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Estimating growth and 
photosynthetic properties of wheat 
grown in simulated saline field 
conditions using hyperspectral 
reflectance sensing and 
multivariate analysis
Salah El-Hendawy1,2*, Nasser Al-Suhaibani1, Majed Alotaibi1, Wael Hassan3,4, Salah Elsayed5, 
Muhammad Usman Tahir1, Ahmed Ibrahim Mohamed6 & Urs Schmidhalter7

The timely estimation of growth and photosynthetic-related traits in an easy and nondestructive 
manner using hyperspectral data will become imperative for addressing the challenges of 
environmental stresses inherent to the agricultural sector in arid conditions. However, the handling 
and analysis of these data by exploiting the full spectrum remains the determining factor for refining 
the estimation of crop variables. The main objective of this study was to estimate growth and traits 
underpinning photosynthetic efficiency of two wheat cultivars grown under simulated saline field 
conditions and exposed to three salinity levels using hyperspectral reflectance information from 350–
2500 nm obtained at two years. Partial least squares regression (PLSR) based on the full spectrum was 
applied to develop predictive models for estimating the measured parameters in different conditions 
(salinity levels, cultivars, and years). Variable importance in projection (VIP) of PLSR in combination 
with multiple linear regression (MLR) was implemented to identify important waveband regions and 
influential wavelengths related to the measured parameters. The results showed that the PLSR models 
exhibited moderate to high coefficients of determination (R2) in both the calibration and validation 
datasets (0.30–0.95), but that this range of R2 values depended on parameters and conditions. The PLSR 
models based on the full spectrum accurately and robustly predicted three of four parameters across all 
conditions. Based on the combination of PLSR-VIP and MLR analysis, the wavelengths selected within 
the visible (VIS), red-edge, and middle near-infrared (NIR) wavebands were the most sensitive to all 
parameters in all conditions, whereas those selected within the shortwave infrared (SWIR) waveband 
were effective for some parameters in particular conditions. Overall, these results indicated that the 
PLSR analysis and band selection techniques can offer a rapid and nondestructive alternative approach 
to accurately estimate growth- and photosynthetic-related trait responses to salinity stress.

Salinity and the decreasing availability of freshwater are major factors restricting the productivity of agricul-
tural crops in arid and semiarid regions. In addition, the lack of fresh water available to the agriculture sector in 
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such regions has necessitated a substantial increase in the use of saline water resources. This has exacerbated the 
adverse effects of salinity on crop productivity. To enable the application of suitable protective measures, it is nec-
essary to conduct studies that focus on the timely detection of the extent and magnitude of the impacts of salinity 
stress on the plant physiological status.

There are numerous morphophysiological parameters such as dry matter accumulation and photosynthetic 
properties [photosynthesis (Pn) and transpiration (E) rates, and stomatal conductance (Gs)] that are useful in the 
detection of a plant’s physiological status under salinity stress. These parameters provide valuable information 
that can be used to evaluate the salt tolerance of genotypes in a breeding program, understand the mechanisms 
of salt tolerance, and support the growth and production of crops under salinity stress conditions through the 
application of appropriate agronomic practices1,2. However, tracking the dynamic changes of photosynthetic 
properties or the real-time detection of dry matter accumulation using destructive plant sampling methods and 
several observations are generally time-consuming, expensive, and laborious. In particular, although changes in 
the photosynthetic properties can be detected in nondestructive manner using a gas exchange system device, this 
device detects photosynthetic properties based on a single effective leaf and disregards the vertical variability in 
photosynthetic efficiency within the plant canopy and is time-consuming and hence limited to few measurements 
in a given time3,4.

A reasonable solution to address these issues is tracking the changes of these parameters using narrow-band 
visible (VIS)-to-shortwave infrared (SWIR) hyperspectral sensing. This allows to simultaneously monitor diverse 
and multiple specific alterations that could be induced by osmotic and ionic stresses of salinity such as changes 
in the internal leaf structure, plant water status, photosynthetic pigments and nutrient contents, photosynthetic 
potential, biomass accumulation, chlorophyll fluorescence, and more5–10. Consequently, alterations in these spe-
cific variables result in substantial variations in the absorption of specific wavebands in the VIS-SWIR domains 
of the spectrum. For example, changes in photosynthetic pigments and their functioning impact the reflectance 
of the 680 and 740 nm wavelengths11. El-Hendawy et al.12 reported that changes in leaf water relations and ion 
content in wheat plants grown under salinity stress conditions influence the spectral reflectance in the VIS (434–
488 nm and 503–632 nm), red-edge (701–743 nm), near-infrared (NIR; 1100–1300 nm), and SWIR (1706–1898 
nm) regions.

Tilling et al.13 also reported that changes in the internal leaf structure owing to decreases in water content 
resulted in a significant change in the spectral reflectance in the regions of red edge (680–740 nm) and NIR 
(740–940 nm). The changes in Gs induced by water stress impacted the spectral reflectance in the range of 400–
720 nm of the spectrum14. Therefore, these close relationships between the specific canopy variables and specific 
wavebands make this tool more effective than traditional tools for estimating the biomass and photosynthetic 
properties of plants in a rapid, cheap, and nondestructive manner.

Generally, in order to indirectly assess different plant parameters through their canopy reflectance signatures, 
the majority of the previous studies focused on the significance of relationships between the plant parameters and 
specific spectral reflectance indices (SRIs). However, most SRIs use very few principal wavebands (one, two, or 
three specific wavelengths) and discard the majority of other wavelengths in the full VIS-SWIR spectrum. These 
very limited numbers of wavelengths results in SRIs that tend to be less efficient and inconsistent for assessing 
plant parameters across different growing environmental conditions, cultivars, sites, growth stages, and seasons 
owing to the high variability of canopy reflectance signatures from one condition to another8,15,16. In addition, 
different SRIs are strongly sensitive to variations in both the structural and biochemical characteristics of the 
canopy17,18. Therefore, a full VIS-SWIR spectrum should be considered when generalizing the spectral data to 
estimate the crop variables under heterogeneous growing conditions.

To identify the important bands associated with the crop variables of interest within the full VIS-SWIR spec-
trum, multiple linear regression analysis (MLR) has been commonly used. However, a full VIS-SWIR spectrum 
often consists of hundreds of wavelengths that are redundant, noisy, and/or correlated by chance19–21. Therefore, 
in order to build robust spectral indices, it is necessary to isolate such wavelengths. Partial least squares regression 
(PLSR), which is related to both MLR and principle component regression, is an effective method for dealing with 
this type of data and overcomes the problems of overfitting and multicollinearity that are inherent to hyperspec-
tral datasets by reducing such datasets into new orthogonal latent variables (OLVs). In particular, PLSR is able to 
correlate data when the number of independent variables greatly exceeds the number of dependent variables22,23. 
Therefore, many studies have applied PLSR to estimate various crop physiological, biochemical, nutrient, and 
structural parameters such as the photosynthetic capacity24, leaf transpiration rate25, leaf water potential and Gs8, 
pigment, nitrogen, and potassium content9,16,26, green and dry biomass27,28, leaf area index18, and grain yield29–31. 
Therefore, in this study, we hypothesized that the combinations of all hyperspectral data with the PLSR method 
could improve the estimation of crop parameters across different environmental conditions and genotypes com-
pared with published SRIs. Hence, the main objective of this study was to test the performance of PLSR and band 
selection techniques that are based on the variable importance in projection (VIP) of PLSR in combination with 
MLR analysis in order to estimate the growth and photosynthetic efficiency of two wheat genotypes grown under 
different salinity levels. Tests of this objective could derive a universal model that could be applied for monitoring 
growth and photosynthetic-related traits under saline field conditions.

Materials and Methods
This study was conducted under simulated close-to-field conditions using the subsurface water retention tech-
nique (SWRT) over two consecutive years (2016/2017 and 2017/2018). This technique is able to avoid the spatial 
and temporal heterogeneity of salt concentrations in the root zone that are common under natural saline field 
conditions2,32. In addition, this technique provides a sufficient measuring area for applying a high-throughput 
phenotyping tool, which is difficult to achieve with a pot experiment. The setup of SWRT is described in detail 
by El-Hendawy et al.2,32. The soil texture is sandy loam with a bulk density, field capacity, and wilting point of 
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1.48 g cm−3, 0.215 m3 m−3, and 0.101 m3 m−3, respectively. In the 0–40 cm soil layer, organic matter, and available 
N, P2O5 and K2O were 7.8 g kg−1, 45.15 mg kg−1, 2.443 mg kg−1, and 186.91 mg kg−1, respectively.

Two spring wheat cultivars differing in their salt tolerance [salt-sensitive Sakha 61 and salt-tolerant Sakha 93 
(El-Hendawy et al.33)] were used in this study. The two cultivars were exposed to three salinity levels (control, 
60, and 120 mM NaCl). The control treatment was irrigated with freshwater during all growth stages, while the 
treatments of 60 and 120 mM NaCl were irrigated with artificial saline water containing 3.5 L and 7.02 g NaCl 
L−1, respectively, after 25 days from sowing. A surface irrigation system consisting of a main line connected to 
a plastic tank (3.0 m3) and distributing to sub-main hoses at each plot was used. To apply an equal and constant 
amount of irrigation water, the main line and sub-main hoses were equipped with a water meter and a manual 
control valve, respectively.

The experiment was laid out in a two-factor split-plot design with three randomized complete blocks as rep-
lications. Each salinity level was split in two subplots, and the two cultivars were distributed randomly in these 
subplots. Each subplot size was 6.0 m long and 1.2 m wide (two SWRT membrane sheets with a thickness of 
0.03 mm). The seeds were drilled in rows spaced 15 cm apart on December 5, 2016 and 2017, with a seeding rate 
and depth of 17 g m−2 and 3 cm, respectively, for each cultivar. Nitrogen (N), potassium (K), and phosphorus (P) 
were applied at rates of 180 N, 60 K, and 90 P kg ha−1, respectively. The first dose of N and entire doses of P were 
applied at sowing. The second dose of N and the entire dose of K were applied at the stem elongation stage. The 
third dose of N was applied at the booting stage.

Plant parameter and spectral measurements.  The data of plant parameters and spectral characteristics 
were measured at the anthesis growth stage (around 90 days from sowing). The net photosynthesis (Pn) rate, tran-
spiration (E) rate, and stomatal conductance (Gs) was directly measured in the field between 09:30 and 12:00 on the 
second fully expanded leaf using an Li-6400 portable gas exchange system (Li-COR Inc., Biosciences, Lincoln, NE, 
USA). The data of the three photosynthesis parameters were collected as an average of 20 leaves for each subplot.

To determine the amount of shoot dry biomass (SDW), an area of 0.15 m2 was cut above ground, brought to 
the lab, cut into small pieces, and then desiccated in a forced-air oven at 70 °C to constant weight.

Along with measurements of growth and photosynthetic-related traits, the spectral data of canopy reflec-
tance were collected using a portable Field Spec spectroradiometer (Analytical Spectral Devices Inc., Boulder, 
CO, USA). The sensors detected the reflectance from the canopy from 350 to 2500 nm in the electromagnetic 
spectrum at sampling intervals of 1.4 and 2.2 nm for the spectral regions from 350 to 1000 nm and from 1000 
to 2500 nm, respectively. However, the final spectral data were calculated automatically to achieve a 1-nm spec-
tral resolution. Spectral measurements were taken under sunny and windless conditions at a nadir-looking 25° 
angle from 80 cm above the wheat canopy to achieve a collection area of approximately 23.0 cm in diameter. The 
reflectance measurements were calibrated using a Spectralon white reference panel before the measurements 
and at every 10 min or when needed to avoid any effects generated by atmospheric conditions or sun irradiance. 
Five measurements were taken from each plot with an average of 10 scans for each measurement, while the final 
measured spectrum for each plot was an average of five sequential measurements.

Data analysis.  An analysis of variance (ANOVA) appropriate for a randomized complete block split-plot 
design was performed to test the response of the growth and photosynthetic-related traits of two wheat cultivars 
at different salinity levels. The salinity levels and wheat cultivars were considered as the main factor and the sub-
factor, respectively. Linear regression between the shoot dry weight and different photosynthetic-related traits was 
performed using Sigma Plot (Sigma Plot 11.0).

PLSR and MLR analyses were performed using the XLSTAT statistical software package (vers. 2019.1, Excel 
Add-ins soft SARL, New York, NY, USA).

PLSR analysis is more robust when the number of prediction variables (wavelength data, X) is larger than the 
number of response variables (measurement parameters, Y). The main target of PLSR analysis is to avoid under-
fitting or overfitting inherent in the spectral data by selecting the optimal number of latent variables (ONLVs). 
In the current study, the ONLVs in the PLSR were selected according to the cumulative values of Q2 (Q2 cum) 
and cumulative values of the coefficients of determination (R2) for the X and Y variables (R2X cum and R2Y cum) 
(Figs S1 and S2). Q2 represents the fraction of the total variation in Y variables that can be predicted by a given 
component, while Q2 cum indicates the fraction that can be predicted by all components. R2Y cum and R2X cum 
indicate the cumulative values of R2 for Y and X variables, respectively. In general, the ONLVs are selected when 
the Q2cum >0.5 and R2Y cum and R2X cum are close to 1.034.

The performance ability of PLSR analysis based on the full spectral region was evaluated by the coefficient of 
determination (R2), root mean square error (RMSE), and relative error (RE, %) in both the calibration (Cal) and val-
idation (Val) datasets. For each measured parameter in each condition, the PLSR models in both Cal and Val were 
acceptable when the models exhibited the highest values for R2 and the lowest values for RMSE and RE. In addition, 
75% of the data set was randomly assigned to Cal data, and the remaining data set (25%) was assigned to Val data.

The effective waveband regions in the full spectrum for each parameter and condition were established under 
the ONLVs. These wavebands were identified based on the variable importance in the projection (VIP) derived 
from the PLSR analysis. The VIP values represent the relative importance of each wavelength to the PLSR model. 
Wavelengths with higher values of VIP indicated that these wavelengths in the PLSR model were more important 
than other for estimating the measured parameters. The most influential waveband regions were retained when 
their VIP value was greater than 1.0222.

To identify the most important wavelength contributing to the target parameter estimation, which is not 
possible in PLSR analysis, the effective waveband regions were further applied to MLR analysis as independent 
variables. Then, the MLR models were constructed based on these influential wavelengths, which were selected 
for each parameter in each condition.
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Results
Analysis of variance.  Table 1 displays a summary of the statistical analysis related to the mean square val-
ues of the analysis of variance and the mean values of treatments for combined data over two years for shoot dry 
weight (SDW) and photosynthetic parameters [net photosynthesis rate (Pn), stomatal conductance (Gs), and 
transpiration rate (E)] measured at anthesis. The analysis revealed that the main effects of the years, salinity levels, 
and cultivars were significant (p ≤ 0.05) for all parameters. In addition, the salinity level by cultivar interaction 
was also significantly different for all parameters except E. The interactions between the year and salinity level; 
year and cultivar; and year, salinity level, and cultivar showed insignificant differences for all parameters with the 
exception of SDW, which showed significant differences for the year by the salinity level interaction (Table 1).

The mean values of the tested parameters significantly decreased with increasing salinity levels, and these 
decreases were more pronounced in the salt-sensitive cultivar Sakha 61 than in the salt-tolerant cultivar Sakha 
93 (Table 1).

Relationships between growth and photosynthetic parameters.  In order to explain the contribu-
tion of different photosynthetic parameters to the biomass production evaluation, linear regression analysis was 
performed between SDW and the three photosynthetic parameters (Pn, Gs, and E) using the pooled data of years, 
replications, salinity levels, and cultivars (Fig. 1). Generally, the three photosynthetic parameters had strong rela-
tionships with SDW, and Pn, Gs, and E explained 88, 90, and 66% of the variation in SDW, respectively (Fig. 1).

Precision of growth and photosynthetic parameters evaluated by PLSR model.  PLSR models for 
the estimation of the measured parameters in different conditions.  The main target of PLSR analysis is to decompose 
dependent (measured parameters, Y) and independent (wavelengths, X) variables and find a new optimal number of 
latent variables (ONLVs) in order to maximize the covariance between the X and Y variables. In this study, the ONLVs 
were first identified based on the simultaneous highest values of Q2, R2X, and R2Y cumulative (Figs S1 and S2). Based 
on these criteria, the ONLVs were varied from 1 to 4 for SDW, Pn, and Gs and from 1 to 3 for E when the data were 
analyzed for each season, salinity level, and cultivar individually or for all of the data pooled together (Figs S1 and 
S2). These ONLVs established the most effective PLSR model and gave a low RMSE and RE with a high coefficient of 
determination (R2) for each parameter and condition in both the calibration and validation models (Table 2).

Table 2 summarizes the calibration (Cal.) and validation (Val.) datasets of the PLSR models for estimating the 
measured parameters based on the full spectral range (350–2500 nm). The performance of the PLSR model for 
estimating the parameters was based on the above-mentioned conditions. The PLSR model showed good estima-
tions of SDW, Pn, and Gs in the first season ( .Rcal

2  and .R val
2  ranged from 0.83 to 0.86 and from 0.81 to 0.90, respec-

tively) and SDW and Gs in the second season ( .Rcal
2  and .R val

2  ranged from 0.79 to 0.84 and from 0.80 to 0.85, 
respectively). For the three salinity levels, the PLSR model gave a good accurate estimation of SDW, Pn, and E in 
the control treatment ( .Rcal

2  ≥ 0.72 and .R val
2  ≥ 0.70), Pn and E in 60 mM NaCl ( .Rcal

2  ≥ 0.80 and .R val
2  ≥ 0.94), and Pn 

in 120 mM NaCl ( .Rcal
2  ≥ 0.76 and .R val

2  ≥ 0.74) (Table 2). The PLSR model provided good accurate estimations of 
all parameters in both the Cal. and Val. datasets for the salt-tolerant and salt-sensitive cultivars. When all data 
were pooled together, the PLSR model in both the Cal. and Val. datasets performed well when estimating SDW, 
Pn, and Gs, with values of .Rcal

2  and .R val
2  ≥ 0.79 (Table 2). The PLSR model showed a moderate estimation perfor-

mance of SDW at 60 and 120 mM NaCl, Pn in the second season, Gs in the three salinity levels and E in the two 
seasons, 120 mM NaCl, and the pooled data, with values of R2

Cal. and R2
val. for all of these models ranging from 

0.30 to 0.62 (Table 2).

Source of variance df SDW (g m−2) Pn(µmol CO2 m−2 s−1) Gs(mmol m−2 s−1) E(mmol m−2 s−1)

Mean squares values

Year (Y) 1 282598.6* 17.92* 669.08* 2.27*

Salinity (S) 2 2706843.2*** 209.10*** 72986.4*** 5.92***

S * Y 2 11899.8* 0.814ns 281.60ns 0.016ns

Cultivars (C) 1 592181.6*** 154.6*** 11130.25*** 0.635**

C*Y 1 2916.0ns 3.60ns 380.25ns 0.041ns

C * S 2 6279.5* 3.66* 471.08* 0.012ns

C * S * Y 2 2041.4ns 1.86ns 68.58ns 0.006ns

Coefficient of variation (CV%) 5.37 8.81 6.82 6.36

Mean values of mean factor ± standard deviation

Salinity

0 mM 1914.0 ± 177.9 17.65 ± 3.18 261.83 ± 24.10 3.86 ± 0.37

60 mM 1268.2 ± 200.7 12.13 ± 2.37 143.23 ± 29.86 3.09 ± 0.33

120 mM 987.9 ± 145.0 9.47 ± 1.89 114.8 ± 14.62 2.46 ± 0.35

Cultivars
Sakha 93 1518.3 ± 408.5 15.16 ± 4.20 190.87 ± 66.52 3.00 ± 0.67

Sakha 61 1261.8 ± 420.6 11.01 ± 3.22 155.71 ± 67.81 3.27 ± 0.67

Table 1.  Statistical analysis (degrees of freedom (df), mean square value, and significance level) and mean 
values of the mean factor of the combined data of the shoot dry weight (SDW), photosynthetic rate (Pn), 
stomatal conductance (Gs), and transpiration rate (E) measured at the anthesis growth stage. *,**,***Significant 
at the 0.05, 0.01 and 0.001 probability levels, respectively, and ns: not significant.
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Identification of optimal waveband regions through PLSR-VIP.  Figures 2 and 3 show the VIP scores and load-
ing weights derived from the PLSR analysis and used to extract the important waveband regions from the 
full-spectrum regions (350 to 2500 nm). Generally, the important waveband regions were extracted when their 
VIP scores were higher than 1.0 (the threshold score) and coincided with a high absolute loading weight. These 
regions for each parameter in each condition are listed in Table 3. Based on the threshold score of VIP and loading 
weights, the visible (VIS, 350–700 nm) and red-edge (700–770 nm) spectrum were especially influential regions 
for all parameters in all conditions (salinity levels, cultivars, and seasons), excluding the VIS region for Pn and Gs, 
and the red edge for E in the control treatment (Table 3).

The near-infrared (NIR, 770–1300 nm) spectrum was identified as an unimportant region for SDW in 120 mM 
NaCl, two cultivars, the first season, and all pooled data; Pn in 120 mM NaCl, the cultivar Sakha 93, and the sec-
ond season; Gs in 60 mM NaCl, the cultivar Sakha 61, first season, and all pooled data; and E in the control treat-
ment, the cultivar Sakha 93, and the first season. The shortwave infrared (SWIR, >1300 nm) spectrum appeared 
to be an unimportant region for SDW in the control treatment, two cultivars, the first season, and all pooled data; 
Pn in 60 mM NaCl, the first season, and all pooled data; Gs for the cultivar Sakha 61, two seasons, and all pooled 
data; and E in 60 and 120 mM NaCl, the second season, and all pooled data (Table 3).

Identification of influential wavelengths through multiple linear regression (MLR).  The important waveband 
regions that were selected based on PLSR-VIP and loading weights were further used as independent variables 
in MLR in order to extract the most influential wavelengths for each parameter in each condition (Table 3). 
Generally, the influential wavelengths selected for each parameter are largely dependent on the conditions. The 
wavelengths extracted from VIS and the red edge had highly significant contributions for estimating SDW, Pn, and 
Gs in most conditions, with R2 ranging from 0.61 to 0.90. The wavelengths extracted from the VIS spectrum were 
informative for E in two seasons, the control treatment, and both cultivars, with R2 ranging from 0.61 to 0.75. The 

Figure 1.  Relationship between shoot dry weight (SDW) and photosynthetic parameters [net photosynthesis 
rate (Pn), stomatal conductance (Gs), and transpiration rate (E)] for the pooled data (n = 36).
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wavelengths extracted from the red-edge spectrum had moderately significant contributions for the estimation 
of E in all pooled data, the second season, and 60 mM NaCl, with R2 ranging from 0.35 to 0.55 (Table 3). Note 
also that when using MLR, no wavelengths extracted from the NIR spectrum are important for the estimation 
of SDW in all conditions, as well as all parameters in the first season and the cultivar Sakha 93. In addition, no 
wavelengths extracted from the SWIR spectrum are important for the estimation of all parameters in all pooled 
data and for Sakha 93. The wavelengths extracted from the SWIR spectrum had highly significant contributions 
for the estimation of SDW and Gs in 60 and 120 mM NaCl; Pn in the second season, control, 120 mM NaCl, and 
Sakha 61; and E in the control and Sakha 61, with R2 ranging from 0.64 to 0.94 (Table 3).

Generally, irrespective of the conditions, the most influential wavelengths extracted from the VIS spectrum 
were found at 356, 358, 450, 540, 547, 566, and 578 nm for SDW; 533, 569, and 579 nm for Pn; 468, 481, 533, 
548, 555, 573, and 598 nm for Gs; and 368, 382, 482, 532, 536, 537, 569, 570, and 605 nm for E. The wavelengths 
extracted from the red-edge spectrum were found at 720, 722, and 724 nm for SDW; 714, 715, 716, 719, and 
723 nm for Pn; 717, 720, 721, 727, and 760 nm for Gs; and 734, 738, and 762 nm for E. The wavelengths at 817, 
1198, and 1252 nm; 1078 and 1138 nm; and 924, 1191, 1215, and 1273 nm for Pn, Gs, and E, respectively, were 
extracted from the NIR spectrum as the most influential wavelengths. The most influential wavelengths extracted 
from the SWIR spectrum were found at 1330, 1386, 1547, 1709, 1832, 2488, 2492, and 2497 nm for SDW; 1489, 
1680, 1830, 1848, 2309, 2395, 2452, 2492, 2493, and 2500 nm for Pn; 1435, 1710, 1831, 1927, 2448, and 2500 nm 
for Gs; and 1452, 1830, 1904, and 2300 nm for E (Table 3).

Treatm. Par. ONLVs

Calibration dataset Validation dataset

R² RMSE. RE (%) R² RMSE. RE (%)

Pooled data

SDW 4 0.82*** 181.47 13.06 0.82*** 173.54 12.48

Pn 4 0.79*** 1.93 14.75 0.79*** 2.040 15.59

Gs 4 0.81*** 29.67 17.12 0.80*** 28.11 16.22

E 3 0.53*** 0.455 14.51 0.53** 0.406 12.95

1st Season

SDW 3 0.86*** 164.52 11.13 0.86*** 170.32 11.52

Pn 3 0.85*** 1.719 12.47 0.90*** 1.495 10.84

Gs 3 0.83*** 27.61 15.55 0.81*** 29.72 16.73

E 1 0.30* 0.503 14.85 0.43* 0.430 12.70

2nd Season

SDW 3 0.79*** 177.97 13.67 0.80*** 168.95 12.98

Pn 1 0.60** 2.384 19.26 0.58** 2.296 18.55

Gs 4 0.84*** 27.61 16.34 0.85*** 27.89 16.51

E 3 0.58** 0.409 14.18 0.53** 0.408 14.14

Control

SDW 3 0.81*** 73.72 3.85 0.85*** 62.75 3.28

Pn 2 0.72** 1.625 9.21 0.70*** 1.602 9.08

Gs 2 0.44* 17.25 6.59 0.55** 17.23 6.58

E 3 0.76*** 0.176 4.56 0.78*** 0.167 4.33

60 mM NaCl

SDW 1 0.64** 115.97 9.14 0.63** 128.03 10.10

Pn 3 0.90*** 0.733 6.04 0.94*** 0.514 4.24

Gs 1 0.59** 18.21 12.71 0.62** 18.877 13.18

E 3 0.80*** 0.138 4.47 0.95*** 0.077 2.49

120 mM NaCl

SDW 1 0.58** 89.61 9.07 0.62** 85.03 8.61

Pn 3 0.76*** 0.822 8.68 0.74*** 0.952 10.06

Gs 2 0.53** 9.64 8.40 0.54* 9.87 8.60

E 1 0.55** 0.223 9.07 0.66** 0.205 8.34

Sakha 93

SDW 3 0.84*** 157.71 10.39 0.90*** 124.98 8.23

Pn 3 0.86*** 1.530 10.09 0.86*** 1.393 9.19

Gs 4 0.88*** 22.73 11.91 0.87*** 22.95 12.02

E 2 0.78*** 0.302 10.07 0.78*** 0.250 8.33

Sakha 61

SDW 4 0.88*** 144.14 11.42 0.92*** 104.8 8.31

Pn 1 0.70*** 1.728 15.69 0.65** 1.915 17.39

Gs 4 0.92*** 18.131 11.64 0.91*** 19.044 12.23

E 1 0.67** 0.378 11.56 0.71*** 0.380 11.52

Table 2.  Calibration and validation statistics of partial least square regression (PLSR) models based on 
the entire full wavelengths (350–2500 nm) for estimating shoot dry weight per square meter (SDW), net 
photosynthesis rate (Pn), stomatal conductance (Gs), and transpiration rate (E)) under each season (n = 18), 
salinity level (n = 12), and cultivar (n = 18) individually and all pooled data (n = 36). The abbreviations Treatm. 
and Par. indicate treatments and parameters, respectively. *,**,***Significant at the 0.05,0 0.01, and 0.001 
probability levels, respectively, and ns: not significant.
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Prediction of the measured parameters based on the full spectrum using a PLSR model.  Figures 4 and 5 show the 
relationship between the observed and cross-validated prediction values of the measured parameters in each 
condition as predicted by the PLSR model. In general, the PLSR models provided a more accurate estimation of 
SDW, Pn, and Gs than of E in all conditions (Figs 4 and 5). The predictive ability was strongest for SDW in two sea-
sons, two cultivars, and the control treatment (R2 = 0.86–0.90); Pn in the first season and Sakha 93 (R2 = 0.85 and 
0.82, respectively); and Gs in two seasons, two cultivars, and 60 mM NaCl (R2 = 0.76–0.83). The predictive ability 
was good for SDW in 120 mM NaCl (R2 = 0.70) and Pn in the second season, 60 and 120 mM NaCl, and Sakha 61 
(R2 = 0.67–0.72); moderate for SDW and Pn in 60 mM NaCl (R2 = 0.51 and 0.64, respectively), Gs in 120 mM NaCl 
(R2 = 0.50), and E in two seasons, two cultivars, and 120 mM NaCl (R2 = 0.42–0.62); and insignificant for Gs and 
E in the control treatment and E in 60 mM NaCl (Figs 4 and 5).

Figure 2.  The variable importance in projection (VIP) of PLSR analysis over the entire wavelengths to extract 
the sensitive spectral band intervals for each measured parameter (shoot dry weight per square meter (SDW), 
net photosynthesis rate (Pn), stomatal conductance (Gs), and transpiration rate (E)) under different conditions 
(salinity levels, cultivars, seasons, and pooled data).
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Discussion
The different components of the salinity stress (i.e., specific ion toxicities, ion imbalance, and physiological 
drought stress) interact to constrain all of the physiological processes that are important for plant growth and 
development. Under salinity conditions, a decrease in leaf turgor pressure along with a K+ deficit leads to dra-
matic changes in the stomatal conductance (Gs), which ultimately leads to trouble in the photosynthesis (Pn) 
and transpiration (E) rates2,35,36. Additionally, it is possible to detect the negative impacts of the salinity stress on 
the photosynthetic capacity before damage from irreversible morphological characteristics can be detected37. 
Therefore, it is important to develop wheat cultivars with better physiological performance under salinity stress 
by considering the photosynthesis-related traits as screening criteria in breeding programs.

The results of this study showed that the SDW at the anthesis growth stage had a strong relationship with Pn 
(R2 = 0.88, p < 0.01) and Gs (R2 = 0.90, p < 0.01), and a moderate relationship with E (R2 = 0.66, p < 0.05) (Fig. 1). 

Figure 3.  The loading weights of PLSR analysis over the entire wavelengths to extract the sensitive spectral 
band intervals for each measured parameter (shoot dry weight per square meter (SDW), net photosynthesis rate 
(Pn), stomatal conductance (Gs), and transpiration rate (E)) under different conditions (salinity levels, cultivars, 
seasons, and pooled data).
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Treatm. Par. Spectral band intervals Influential wavelength R2 RMSE AIC

Pooled data

SDW
350–651 450 0.78*** 203.7 384.7

690–752 720 0.77*** 207.5 386.1

Pn
350–651 533 0.69*** 2.40 64.95

689–817 715, 719, 817 0.77*** 2.11 57.57

Gs
350–647 481, 548 0.77*** 33.9 256.5

690–760 721 0.74*** 35.5 258.9

E

350–606 536, 605 0.56** 0.459 −53.13

699–1149 734 0.53** 0.469 −52.50

1252–1273 1273 0.26* 0.587 −36.44

1st Season

SDW 350–751 540 0.86*** 174.8 187.8

Pn 402–916 533, 903 0.85*** 1.88 25.46

Gs 350–651 533 0.80*** 31.8 126.4

E

350–740 368, 382 0.74*** 0.334 −36.81

1356–1413 — — — —

1486–1889 1830 0.23* 0.560 −19.02

2023–2500 2300 0.26* 0.550 −19.62

2nd Season

SDW
350–747 724 0.81*** 178.6 188.5

1001–1330 1330 0.54** 276.3 204.2

Pn
407–735 716 0.72*** 2.12 28.88

1336–2500 2395, 2452, 2493 0.80*** 1.92 26.95

Gs
350–758 727 0.79*** 33.6 128.4

788–1308 1138 0.47* 53.1 144.9

E
350–570 537, 570 0.61*** 0.483 −23.46

712–1141 738 0.55** 0.449 −26.95

Control

SDW
350–702 356, 358 0.87*** 71.2 104.9

744–1337 — — — —

Pn
741–1415 1252 0.69*** 1.87 16.83

1557–1848 1680, 1830, 1848 0.94*** 0.92 1.26

Gs

696–728 — — — —

756–1407 760, 1078 0.73*** 13.8 65.6

2266–2312 — — — —

E

355–695 482 0.70*** 0.215 −35.08

1426–1485 1452 0.48** 0.283 −28.51

1878–2500 1904 0.67*** 0.226 −33.86

60 mM NaCl

SDW

440–737 722 0.73*** 108.8 114.4

1153–1830 1709 0.59** 134.5 119.5

1861–2500 2488, 2492, 2497 0.88*** 82.2 109.0

Pn

483–744 723 0.79*** 1.14 5.06

761–784 — — — —

1001–1305 1198 0.53** 1.71 14.66

Gs
435–737 720 0.77*** 14.9 66.7

1319–2500 1710, 1831 0.76*** 16.2 69.4

E

350–514 — — — —

735–953 762 0.35* 0.275 −29.15

1001–1136 — — — —

120 mM NaCl

SDW
413–725 566 0.68*** 86.2 108.8

1321–2500 1386, 1547, 1832 0.88*** 59.6 101.2

Pn

350–733 569 0.68*** 1.13 4.64

1396–1501 1489 0.53** 1.35 9.06

1869–2500 2492, 2500 0.75*** 1.05 3.82

Gs

449–716 598 0.61*** 10.7 58.8

739–937 — — — —

1412–1471 1435 0.38** 12.1 61.7

1866–2123 1927 0.42** 11.6 60.7

2309–2500 2448, 2500 0.64*** 9.7 57.1

E
350–389 — — — —

727–1303 924 0.57** 0.239 –32.58

Continued
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These results indicate that the photosynthetic-related parameters could serve as key indicators for providing val-
uable information about the actual salinity stress level and the status of plant physiological performance under 
salinity stress. Furthermore, these results also confirm that the biomass accumulation under salinity could serve 
as a key indicator for many physiological processes at the entire plant level. Therefore, simultaneously monitor-
ing and assessing these traits using a nondestructive, fast, and efficient tool is an urgent task, especially in wheat 
genetics and breeding programs where the salt tolerance of a large number of genotypes must be evaluated every 
year at different stages of the plant life cycle. In this study, the canopy hyperspectral reflectance data combined 
with multivariate analyses (PLSR and MLR models) was used to assess variations in growth and the photosyn-
thetic efficiency of wheat under different conditions (salinity levels, cultivars, and seasons).

Ability of PLSR to assess variations in the measured parameters.  Analysis of hyperspectral reflec-
tance data using an appropriate statistical procedure is still a critical step in unraveling the relationship between 
these data and specific crop variables38,39. A PLSR analysis is one of the most efficient statistical procedures to 
determine the appropriateness of this relationship. The advantages of this analysis are that it utilizes the full 
relevant spectrum information, which the popular spectral reflectance indices leave out, and has the ability to 
effectively address the strong noise, multicollinearity, and overfitting that are inherent to hyperspectral reflectance 
data21,40,41. However, the robustness of PLSR models strongly depends on the ability to select the ONLVs; which 
is important in avoiding overfitting problems related to spectral data. In this study, the ONLVs in the PLSR mod-
els ranged between 1 and 4 and were considered to be effective in avoiding the overfitting problem (Table 2 and 
Figs S1 and S2). Similar results were reported by Maimaitiyiming et al.14 for estimating the photosynthesis-related 
traits (Pn, Gs, and E) in grapevine under different levels of water stress, where the best PLSR models were also 
found with three ONLVs.

Furthermore, PLSR models with ONLVs ranging from 1 to 3 have been reported for assessing the growth and 
yield of winter wheat under different nitrogen levels42,43 using proximal hyperspectral data. On the other hand, 
PLSR models with ONLVs of 11, 15, and 21 were mentioned for assessing Pn, Gs, and the leaf dry mass per area 
(LMA), respectively, in different elite and landrace wheat genotypes under different nitrogen levels44. These dif-
ferences in the range of ONLVs between studies could be a result of the changing environmental conditions of the 
hyperspectral reflectance measurements.

Although the parameters related to the photosynthetic efficiency have gained importance when evaluating the 
salt tolerance of wheat genotypes, estimation of these parameters using PLSR analysis for the full spectrum range 
(350–2500 nm) has been less studied. Most of the literature has focused on the performance of spectral reflectance 
indices (SRIs) for estimating these parameters under different abiotic stresses38,39,44–46. Under different levels of 
soil water conditions in olive orchards, Lobos et al.45 reported that the PLSR model based on the full spectrum 
exhibited accurate estimations at the branch level in both the calibration (Cal.) and validation (Val.) datasets for 
Pn (Rcal

2  = 0.79 and R val
2  = 0.81), Gs, (Rcal

2  = 0.61 and R val
2  = 0.78), and E (Rcal

2  = 0.65 and R val
2  = 0.81). However, 

when the data were compared between low and high levels of soil water conditions, only Pn had a high R2 in both 
the Cal. and Val. datasets under a low level of water stress, while the three parameters showed a high R2 in Cal. 

Treatm. Par. Spectral band intervals Influential wavelength R2 RMSE AIC

Sakha 93

SDW 353–744 578 0.76*** 205.4 193.6

Pn
353–743 579 0.72*** 2.28 31.59

1322–1381 — — — —

Gs

353–744 573 0.66*** 40.3 134.9

920–1000 — — — —

1310–1354 — — — —

E

353–747 569 0.64*** 0.413 –29.95

1346–1402 — — — —

1540–1666 — — — —

1818–1856 — — — —

Sakha 61

SDW 350–747 547 0.87*** 156.6 183.8

Pn
450–737 714 0.80*** 1.48 16.06

1149–2500 2309 0.71*** 1.80 23.06

Gs
350–670 468, 555 0.90*** 22.7 115.1

678–770 717 0.88*** 24.0 116.3

E

408–736 532 0.75*** 0.349 −36.01

1162–1215 1191, 1215 0.71*** 0.386 −31.58

1304–2500 2300 0.66*** 0.402 −30.95

Table 3.  Extraction of the important sensitive spectral band intervals based on the variable importance in 
projection (VIP) and loading weights of PLSR analysis over the entire wavelengths and the most influential 
wavelengths using the stepwise multiple linear regression for shoot dry weight per square meter (SDW), net 
photosynthesis rate (Pn), stomatal conductance (Gs), and transpiration rate (E)) under each season (n = 18), 
salinity level (n = 12), and variety (n = 18) individually and all pooled data (n = 36). *,**,***Significant at the 
0.05,0 0.01, and 0.001 probability levels, respectively, and ns: not significant.
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(0.65 to 0.86) and medium (0.37 to 0.41) in Val. under a high level of water stress. In wheat under different nitro-
gen levels Silva-Perez et al.44 and blueberry under contrasting water supply and heat conditions, Lobos et al.39 
described moderate to weak R2 for Pn, Gs, and E (Rcal/val

2  ranging from 0.22 to 0.44). In addition, Lobos et al.39 also 
reported that none of the PLSR models based on the full spectrum were able to reach a Rcal

2  or R2
Val higher than 

0.44 for three photosynthetic parameters. When we examined our data, for the four parameters evaluated (SDW, 
Pn, Gs, and E), the results showed that the PLSR models based on the full spectrum generated a moderate to high 
R2 in both the Cal. and Val. datasets (R2 ranged from 0.30 to 0.92 in Cal. and from 0.43 to 0.95 in Val.), but this 
range of R2 values is highly dependent on the measured parameters and conditions. Only E in the first season 
recorded the lowest values of R2 in both the Cal. (0.30) and Val. (0.43) datasets (Table 2). These results once again 
confirm that the PLSR models based on the full spectrum can provide additional improvements in the accurate 
estimation of the measured parameters under salinity. This is because the PLSR models include a wide range of 
sensitive wavelengths that can cover all of the main physiological changes of plants induced by salt stress. 
Therefore, PLSR models based on the full spectrum provide strong performance in estimating the four measured 
parameters in different conditions, with few exceptions.

When comparing the observed values of the measured parameters against those predicted by the PLSR models 
using the full spectrum, SDW, Pn, and Gs all had a higher R2 than E in all conditions, with the exception of Gs, 
which showed an insignificant relationship between the observed and predicted values under the control treat-
ment such as E. The predicted values of SDW, Pn, Gs, and E varied from 0.51 to 0.90, 0.64 to 0.85, 0.21 to 0.83, and 
0.01 to 0.62, respectively (Figs 4 and 5). These findings reaffirm that by modeling the canopy spectral reflectance 

Figure 4.  Relationship between the observed and cross-validated prediction values of shoot dry weight per 
square meter (SDW) and net photosynthesis rate (Pn) under different conditions (salinity levels, cultivars, 
seasons) as predicted by the PLSR model.
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using PLSR, it is possible to assess growth and some key physiological parameters that could be incorporated 
into breeding programs oriented to improving the salt tolerance of wheat genotypes in a fast and nondestructive 
manner. These findings are promising because most photosynthesis-related parameters (Pn and Gs) and growth 
(SDW), which were previously reported as efficient screening criteria for discriminating wheat genotypes for salt 
tolerance2, were predicted with relatively high R2 across different salinity levels and wheat genotypes. These results 
are similar to those reported by Doughty et al.47 for a tropical forest, regarding the ability of the PLSR model to 
best predict the LMA (R2 = 0.90) and Pn (R2 = 0.74) followed by E (R2 = 0.48). However, for wheat, Silva-Perez  
et al.44 reported that the ability of PLSR to predict LMA was generally high (R2 = 0.90), while it was moderate for 
Pn (R2 = 0.49) and Gs (R2 = 0.34).

Assessment of the measured parameters based on the combination of PLSR-VIP and MLR.  
Several studies reported that the importance of PLSR lies in identifying the very best waveband regions from 
the full spectrum which are directly and indirectly linked to the measured parameters8,12,16,43,48,49. The impor-
tance in projection (VIP) is a main factor in the PLSR model and provides insight into the importance of each 
wavelength in the full spectrum when removing wavelengths with low predictive power. In this study, the most 
important waveband regions for estimating all measured parameters in all conditions with VIP values higher 
than 1 and a high absolute loading weight were mainly located in the visible and red-edge regions with few 
exceptions. The NIR and SWIR regions were also identified as most important regions for estimating some meas-
ured parameters under particular conditions (Table 3). These results are somewhat similar to those of Doughty 

Figure 5.  Relationship between the observed and cross-validated prediction values of stomatal conductance 
(Gs) and transpiration rate (E) under different conditions (salinity levels, cultivars, seasons) as predicted by the 
PLSR model.
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et al.47, who reported that the most important regions selected from the full spectrum for the assessment of 
photosynthesis-related traits in a tropical forest were located in the VIS and red-edge regions. Carter50 reported 
that the red-edge region around 710 nm is the waveband most suitable for the estimation of Pn and Gs in pine. In 
addition, Maimaitiyiming et al.14 found that the VIP values indicated the yellow (580–640 nm) band as the most 
important region for Gs estimation under different levels of water stress. The PLSR-VIP values revealed that the 
530–550, 700–750, 1380–1420, and 1450–1590 nm bands were effective in estimating different physiological traits 
(leaf water potential, Gs, and non-photochemical quenching) in grapevine under water stress8.

Generally, by reviewing the wavebands selected based on PLSR-VIP and loading weights in our study (Figs 2, 3  
and Table 3), it was found that many of these bands are known to be very sensitive to variations in leaf carote-
noids, xanthophylls, chlorophyll pigments, fluorescence, internal structure, biomass, and water content. These are 
all directly associated with above-ground biomass and photosynthesis efficiency8,14,24,44,51. Therefore, our results 
indicate that the PLSR-VIP and loading weights methods can potentially identify the important waveband regions 
related to the growth and photosynthesis-related traits of wheat under salinity stress conditions.

The literature suggests that the ability of the full spectrum in the estimation of the measured parameters can 
be refined and the results can be easily interpreted through a combination of the PLSR-VIP and MLR methods. 
The former avoids the overfitting and multicollinearity inherent in spectral data and selecting the significant 
waveband regions, while the latter selects the most influential wavelengths in the final model39,42,52. In this study, 
the significant waveband regions that were identified by PLSR-VIP were applied to MLR as independent variables 
to identify the most influential wavelengths linked to each measured parameter in each condition. The results of 
the MLR analysis demonstrated that the individual or combination of two or three wavelengths selected form the 
VIS, red-edge, and middle NIR waveband regions accounted for most variations in SDW, Pn, and Gs in all condi-
tions. The selected wavelengths explained from 61 to 90% of the variability found in the three parameters, and the 
range of variability depended on the measured parameter and condition (Table 3).

The wavelengths selected from the three regions (VIS, red edge, and middle NIR) exhibited moderate to 
high variability in E (R2 values ranged from 0.35 to 0.75), and this variability also depended on the conditions. 
Interestingly, the results of the MLR analysis also demonstrated that most of the variability in the four measured 
parameters can be detected by a combination of two or three wavelengths selected from the SWIR region. The 
wavelengths selected from the SWIR region explained 88%, 71 to 94%, 64 to 76%, and 66 to 71% of the variability 
in SDW, Pn, Gs, and E, respectively, and most of these variabilities were detected in the three salinity levels and 
for the cultivar Sakha 61 (Table 3). Generally, these results indicate that the MLR model based on the important 
wavelengths can be successfully used to estimate the growth and photosynthetic-related traits under salinity stress 
conditions, as the most influential wavelengths were retained in the model. These results confirmed findings by 
Sharabian et al.42 and Wang et al.43, who reported that the MLR model could be effectively used for rapidly and 
accurately estimating the growth status and yield of winter wheat under different levels of nitrogen treatment.

As expected, the osmotic and ionic stresses, as well as the deficit in essential ions that is imposed by salinity, resulted 
in considerable disturbances in the photosynthetic pigments and potential, leaf structural properties, and water content 
of the leaf. This ultimately leads to substantial variations in the canopy spectral reflectance in the wavelength range of 
VIS, red edge, NIR, and SWIR12,43,53. The wavelengths in the blue, green, red, and red-edge regions of the spectrum asso-
ciated well with the considerable changes that occurred in the leaf pigment content and photosynthetic efficiency31,46. 
The wavelengths within the NIR region were influenced by several structural properties of the leaves and canopy, 
whereas the wavelengths within SWIR were always sensitive to the plant water status and leaf biochemical compounds 
such as cellulose, lignin, and proteins20,43,54. Based on the abovementioned relationship between the plant characteristics 
and the wavelengths within the different regions of the spectrum, logically, the SDW and photosynthetic-related traits 
can be successfully estimated through several wavelengths within the VIS, red-edge, and middle NIR regions. This 
statement was also confirmed by the results of the current study. This could explain why most of the published spectral 
reflectance indices developed for biomass and photosynthetic variable estimation are always formulated from wave-
lengths selected from each VIS, red-edge, or NIR regions or combined between the three regions14,31,46,55.

On the other hand, the results of the current study also showed wavelengths within the SWIR region that 
were found to be of some importance in the estimation of the photosynthetic-related traits (Table 3), although no 
wavelengths within SWIR (1900–2500 nm) were directly related to the photosynthetic efficiency. The contribu-
tion of some wavelengths within this region may be attributed to the effects of salinity stress on the water status 
and leaf biochemical compounds, which ultimately strongly affect the photosynthetic efficiency and capacity. 
Therefore, we assume that the wavelengths corresponding to the leaf water content and biochemical compounds 
carry important information about the photosynthetic efficiency and capacity under salinity stress conditions. 
Similar results were reported by Inoue et al.55 and Rapaport et al.8, who stated that the selected wavelengths within 
SWIR (e.g., 1330 and 1500 nm), which are almost independent of the variations in pigment content and photo-
synthetic capacity, were indicative of stress-induced alterations in several photosynthetic-related traits. Wang and 
Jin25 also reported that wavelengths selected by PLSR-VIP and MLR within the SWIR domain, especially at 2435, 
2440, 2445, and 2470 nm, were found to be effective for tracking changes in E under drought stress conditions.

Conclusion
The results of the current study indicated that by combining hyperspectral reflectance data with an appro-
priate statistical analysis, it is possible to accurately, rapidly, and nondestructively assess the growth- and 
photosynthetic-related traits of wheat under salinity stress. Combining PLSR-VIP with MLR has the potential to 
identify the most effective wavebands and influential wavelengths related to the growth and photosynthesis-related 
traits of wheat under different conditions (salinity levels, cultivars, and seasons). Based on PLSR-VIP analysis, the 
most important waveband regions for estimating all measured parameters in all conditions were mainly located 
in the visible and red-edge regions with few exceptions. The NIR and SWIR regions were also identified as most 
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important regions for estimating some measured parameters under particular conditions. The results of the MLR 
analysis demonstrated that the individual or combination of two or three wavelengths selected form the VIS, 
red-edge, and middle NIR waveband regions accounted for most variations in SDW, Pn, and Gs in all conditions 
(explained from 61 to 90% of the variability found in the three parameters). The results of the MLR analysis also 
demonstrated that most of the variability in the four measured parameters can be detected by a combination of 
two or three wavelengths selected from the SWIR region (explained from 64 to 94% of the variability found in the 
four measured parameters).
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