drugs for the manage-
ment of Covid-19 infection.
In conclusion, we made a concerted effort to develop

coronavirus therapeutic agents using an integrated
machine learning–based drug-repurposing strategy.
It is important to emphasize that compounds such
as DB08573 (3-[(4-chloroanilino)sulfonyl]thiophene-2-
carboxylic acid) and DB02986 (N-(2-thienylmethyl)-2,5-
thiophenedisulfonamide) exhibit favorable results during
MD simulation than cocrystallized native compounds
and other existing inhibitors studied in our analysis. The
ubiquitous experimental data support that the scaffolds
identified in the hits exhibit antiviral activities and hence
demonstrating the reliability of our results. Hopefully, we
have proposed some useful candidates for SARS-CoV-2
main protease inhibitors. However, further experimental
studies on these compounds will be necessary to confirm
the conclusions.
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