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Lattice protein folding models are a cornerstone of computational biophysics. Although these models are a
coarse grained representation, they provide useful insight into the energy landscape of natural proteins.
Finding low-energy threedimensional structures is an intractable problem even in the simplest model, the
Hydrophobic-Polar (HP) model. Description of protein-like properties are more accurately described by
generalized models, such as the one proposed by Miyazawa and Jernigan (MJ), which explicitly take into
account the unique interactions among all 20 amino acids. There is theoretical and experimental evidence of
the advantage of solving classical optimization problems using quantum annealing over its classical
analogue (simulated annealing). In this report, we present a benchmark implementation of quantum
annealing for lattice protein folding problems (six different experiments up to 81 superconducting quantum
bits). This first implementation of a biophysical problem paves the way towards studying optimization
problems in biophysics and statistical mechanics using quantum devices.

T
he search for more efficient optimization algorithms is an important endeavor with prevalence on many
disciplines ranging from the social sciences to the physical and natural sciences. Belonging to the latter, the
protein folding problem1–7 consists of finding the lowest free-energy configuration or, equivalently, the native

structure of a protein given its amino-acid sequence. Knowing how proteins fold elucidate their three-dimensional
structure-function relationship which is crucial to the understanding of enzymes and for the treatment of
misfolded-protein diseases such as Alzheimer’s, Huntington’s, and Parkinson’s disease. Due to the high computa-
tional cost of modeling proteins in atomistic detail8,9, coarse-grained descriptions of the protein folding problem,
such as those found in lattice models, provide valuable insight about the folding mechanisms2,4–6,10.

Harnessing quantum-mechanical effects to speed up the solving of classical optimization problems is at the
heart of quantum annealing algorithms (QA)11–15. There is theoretical11,12,16–18 and experimental19 evidence of the
advantage of solving classical optimization problems using QA11–14 over its classical analogue (simulated anneal-
ing20). In QA, quantum mechanical tunneling allows for more efficient exploration of difficult potential energy
landscapes such as that of classical spin-glass problems. In our implementation of lattice folding, quantum
fluctuations (tunneling) occurs between states representing different model protein conformations or folds.

The theoretical challenge is to efficiently map the hard computational problem of interest (e.g., lattice folding)
to a classical spin-glass Hamiltonian: such mapping requiring a polynomial number of quantum bits (qubits) with
the size of the problem (protein length) is described elsewhere21. Here we present a new mapping which, due to its
exponential scaling with problem size, is not intended for large instances. The proposed mapping employs very
few qubits for small problem instances, making it ideal for this first experimental demonstration and imple-
mentation on current quantum devices22. A combination of the existing polynomial mapping21 and more
advanced quantum devices would allow for the simulation of much larger instances of lattice folding and other
related optimization problems.

Solving arbitrary problem instances requires a programmable quantum device to implement the correspond-
ing classical Hamiltonian. We employ quantum annealing on the programmable device to obtain low-energy
conformations of the protein model. We emphasize that nothing quantum mechanical is implied about the
protein or its folding process; rather quantum fluctuations are a tool we use to solve the optimization problem.

The QA protocol performed here is also known as adiabatic quantum computation (AQC)17,23. Of all the
quantum-computational models, AQC is perhaps the most naturally suited for studying and solving optimization
problems17,24. For the experiments presented here, the small finite temperature of the superconducting device is
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enough to make the process less coherent than the original formula-
tion of AQC, where the theoretical limit of zero temperature and
quasi-adiabaticity are usually assumed17,23. As we show in the discus-
sion, numerical simulations including these unavoidable envir-
onmental effects accurately reproduce our experimental results.

Experimental implementations of QA or AQC are limited either
by the number of qubits available in state-of-the-art quantum devices
or by the programmability required to fulfill the problem specifica-
tion. For example, the first realization of AQC was performed on a
three-qubit NMR quantum device25 and newer NMR implementa-
tions involve four qubit experiments26. Other experimental realiza-
tions of spin systems have been based on measuring bulk
magnetization properties of the systems in which there is no control
over the individual spins and the couplings among them19,27,28.
Quantum architectures using superconducting qubits29–36 offer

promising device scalability while maintaining the ability to control
individual qubits and the strength of their interaction couplings.
During the preparation of this manuscript, an 84-qubit experimental
determination of Ramsey numbers with quantum annealing was
performed37, underscoring the programmable capabilities of the
device for problems with over 80 qubits. In this letter, we present a
quantum annealing experimental implementation of lattice protein
models with general (Miyazawa-Jernigan38) interactions among the
amino acids. Even though the cases presented here still can be solved
on a classical computer by exact enumeration (the six-amino-acid
problem has only 40 possible configurations), it is remarkable that
the device anneals to the ground state of a search space of 281 possible
computational outcomes. This study provides a proof-of-principle
that optimization of biophysical problems such as protein folding
can be studied using quantum mechanical devices.

Figure 1 | Device architecture and qubit connectivity. The array of superconducting quantum bits is arranged in 4 3 4 unit cells that consist of 8

quantum bits each. Within a unit cell, each of the 4 qubits in the left-hand partition (LHP) connects to all 4 qubits in the right-hand partition (RHP), and

vice versa. A qubit in the LHP (RHP) also connects to the corresponding qubit in the LHP (RHP) of the units cells above and below (to the left and right

of) it. (a) Qubits are labeled from 0 to 127 and edges between qubits represent couplers with programmable coupling strengths. Grey qubits indicate the

115 usable qubits, while vacancies indicate qubits under calibration which were not used. The larger experiments (Experiments 1,2, and 4) were

performed on this chip, while the three remaining smaller experiments were run on other chips with the same architecture. (b) Embedding and qubit

connectivity for Experiment 4, coloring the 81 qubits used in the experiment. Nodes with the same color represent the same logical qubit from the original

19-qubit Ising-like Hamiltonian resulting from the energy function associated with Experiment 4 (see Supplementary material for details). This

embedding aims to fulfill the arbitrary connectivity of the Ising expression and allows for the coupling of qubits that are not directly coupled in hardware.

www.nature.com/scientificreports
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Results
The quantum hardware employed consists of 16 units of a recently
characterized eightqubit unit cell22,39. Post-fabrication characteriza-
tion determined that only 115 qubits out of the 128 qubit array can be
reliably used for computation (see Fig. 1). The array of coupled
superconducting flux qubits is, effectively, an artificial Ising spin
system with programmable spin-spin couplings and transverse mag-
netic fields. It is designed to solve instances of the following (NP-
hard40) classical optimization problem: Given a set of local longit-
udinal fields {hi} and an interaction matrix {Jij}, find the assignment
s�~s�1s�2 � � � s�N , that minimizes the objective function E(s), where,

E sð Þ~
X

1ƒiƒN

hisiz
X

1ƒivjƒN

Jijsisj, ð1Þ

jhij # 1, jJijj # 1, and si g {11, -1}.
Finding the optimal s* is equivalent to finding the ground state of

the corresponding Ising classical Hamiltonian,

Hp~
XN

1ƒiƒN

his
z
i z

XN

1ƒivjƒN

Jijs
z
i sz

j ð2Þ

where sz
i are Pauli matrices acting on the ith spin.

Experimentally, the time-dependent quantum Hamiltonian
implemented in the superconductingqubit array is given by,

H tð Þ~A tð ÞHbzB tð ÞHp, t~t=trun, ð3Þ

with Hb~{
P

i sx
i responsible for quantum tunneling among the

localized classical states, which correspond to the eigenstates of Hp

(the computational basis). The time-dependent functions A(t) and
B(t) are such that A(0) ? B(0) and A(1) = B(1); in Fig. 2(b), we plot
these functions as implemented in the experiment. trun denotes the
time elapsed between the preparation of the initial state and the
measurement.

QA exploits the adiabatic theorem of quantum mechanics, which
states that a quantum system initialized in the ground state of a time-
dependent Hamiltonian remains in the instantaneous ground state,
as long as it is driven sufficiently slowly. Since the ground state of Hp

encodes the solution to the optimization problem, the idea behind
QA is to adiabatically prepare this ground state by initializing the
quantum system in the easy-to-prepare ground state of Hb, which
corresponds to a superposition of all 2N states of the computational
basis. The system is driven slowly to the problem Hamiltonian,
H(t 5 1) < Hp. Deviations from the ground-state are expected
due to deviations from adiabaticity, as well as thermal noise and
imperfections in the implementation of the Hamiltonian.

The first challenge of the experimental implementation is to map
the computational problem of interest into the binary quadratic
expression (Eq. 2), which we outline next. In lattice folding, the
sequence of amino acids defining the protein is viewed as a sequence
of beads (amino acids) connected by strings (peptide bonds). This
bead chain occupies points on a two- or three-dimensional lattice. A
valid configuration is a self-avoiding walk on the lattice and its energy

Figure 2 | Lattice folding mapping for quantum annealing. (a) Step-by-step construction of the binary representation of lattice protein. Two qubits per

bond are needed and the bond directions are denoted as ‘‘00’’ (downwards), ‘‘01’’ (rightwards), ‘‘10’’ (leftwards), and ‘‘11’’ (upwards). The example

shows one of the possible folds of an arbitrary six-amino-acid sequence. Any possible N-amino-acid fold can be represented by a string of variables

010q1q2q3 � � � q‘{1q‘ with ‘~2N{5. (b)Time-dependence of the A(t) and B(t) functions, where t 5 t/trun with trun 5 148 ms, (c) time-dependent

spectrum obtained through numerical diagonalization, and (d) Bloch-Redfield simulations showing the time-dependent population in the first eight

instantaneous eigenstates of the experimentally implemented 8-qubit Hamiltonian (Eq. 3) with Hp from Eq. S18 in the Supplementary material. In panel

(c), for each instantaneous eigenenergy curve we have subtracted the energy of the ground state, effectively plotting the gap of the seven-lowest-excited

states with respect to the ground state (represented by the baseline at zero-energy). As a reference, we show the energy with the device temperature, which

is comparable to the minimum gap between the ground and first excited state. In panel (d), populations are ordered in energy from top (ground state) to

bottom. Although t 5 t/trun runs from 0 to 1, we show the region where most of the population changes occur. As expected, this is in the proximity of the

minimum gap between the ground and first excited state around t , 0.4 [see panel(c)].

www.nature.com/scientificreports
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is calculated from the sum of interaction energies between nearest
non-bonded neighbors on the lattice. By the thermodynamic hypo-
thesis of protein folding41, the global minimum of the free-energy
function is conjectured to be the native functional conformation of
the protein.

Finding low-energy three-dimensional structures is an intractable
problem42–44. The hydrophobic-polar (HP) model is one of the sim-
plest possible models for lattice folding45. In this model, the amino
acids are classified into two groups, hydrophobic (H) and polar (P).
Even in this simplest model, exhaustive search of all possible global
minima is limited to sequences in the tens of amino acids46. To
describe real protein energy landscapes a more elaborate description
needs to be considered, such as the Mijazawa-Jernigan (MJ) model38

which assigns the interaction energies for pairwise interactions
among all twenty amino acids. The formulation we used is general
enough to take into account arbitrary interaction matrices for lattice
models in two and three dimensions. In particular, we solved a MJ
model in 2D, the six-amino-acid sequence of Proline-Serine-Valine-
Lysine-Methionine-Alanine (PSVKMA in the one-letter amino-acid
sequence notation). We solved the problem under two different
experimental schemes (see Schemes 2 and 3 in Fig. 3), each requiring
a different number of resources. Solving the problem in one proposed

experimental realization (Scheme 1) requires more resources than
the number of qubits available (115 qubits) in the device. Scheme 2
and 3 are examples of the divide-and-conquer strategy, in which one
partitions the problem in smaller instances and combines the inde-
pendent set of results, thereby obtaining the same solution for the
intractable problem. In the Supplementary Information section, we
complement these four MJ related experiments with two small tetra-
peptide instances (effectively HP model instances) for a total of six
different problem Hamiltonians. We used the largest of these two
instances (an 8 qubit experiment) for direct theoretical simulation of
the annealing dynamics of the device. The results from our experi-
ment and the theoretical model, which does not use any adjustable
parameters (all are extracted experimentally from the device), are in
excellent agreement (see Supplementary Fig. S2 online).

To represent each of the possible N-amino-acid configurations
(folds) in the lattice, we encode the direction of each successive bond
between amino acids; thus, for every N-bead sequence we need to
specify N - 1 turns corresponding to the number of bonds. For the
case of a two dimensional lattice, a bond can take any of four possible
directions; therefore, two bits per bond are required to uniquely
determine a direction. More specifically, if a bond points upwards,
we write ‘‘11’’. If it points downwards, leftwards or rightwards, we

Figure 3 | Experimental realizations. (a) Representation of the six-amino-acid sequence, Proline-Serine-Valine-Lysine-Methionine-Alanine with its

respective one-letter sequence notation, PSVKMA. We use the pairwise nearest-neighbor Miyazawa-Jernigan interaction energies reported in Table 3 of

Ref. 38. (b) Divide and conquer approach showing three different schemes which independently solve the six-amino-acid sequence PSVKMA on a two-

dimensional lattice. We solved the problem under Scheme2 and 3 (Experiments 1 through 4). (c) Energy landscape for the valid conformations of the

PSVKMA sequence. Results of the experimentally-measured probability outcomes are given as color-coded percentages according to each of the

experimental realizations described in panel (b). Percentages for states with energy greater than zero are 32.70%, 59.88%, 8.00%, and 95.97% for

Experiments 1 through 4, respectively.

www.nature.com/scientificreports
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write ‘‘00’’, ‘‘10’’, or ‘‘01’’ respectively. Fixing the direction of the first
bond reduces the description of any N-bead fold to ‘~2 N{2ð Þ
binary variables, without loss of generality. As shown in Fig. 2(a),
in the absence of external constraints other than those imposed by
the primary amino-acid sequence (see Supplementary Information
for an example with external constraints), we can fix the third binary
variable to ‘‘0’’, forcing the third amino acid to go either straight or
downward and reducing the number of needed variables to
‘~2N{5. This constraint reduces the solution space by removing
conformations which are degenerate due to rotational symmetry.
Thus, a particular fold is uniquely defined by,

q~ 01|{z}
turn1

0q1|{z}
turn2

q2q3|{z}
turn3

� � � q2N{6q2N{5|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
turn N{1ð Þ

ð4Þ

An example of this encoding for a six-amino-acid sequence is repre-
sented in Fig. 2(a).

Using this mapping to translate between the amino-acid chain in
the lattice and the 2(N - 1) string of bits, we constructed the energy
function E(q) in which q denotes the remaining 2N-5 binary vari-
ables. Additionally, we penalized folds which exhibit two amino acids
on top of each other, to favor self-avoiding walk configurations. The
energy penalty chosen for each problem was sufficient to push the
energy of invalid folds outside of the energy range of valid config-
urations (those with E # 0). Finally, we took into account the interac-
tion energy among the different amino acids. A detailed construction
of our energy function for the general case of N amino acids with
arbitrary interactions is given elsewhere.

The experiment consists of the following steps: a) construction of
the energy function to be minimized in terms of the turn encoding; b)
reduction of the energy expression to a two-body Hamiltonian; and
finally, c) embedding in the device. These last two steps need addi-
tional resources as explained below. We will focus on the simplest
example (Experiment 3, Fig. 3) to show the procedure in detail. The
embeddings for the other five experiments are provided in the
Supplementary material. The energy function for Experiment 3, con-
taining the contributions due to on-site penalties for overlapping
amino acids, and pairwise interactions between amino acids is,

E qð Þ:Ecubic
exp3 ~{1{4q3z9q1q3z9q2q3{16q1q2q3 ð5Þ

where q10 (q2q3) encodes the orientation of the fourth (fifth) bond
(see Fig. 3). From Eq. 5 one can verify by substitution that the eight
possible three-bit-variable assignments provide the desired energy
landscape: the six conformations with E # 0 shown in blue in Fig. 3.

Eq. 5 describes the energy landscape of configurations but it is not
quite ready for the device. Experimentally, we can specify up to two-
body spin interactions, sz

i sz
j , and therefore, we need to convert this

cubic energy function (Eq. 5) into a quadratic form resembling Eq. 1
(see Supplementary Information for details). The resulting express-
ion is

Hunembedded
p ~ 7sz

1z9sz
2z8sz

3{20sz
4z9sz

1sz
3z9sz

2sz
3

�

{16sz
1sz

4{18sz
2sz

4{18sz
3sz

4

�
=4

ð6Þ

where the original binary variables and spin operators are related by
qi? 1{sz

i

� ��
2. Experimental measurements of sz

i yield si 5 11
(si 5 21) corresponding to qi 5 0 (qi 5 1). Since qi 5 (1 2 si)/2,
measurement of s1, s2, and s3 allows us to reconstruct the bit string
q10q2q3 which encodes the desired fold.

One ancilla variable was added during the transformation of the
three-variable cubic Hamiltonian into this quadratic four-variable
expression. The meaning of the original variables s1, s2, and s3

remains the same, allowing for the reconstruction of the folds. The
energy of this four-variable expression will not change as long as
the measurements of sz

1 through sz
4 result in values for q1q2q3q4

satisfying q4 5 q2q3. This transformation ensures an energy penalty
whenever this condition is violated.

The architecture of the chip lacks sufficient connectivity between
the superconducting rings for a one-to-one assignment of variables
to qubits (see Fig. 4). To satisfy the connectivity requirements of the
four-variable energy function, the couplings of one of the most con-
nected variables, q4, were fulfilled by duplicating this variable inside
the device such that q4 R q4 and q49. In the form of Eq. 2 the final
expression representing the energy function of Experiment 3 is given
by,

Hp~ 7sz
1z9sz

2

�
z8sz

3{2sz
4{18sz

4’z9sz
1sz

3z9sz
2sz

3{16sz
1sz

4

{18sz
2sz

4{18sz
3sz

4’{36sz
4sz

4’

��
36:

ð7Þ

This expression satisfies all requirements for the problem
Hamiltonian (Eq. 3), the completion of which allows for the mea-
surement of the energetic minimum conformation of this small pep-
tide instance. The embedding of Eq. 7 into the hardware is shown in
Fig. 4, where we label the five qubits used, q1, q2, q3, q4, and q49. Since
we want the two qubits representing q4 to end up with the same value,
we apply the maximum ferromagnetic coupling (J 5 21) between
them, which adds a penalty whenever this equality is violated (last
term in Eq. 7). These maximum couplings are indicated in Fig. 4 by
heavy lines. The thinner lines show the remaining couplings used to
realize the quadratic terms in Eq. 7, color coded according to the sign
of the interaction and its thickness representing their strength. Note
that every quadratic term in Eq. 7 has a corresponding coupler.
Hereafter, we will denote the outcome of the five-qubit measure-
ments as qexp3 5 010010q10q2q3jq4q49, with qi 5 0 (qi 5 1) whenever
si 5 1 (si 5 21). Notice that only the bits preceding the divider
character j contain physical information. These are the ones shown
under each of the protein fold drawings associated with Experiment 3
(see Fig. 3).

Similar embedding procedures to the one previously described
were used for the larger experiments. For example, in Experiment
1, only 5 qubits define solutions of the computational problem. We

Figure 4 | Embedding problem instances into hardware. Graph

representations of (a) the four-qubit unembedded energy function (Eq. 6)

and (b) the five-qubit expression (Eq. 7) as was embedded into the

quantum hardware. In graphs (a) and (b), each node denotes a qubit and

the color and extent of its glow denotes the sign and strength of its

corresponding longitudinal field, hi. The edges represent the interaction

couplings, Jij, where color indicates sign and thickness indicates

magnitude. Since we want the two qubits representing q4 (q4 and q49) to

end up with the same value, we apply the maximum ferromagnetic

coupling (J 5 21) between them, which adds a penalty whenever this

equality is violated. These maximum couplings are indicated in the figure

by heavy lines. For the case of Experiment 3, the reconstruction of the

binary bit stings representing the folds in Fig. 3, from the five-qubit

experimental measurements can be recovered by qexp3 5

010010q10q2q3 | q4q49, with qi 5 0 (qi 5 1) whenever si 5 1 (si 5 21).

www.nature.com/scientificreports
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needed 5 auxiliary qubits to transform the expression with 5-body
interactions into an expression with only 2-body interactions.
Embedding of this final expression required an additional of 18
qubits to satisfy the hardware connectivity requirements, for a total
of 28 qubits. Table S1 in the Supplementary material summarizes the
number of qubits required in each step through to the final experi-
mental realizations.

Discussion
Even though the quantum device follows a quantum annealing pro-
tocol, the odds of measuring the ground state are not necessarily
high. For example, in the 81 qubit experiment, only 13 out of
10,000 measurements yielded the desired solution. We attribute
these low-percentages to the analog nature of the device and to
precision limitations in the real values of the local fields and cou-
plings among the qubits in the experimental setup. When compared
to other problem implementations, physical problems such as lattice
folding lack the structure of the Ramsey number problem37. In the
lattice folding problem implemented here, the parameters defining
the problem instances are arbitrary and do not fall into certain integ-
ral distinct values as in the case of the Ramsey number experiment,
making precision issues more pronounced in our implementation.

To gain insights into the dynamics and evolution of the quantum
system, we numerically simulated the superconducting array with a
Bloch-Redfield model of the 8-qubit experiment (see Supplementary
material) which takes into account thermal fluctuations in the states
due to the finite temperature (20mK) of the quantum device. For this
8-qubit experiment, the simulation predicted a ground state prob-
ability of 80.7 %, in excellent agreement with the experimentally
observed value (80.3%). It is important to note that no adjustable
parameters were used in our simulations to fit the data and all the
parameters correspond to values measured directly from the
quantum device. More details about the numerical simulations can
be found in the Supplementary Information.

As seen in Fig. 2(c), the temperature of the device is comparable
with the minimum gap of the eight-qubit Hamiltonian. Therefore,
we expect stronger excitation/relaxation near the gap closing, t < 0.6,
due to exchange of energy with the environment, when compared to
the other regimes of the annealing schedule where the gap is much
larger than kBT. In the absence of environment (a fully coherent
process), our simulations indicate that that the success probability
would be 100%, within numerical error. Fig. 2(d) shows that for the
simulations at 20 mK, the probability in the ground state goes down
to , 55%, but the same fluctuations make the system relax back to
the ground state, yielding tan 80.27% success probability. This is due
to the advantageous natural tendency of the system to approach a
thermal equilibrium which favors the ground state after crossing the
minimum energy gap. As previously discussed in similar numerical
simulations of quantum annealing algorithms47, strong coupling to
the bath and non-Markovianity would require going beyond the
Bloch-Redfield model48, but the agreement between experimental
and simulated results support the validity of the quantum mech-
anical model used to describe the device. Previously reported tem-
perature dependence predictions for the tunneling rate on the same
qubits22 and excellent agreement with the same level of theory used
here reinforce the validity of our simulations for this 8-qubit
instances.

We present the first quantum-mechanical implementation of lat-
tice protein models using a programmable quantum device. We were
able to encode and to solve the global minima solution for a small
tetrapeptide and hexapeptide chain under several experimental
schemes involving 5 and 8 qubits for the four-amino-acid sequence
(Hydrophobic-Polar model) and 5, 27, 28, and 81 qubits experiments
for the six-amino-acid sequence under the Miyazawa-Jernigan
model for general pairwise interactions. For the experiment with 8
qubits, we simulated the dynamics of the quantum device with a

Redfield equation with no adjustable parameters, obtaining excellent
agreement with experiment. Since the quantum annealing algorithm
not only finds the ground state but also the low-lying excited states, it
provides information about the relevant minimum energy compact
structures of protein sequences49 and it is useful to evaluate desig-
nability and stability such as that found in natural protein sequences,
where the global minimum of free energy is well separated in energy
from other misfolded states41. The approach employed here can be
extended to treat other problems in biophysics and statistical me-
chanics such as molecular recognition, protein design, and sequence
alignment50.
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