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Abstract

Molecular interaction fields (MIFs), describing molecules in terms of their ability to

interact with any chemical entity, are one of the most established and versatile con-

cepts in drug discovery. Improvement of this molecular description is highly desirable

for in silico drug discovery and medicinal chemistry applications. In this work, we

revised a well-established molecular mechanics' force field and applied a hybrid quan-

tum mechanics and machine learning approach to parametrize the hydrogen-bonding

(HB) potentials of small molecules, improving this aspect of the molecular description.

Approximately 66,000 molecules were chosen from available drug databases and

subjected to density functional theory calculations (DFT). For each atom, the molecu-

lar electrostatic potential (EP) was extracted and used to derive new HB energy con-

tributions; this was subsequently combined with a fingerprint-based description of

the structural environment via partial least squares modeling, enabling the new

potentials to be used for molecules outside of the training set. We demonstrate that

parameter prediction for molecules outside of the training set correlates with their

DFT-derived EP, and that there is correlation of the new potentials with hydrogen-

bond acidity and basicity scales. We show the newly derived MIFs vary in strength

for various ring substitution in accordance with chemical intuition. Finally, we report

that this derived parameter, when extended to non-HB atoms, can also be used to

estimate sites of reaction.
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1 | INTRODUCTION

The use of in silico techniques to predict key molecular properties is

nowadays well established in drug discovery.1 The reliability of these

techniques is mainly based on their ability to estimate molecular

properties with realistic chemical sense that can account for experi-

mental properties. Therefore, research on new and more reliable in sil-

ico molecular descriptors for typical drug-scaffolds is still active and

different approaches have been proposed in the last decades.2–6 In

this context, molecular interaction field (MIF)-based methods aim to
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describe molecules in terms of how they interact with other chemical

entities, rather than in terms of their chemical structure directly.7 Still

today, MIFs are one of the most established and versatile concepts in

drug design. In ligand-based design they have been widely used to

derive quantitative 3D structure–activity relationship (3D-QSAR)

models to predict binding affinity and pharmacokinetics parameters

(e.g., membrane permeability and metabolism), and for virtual screen-

ing and pharmacophore modeling; in structure-based design, they

have been used to suggest modifications that improve ligand potency,

for virtual screening, and to analyze and estimate protein–ligand and

protein–protein interactions (PPIs).8–15

A MIF quantifies the spatial variation of the interaction energy

between a 3D molecule and a chosen probe that represents a specific

chemical type (e.g., water, hydrophobic, amide NH donor, carbonyl O

acceptor, carboxylic acid). Usually, in drug design software, the infor-

mation contained in a MIF is rendered as an isovolume (a region of

space which encloses values of the MIF below a certain threshold)

and has been further condensed into various numerical descriptors (e.

g., VolSurf+16) for visualization and ease of interpretation.17–19 Such

interactions are estimated by well-established molecular mechanics

(MM) force fields (GRID8 or MOE,18 among others20,21) which use an

energetic potential based on the total interaction energy between a

target molecule and a probe and its spatial orientation. Each probe

represents a specific chemical group so that chemically specific infor-

mation can be accumulated about the way in which the target might

interact favorably with other molecules. In the GRID force-field this

energy function8,22–24 is the sum of the energies calculated between

the probe, placed at a specific grid point, and every appropriate atom

of the target and consists of four terms: Lennard-Jones (ELJ), electro-

static (EEL), hydrogen-bonding (EHB), and entropic (ES). Thus, the

selected probe is moved between various grid points covering the tar-

get, and at each point the energy is computed accordingly to the fol-

lowing equation:

E¼
X

ELJþ
X

EELþ
X

EHBþEs: ð1Þ

The EHB term is the product of three terms, one based on the dis-

tance between the target and the probe (Er) given in kcal/mol, and the

other two, both ranging in the interval 0–1, Et, and Ep. Both Et and Ep

are dimensionless functions of the angles t and p made by the hydro-

gen bond (HB) at the target and the probe atoms respectively. Thus,

they describe the orientational dependence of the HBs; for example,

Ep assumes a value of 1.0 when the probe is oriented to form the

strongest HB possible. Hence, the hydrogen-bond term is computed

as follows:

EHB ¼ Er*Et*Ep: ð2Þ

According to this definition, the EHB term, and more specifically

the distance dependent part Er, assume relative values in case of inter-

action with a HB acceptor or donor complementary probe and is

parametrized by two values: the strongest hydrogen-bond attraction

energy at the optimum position (Emin), and half of the straight-line

distance between donor and acceptor atom pairs which corresponds

to the strongest hydrogen-bond attraction energy (Rmin).

In some of the most used force fields,8,18,22–24 atoms are clas-

sified into general classes called “atom types” (e.g., see ATs

reported in Table S1) depending on their neighboring atoms, such

that each AT represents a specific chemical moiety. In the GRID

force-field, as in most of the used force fields, Emin assumes fixed

values for each AT. Such parameterization can be defined as

“static”: it does not consider the chemical environment of the

atom; a pyridine nitrogen (N:= AT) will always have the same

hydrogen bonding parameters regardless of any decoration on the

pyridine moiety that might influence the strength of the potential

HB. The main reasons for this generalization, especially consider-

ing that these force fields were introduced almost 30 years ago,

are the speed of the atom classification step, enabling a broad cov-

erage of the drug-like molecules space with a reasonable number

of atom types (in GRID there are 74, including 18 different types

of nitrogen and 16 different types of oxygen atom). However,

especially when dealing with heteroatoms, such an approximation

may fail to accurately define the effect of a nearby chemical sub-

stitution on the electrostatic component in the hydrogen bonding

contribution, which would be seen via the experimental properties

of the moiety. One way to include this chemical effect from nearby

structural features of a molecule is to map its electrostatic poten-

tial (EP). Indeed, as widely reported in literature, the EP noticeably

correlates with HB properties and, more generally, with reactive

behavior.25–31

Therefore, starting from the hypothesis that the HB energy is

dependent on the environment constituted by neighboring atoms, in

this work we present a machine learning and semi-empirical computa-

tional procedure developed to improve the HB description that is

implemented as a dynamic contribution in the GRID8 force field and

used to derive new electronic descriptors which are freely available in

VolSurf 3 (VS3 can be downloaded at: https://www.molhorizon.it/

software/volsurf3/).

The complete procedure and the results obtained are

described in the next sections. In addition, the efficacy of the

novel parametrization is demonstrated via correlation to experi-

mental acidic/basic and donating/accepting HB properties

(Berthelot and Laurence pKHB database,32–35 and Abraham's

hydrogen bonding strength scales36,37). Finally, the impact of such

dynamic parameterization on derived MIFs is also reported, and

proof of concept applications on modern medicinal chemistry

approaches are presented. Additional details are available in the

Supporting Information (SI).

2 | METHODOLOGY

A database of approximately 66,000 molecules compounds was built

using both combinatorial chemistry approaches and publicly available

databases (CheEMBL,38 PubChem39 additional details are available in

SI) with the aim of achieving reasonable coverage of drug-like space.
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Subsequently, for all molecules atom-centered EPs were estimated

using density functional theory (DFT) calculations and used to param-

etrize new dynamic Emin values (dEmin) via linear equations. Atoms

were classified according to their GRID H-bond acceptor and donor

types (Table 1) and their atomic environment described using a tree-

structured fingerprint.40 Subsequently, the partial least squares

(PLS)41 algorithm was used to correlate specific ATs and their atomic

environments to their corresponding dEmin values. The obtained PLS

models were both internally and externally validated, demonstrating

their ability to estimate EP values also for the relevant atom types in

unknown molecules. It is maybe important to underline that we used

the name dEmin (i.e., dynamic Emin) to emphasize that as its value is

no more a “static” one, but it considers the chemical environment of

the atom; a pyridine nitrogen (N:= AT) will have a different hydrogen

bonding parameters depending on the decoration of the pyridine moi-

ety that might influence the strength of the potential HB.

In the present section, we will detail the methodology adopted,

the model building, and validation.

2.1 | EP from QM calculations

The EP (V rð Þ) is defined as the electrostatic interaction energy

between the molecular charge distribution and the positive unit

charge (a proton) located at any point r through the electrical charge

cloud generated through the molecule's electrons and nuclei42

V rð Þ¼
X

A

ZA

jRA� r j�
ð
ρ r0ð Þdr0
r0 � rj j , ð3Þ

where: ρ r0ð Þ is the electronic density function of the molecule at point

r0, ZA denotes the nuclear charge placed at RA.

The EP minimum typically lies within the Van der Waals molecular

surface.30,43 It is a real physical property of a molecule, experimentally

measurable by diffraction methods38 or computationally estimated

via QM calculations.42,44–46 The accuracy of the computational

estimations depends on the “quality” of the chosen method, that is,

how well we can approximate the ρ r0ð Þ, but an efficiency/accuracy

TABLE 1 Statistical parameters for the obtained models. AT atom type; chemical description of the atom type; H-bond type H-bond donor
(D) or H-bond acceptor (a); atoms number of atoms of the training set; LV number of latent variables considered; R2 coefficient of determination
for the training set; Q2 coefficient of determination for predicted compounds; SDEC standard deviation error in calculation; SDEP standard
deviation error in external prediction

AT Description

H-bond

type Atoms LV R2 Q2

SDEC

(kcal/Mol)

SDEP

(kcal/Mol)

N: sp3 (tertiary) nitrogen, accepting one H-bond A 6954 9 0.92 0.88 0.56 0.41

N1: sp3 (secondary) nitrogen, donating one hydrogen and

accepting one H-bond

A 3941 8 0.91 0.84 0.24 0.49

D 4776 7 0.96 0.92 0.30 0.53

N2: sp3 (primary)nitrogen, donating up to two hydrogen and

accepting one H-bond

A 3618 8 0.84 0.71 0.26 0.38

D 4895 7 0.95 0.92 0.30 0.41

ON oxygen of nitro or nitroso group, accepting up to two H-bond A 4907 8 0.82 0.69 0.26 0.38

N:= sp2 (aromatic) nitrogen, accepting one H-bond A 27,140 12 0.91 0.89 0.35 0.47

N:: sp2 nitrogen with two lone pairs and one double bond A 472 4 0.89 0.59 0.23 0.12

N:# sp nitrogen A 15,798 10 0.72 0.66 0.29 0.32

O1 Alcoholic oxygen atom in sp3 hydroxyl group, capable of

donating one hydrogen and accepting up to two H-bonds

A 1367 6 0.86 0.66 0.30 0.55

D 1392 7 0.87 0.65 0.29 0.50

OC1 Aliphatic and aryl ether oxygen, accepting one H-bonds A 12,725 10 0.74 0.66 0.32 0.44

OC2 Aliphatic ether oxygen, accepting two H-bonds A 7100 8 0.81 0.73 0.30 0.44

OC= Aryl ether oxygen, accepting one H-bond A 2527 9 0.89 0.75 0.26 0.46

OES Tetrahedral ester oxygen, not accepting H-bonds A 11,501 10 0.82 0.76 0.28 0.39

OFU Aromatic furan or oxazole oxygen, accepting one H-bond A 6114 9 0.88 0.81 0.26 0.47

OH Phenolic and carboxy oxygen, capable of donating one

hydrogen and accepting up to two H-bonds

A 4892 7 0.78 0.62 0.29 0.50

D 4892 7 0.78 0.62 0.29 0.50

O=S Oxygen bonded only to one central S (sulphones, sulfates,

unionized sulfate, sulphonamides), accepting two H-bonds

A 15,886 10 0.84 0.81 0.24 0.37

OS Oxygen bonded only to one central S (sulphoxides, unionized

sulphonate esters, unionized alkyl sulphinates), accepting

two H-bonds

A 947 4 0.90 0.69 0.25 0.41

O= Oxygen bonded to one atom (e.g., phosphates arsenates

silicates) and accepting up to two H-bonds

A 13,307 7 0.86 0.83 0.33 0.44

O sp2 carbonylic oxygen, accepting up to two H-bonds A 7811 6 0.90 0.86 0.33 0.61
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trade-off has to be found. To this aim, different cost-efficient ab initio

and DFT population analyses for calculating the EP or deriving char-

ges by fitting the MEP (ChelpG,47 MK48 schemes), have been pro-

posed and their performances evaluated.27,29,30,46 In this work,

because of the overall dataset size (�66,000 molecules, the list is

reported as SI), and the necessity of having a versatile basis set able

to describe all the atoms, the B3LYP/SVP49,50 level of theory was

chosen for EP estimations. We found the SVP basis set to be a good

compromise between accuracy and computational cost, indeed the

use of more extended basis sets does not seem justifiable in terms of

the obtainable results.51,52 The GAMESS-US53,54 software was used

for EP estimation, after first optimizing the geometry of the input mol-

ecules using the semiempirical method AM1; tautomeric states were

assigned using the MoKa software.55

2.2 | From QM EP to dEmin

For each molecule of the dataset (66,463 in total), QM calculated EPs

were extracted for each atom at each nucleus position (the contribu-

tion of each nucleus at its own position is neglected to avoid singular-

ity GAMESS-US53,54). These EP values are converted to dEmin values

using linear Equations (4) and (5) for each AT; in general, the proposed

linear equations have positive intercept and slope for HB-accepting

ATs (Equation (4)), and negative intercept and slope for HB-donating

ATs (Equation (5)).

dEminBH ¼mBH*EPþqBH: ð4Þ

dEminAH ¼�mAH*EP�qAH: ð5Þ

In these equations, m and q are the slope and intercept which are

adjusted for each AT to make the different scales comparable, while

EP is the calculated EP for a given atom. All the linear equations

(reported in Tables S4 of SI) have been derived so that for each AT all

the resulting dEmin values always fall within an acceptable range

according to the GRID Force-Field (GRID-FF) parametrization. Thus,

each Linear equation is built to compute the new dEmin parameter for

the GRID-FF and this parameter used as the dependent variable Y

for training the PLS41 regression models. The independent X variables

come from a tree-structured molecular fingerprint. Specifically, for

each atom, the molecular environment is described by a tree-

structured molecular fingerprint with a length of 10 bond distances in

an analogous fashion to that successfully used by Xing and coworkers

for modeling pKa.
40 Using this approach, 22 PLS models were built

relating atomic environment to dEmin for the HB GRID atom types for

which enough data was available; other models we also built to pre-

dict dEmin for other GRID atom types (see Section 4.3). Each PLS

model is then used to compute the Emin parameter dynamically

(dEmin) to be used by the GRID-FF to calculate the hydrogen-bond

term of the interaction energy (see Equations (1) and (2)). The

machine-learning approach is therefore used to modulate

the hydrogen-bond term of the GRID force field depending on the

chemical environment of the molecule's relevant hydrogen bonding

atom type.

The goodness-of-fit of the obtained models was evaluated by cal-

culating the coefficient of determination (R2) and the predictive power

was evaluated using both cross-validation and external data set vali-

dation. The cross-validated Q2 was obtained by random groups cross-

validation (five groups, 20 different partitioning)56 and the standard

deviation of calculation errors (SDEC) was also evaluated.41,57 Exter-

nal validation consisted of projecting a test set of ligands of the whole

Protein Data Bank58 (2909 candidates). For the test set the EPs were

estimated by QM and the dEmin values assigned as for the training

set. Finally, the standard deviation of prediction errors (SDEP)41,57

was evaluated.

3 | MODELS BUILDING AND VALIDATION

In Table 1, we summarize the key statistical properties of the 22 PLS

models obtained. The ability to reproduce the QM derived dEmin

ranges from R2 = 0.72 to R2 = 0.96 (Table 1), with an average R2 of

0.86 and an average SDEC of 0.30 kcal/mol, indicating that a large

amount of variance is predictable by the tree-structured fingerprints.

The number of latent variables (LVs) for each model has been selected

trying to maximize the Q2. Quite naturally the number of LVs varies

as a function of the dimension of the model, going from 4 in the case

of relatively small datasets (e.g., N:: and OS) up to 12 in the case of

the N:= dataset that consists of more than 27,000 elements (i.e.,

atoms).

The predictive ability of the models was initially evaluated by

internal cross-validation, resulting in a promising average Q2 of

0.76. However, it is well known that supervised multivariate ana-

lyses such as PLS may suffer from overfitting, thus external valida-

tion is always recommended.59 Therefore, the models' ability to

predict the dEmin of new compounds was evaluated by projecting

2909 external drug-like candidates. For each compound, atoms

were assigned their GRID atom types, the QM estimated EP was

calculated, and then the Tree-structured fingerprints were calcu-

lated as described for the training set (see Methodology, subsec-

tion 2.2) and used to project the atoms onto the relevant PLS

model. The quality of the obtained predictions is summarized in the

standard deviation error prediction (SDEP) column in Table 1 for

each AT-model. It can be noted that the obtained values range

from 0.12 to 0.61 kcal/mol, demonstrating that the models are also

predictive when applied to new compounds.

Correlations obtained between the new predicted dEmin and the

QM EP for the test set are explicitly reported in Figure 1 for the most

populated HB-acceptor and HB-donor ATs, namely the N:= (sp2 aro-

matic nitrogen, with 2131 atoms, R2 = 0.76, Figure 1A) and the N1

(sp3 secondary amide nitrogen, with 2159 atoms, R2 = 0.79,

Figure 1B), respectively. Besides the goodness-of-fit (see also SI

Table S1), it should be emphasized that such correlations would not

even have been possible considering the traditional version of the

static HB potentials, where for every AT a single, fixed value is
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assigned (red lines in Figure 1) so no differentiation within atoms of a

given AT class was possible.

3.1 | dEmin correlation to H-bond basicity and
acidity properties

In the pharmaceutical context, HB has a direct influence on the solu-

bility of drugs and on their interaction with their targets.27,34,35 In this

context, predictive models for HB ability is of high interest for the

drug discovery and medicinal chemistry community. Therefore, we

decided to test the correlation of the proposed dEmin to those experi-

mental hydrogen-bonding (HB) properties.

Laurence and colleagues collected several experimental values of

HB basicity (pKBHX
34,35) to address the still debated issue of describ-

ing HB in the context of medicinal chemistry. A collection of these

pKBHX values has been reported.27 These data were curated as a data-

base, and to avoid concomitant effects only molecules with a single

HB acceptor/donor site were retained (the dataset used can be found

in SI Table S1). Molecules were projected on our PLS models to obtain

the dEmin values for each atom of each molecule. As it can be noted

in Figure 2, where the experimental pKBHX versus the dEmin values

have been reported, a good correlation is obtained (279 atoms, Pear-

son correlation coefficient = �0.85).

Similarly to what has already been shown by Kenny and col-

leagues27 about using the molecular EP as a predictor of pKBHX, here

F IGURE 1 dEmin versus QM electronic potential correlations for (A) the N:= atom type (2711 atoms, R – Pearson = 0.90) and (B) the N1
atom type (2159 atoms, R – Pearson = �0.89) of the test set. The red lines represent values of the traditional, static Emin of the GRID force field,
namely �5.5 for N:= and � 4.0 for N1 atom types. dEmin, dynamic Emin

F IGURE 2 dEmin versus H-bond
basicity scale for the Kenny27 dataset
(279 atoms, R – Pearson = �0.85). Color
palette at the bottom of the picture.
dEmin, dynamic Emin
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we provide a straightforward tool to estimate the pKBHX with good

accuracy.

As a proof of concept, we also applied the procedure to acidity

scales. In the late 1980s, Abraham and colleagues36,37 collected a

number of experimental HB basicity (logKH
B ) and acidity (logKH

A ) values

of common organic molecules, with the aim of obtaining scales of sol-

ute HB ability, that are still widely used today for drug design pur-

poses. We took Abraham's databases, curated them as previously

described to avoid concomitant effects, and molecules of the data-

base were projected on the relevant AT PLS models to obtain dEmin

values. The final database used is reported in Supporting Information,

Tables S2 and S3. As shown in Figure S2, dEmin values successfully

correlates with experimental HB basicity (Figure S2 A, 140 atoms) and

acidity (Figure S2 B, 89 atoms) properties, with Pearson correlation

coefficient equal to �0.90 and �0.86, respectively.

A figure of merit is that, while EP intrinsically refers to a specific

AT so that a direct comparison among different ATs is not possible,

dEmin values refer to a unique scale. This allows a straightforward

comparison of dEmin values among different ATs and to explore cor-

relations to physical–chemical properties of interest, such as KH
B and

KH
A . Once again, it is important to underline that such correlation

would not have been possible considering the static version of the HB

potential used in traditional force fields.

4 | DRUG DESIGN AND MEDICINAL
CHEMISTRY APPLICATIONS

In the following paragraph, we report three real-world examples

related to drug design and medical chemistry applications. To demon-

strate the predictive power of the models, in the following examples

we are only considering molecules not included in the training set.

4.1 | Case study I: Chemically aware MIFs for
functionalization of a drug candidate for COVID-19

As already mentioned, the spatial variation of the interaction energy

derived using the new dEmin can be quantified using MIFs. One of the

most popular ways to represent the information contained in a MIF is

the rendering of isovolumes. As a result, MIFs are represented as 3D

objects.18,60,61 For this reason, any change in the interaction energy

value will be reflected in the obtained MIFs. In order to evaluate if the

proposed parametrization is in accordance with the expected chemical

behavior, as well as the impact on possible medicinal chemistry and

drug design applications, in this example we used the dEmin values to

compute (see Equation (2)) and represent the MIF.

Phenazopyridine is a urinary tract analgesic used for the short-

term management of urinary tract infections, surgery, or injury to the

urinary tract, but in a recent study, it was reported among

the approved drugs with putative activity against SARS-CoV-2 tar-

gets.62 Imagining a chemist who wants to further optimize the DMPK

(Drug Metabolism and Pharmacokinetics) properties of

phenazopyridine by small moiety substitution (i.e., drug design

approach), we computed MIFs for phenazopyridine and two derivatives

with substituents accounting for different electronic effects (Figure 3).

Chemical sense would suggest that a phenazopyridine substituted with

an electron-withdrawing group on the pyridine ring would withdraw elec-

tron density from the pyridine N atom, therefore reducing its ability to

accept a HB from a HB donor. Therefore, one would expect a HB donor

MIF (e.g., From the N1 amide NH probe) to be weaker (smaller volume at

the equivalent isocontour level) when interacting with a nitro-substituted

phenazopyridine (Figure 3A) versus phenazopyridine. Without any sub-

stituents on the ring results in a stronger interaction (Figure 3B), and phe-

nazopyridine shows a yet stronger interaction the electron-donating

substituents (Figure 3C). While the MIFs are describing the overall inter-

action according to Equation (1), at the isocontour level of �4 kcal/mol

the interaction energy for the N1 probe will be dominated by the hydro-

gen bonding term which itself is derived from the new dEmin value.

4.2 | Case study II: Novel VS3 molecular
descriptors for the prediction of an ADMET property

VolSurf+16,63 is a computational procedure designed for a fast gener-

ation of quantitative molecular descriptors. In the past, VolSurf+ has

been applied with success in several drug development projects.64–66

We used the new descriptors to develop a machine-learning model

for predicting the fraction of a drug dose that is excreted unchanged

in urine. This property belongs to the ensemble of mechanisms and

biological processes that describe the adsorption, distribution, metab-

olism, excretion, toxicity (ADMET) of a drug67 and its assessment is

required by regulatory agencies such as the FDA.68 It represents the

degree of renal clearance with respect to the overall human body

clearance of the drug, which includes other routes (e.g., metabolic, bili-

ary, etc69). Depending on whether a drug is prevalently found in urine

with its chemical structure unmodified or not is important for a num-

ber of reasons. For example, a drug that is prevalently found

unchanged in urine undergoes neither phase I nor phase II metabolism

in the gut and liver (or at least a negligible amount). The bile (and the

enterohepatic recirculation) is not the primary route of excretion of

the drug either. The drug therefore has a lower risk of incurring drug–

drug interactions because it is not a substrate of the metabolism

enzymes. Consequently, it is of paramount importance to know this

property for drug candidates in the early development stage because

it can be used to drive the selection of optimal compounds and to

shrink the number of experiments that need to be performed.

VolSurf3(Molecular Horizon srl, Perugia Italy), the VolSurf+ ver-

sion including the proposed dEmin parametrization, embeds types of

descriptors that are well suited for describing/predicting ADMET

properties. Here we show the development of a computational model

that can be used in early stages of drug discovery to forecast the frac-

tion excreted unchanged in urine simply starting from chemical struc-

tures. The experimental data for 954 drugs was collected from a

publication by Benet et al.,70 converted into categorical values and

used for training and validating a machine learning model based on
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the random forest algorithm71 using the scikit-learn software pack-

age72 (see SI for details). The model performance in reproducing the

training data (fitting) and in predicting the test data (external valida-

tion) are depicted in Figure 4. The confusion matrix of training and

test sets are shown in Figure 4A,B respectively, whereas the predic-

tion metrics for training and test sets are reported in Figure 4C,D,

respectively. As it can be seen, the model developed with VolSurf3

descriptors accurately predicts the fraction excreted unchanged in

urine and confirms their applicability to the study of other ADMET

properties.

4.3 | Case study III: Novel VS3 electronic
descriptors for site of reaction estimation

In the previous sections, we described the derivation of the new

dEmin parameters from the QM calculated EP centered on the nucleus

of atoms involved in HB, and showed how these values coupled with

descriptors describing the atomic environment could be used to

derive PLS models to predict such values more generally. The values

were then used as parameters for the HB term of the GRID force field

to predict molecular interaction energies. We realized that the same

approach could be used to derive descriptors for all of the GRID atom

types (see Table S5 for details), and might give an indication of which

atoms are more reactive. Since these descriptors are no longer

describing the Emin parameter in the GRID force field, we are

renaming them as GRID charges (GC) and they are reported as such in

the VolSurf3 software.

Late-stage functionalization (LSF) is an emerging synthetic strat-

egy in the drug discovery scenario.73 Through C–H functionalization

of drug leads or intermediates, new analog are readily generated in a

few synthetic steps, with clear benefits over de novo syntheses. The

main pitfall of LSF is that multiple regioisomeric products are gener-

ated and therefore the reaction follow-up consists of time-consuming

F IGURE 3 MIFs for phenazopyridine
derivatives (A—Deaminated and nitro
substituted phenazopyridine
B—Deaminated phenazopyridine
C—phenazopyridine). The energy values
of the isocontour surfaces chosen for
H-bond donating probe (“N1,” blue fields)
was �4.0 kcal/Mol

F IGURE 4 Summary of the “fraction of
drug dose excreted unchanged in urine”
model performance. (A) Pie chart depicting
the training set confusion matrix. (B) Pie chart
depicting the test set confusion matrix.
(C) Metrics showing the model performance
in fitting (prediction of training set
molecules). (D) Metrics showing the model
performance in validation (prediction of test
set molecules). In the confusion matrix pies,
colors indicate the different predictions: True
positives in blue, false negatives in orange,
true negatives in gray and false positives in
yellow. In the bar plots, the metrics described
are the following: ACC, accuracy; F1,
f1-score; MCC, Matthew's correlation
coefficient; PREC+, positive precision; PREC-,
negative precision; SE, sensitivity; SP,
specificity
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and laborious purification and structure confirmation steps. In this

context, chemically aware data processing can expedite the process of

interpreting analytical methods developed for the batch analysis

of high-throughput reaction screenings. An excellent example was

recently reported by Yao and collaborators74 who coupled LC-HR-

MS/MS with automated, chemically aware data processing (Mass-

ChemSite, Molecular Discovery Ltd, London UK) to rapidly provide

information about reaction conversion, numbers of product isomers,

and the more probable sites of reactivity. The GC descriptor outlined

above also describes the electronic properties of carbon atoms, and in

this case study we use the results presented by Yao and co-workers

to demonstrate its utility to predict the products of different LSF

approaches for a set of marketed drugs.

Risperdal and methotrexate underwent acid-promoted electro-

philic halogenation, a widely used strategy for introducing halogen

functionalities. The VolSurf3 GC descriptor can be used to identify the

most electron-rich carbon atom, which is the optimal candidate for

electrophilic halogenation. As reported in Table 2, there is a perfect

agreement between the most electron-rich carbon atom as predicted

by the GC descriptor and the experimental site of reaction, potentially

providing a more accurate estimation of the reaction site with respect

to that proposed by LC–MS and the data-driven approach recently

proposed by Yao and co-workers.

Another widely employed reaction for LSF is the addition of

alkyl radicals to heteroaromatic rings, often referred to as the

Minisci reaction.75 Voriconazole underwent a recently proposed

variant of the Minisci reaction, namely an acid-promoted

electrophilic bromination. Also, in this case the GC descriptor iden-

tified as the most electron-rich carbon site the one found experi-

mentally as the site of reaction.

Clearly, the final product always depends on the nature of all the

reagents involved, and the site of reaction is not an intrinsic property.

For instance, pioglitazone was subjected to LSF via a Baran-Minisci75,76

reaction with different alkylsulfinate Diversinate salts and reaction

conditions. As expected, the final product depended on the electronic

nature of the radicals: electron-deficient ones (e.g., trifluoromethyl and

1-[trifluoromethyl]cyclopropyl) attacked the electron-rich para-

disubstituted benzene ring, while the electron-rich ones (isopropyl)

attacked the electron-deficient pyridine ring.74 In this scenario, the GC

descriptor can be used to identify the electron-deficient ring and the

electron-rich ring (highlighted in Table 2 in blue and red, respectively),

thus enabling the prediction of the site of reaction.

As also underlined by Yao and co-workers,74 the main advantages

of integrating such automated but chemically aware analysis in the

interpretation of analytical methods is that they can be used for batch

processing of high-throughput chemistry screens. The main innova-

tion, with respect to the workflow proposed by Yao, is that by using

the GC descriptor, the exact site of reaction can be readily identified.

We therefore speculate that it can be used in Mass-ChemSite (Molec-

ular Discovery Ltd, London UK) and analog approaches to further

refine and prioritize the estimated site of reactions, in the same way

as which the MetaSite prediction algorithm can be used to refine and

prioritize the site of metabolism assigned by Mass-MetaSite, which

may be ambiguous within a particular mass fragment.

TABLE 2 Predicted and experimental sites of reaction prediction as in Reference 68 compared with VolSurf3 electronic description (GRID
charges, GC). Highlighted in bold, the molecular moiety of possible sites of reaction proposed in Reference 68. Electron-poor molecular moieties
are highlighted in red, electron-rich in blue

Substrate Reaction Predicted Experimental

Risperdal Electrophilic

halogenatation

Methotrexate Electrophilic

halogenatation

Voriconazole Acid-promoted

electrophilic

bromination

Pioglitazone Baran-Minisci reaction

with different

alkylsulfinate

Diversinate
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Finally, two other marketed drugs were investigated by Yao and co-

workers, sumatripan and indomethacin. In this case C–H borylation

employing an Ir-based catalyst was chosen as the LSF reaction. Using

such an inorganic catalyst, the site of reaction is determinedmore by ste-

ric effects than electronic ones; hence, in this case it is not appropriate

to use electronic descriptors to estimate the possible reaction product.

5 | CONCLUSIONS

Through a hybrid quantum mechanics and machine learning approach,

we have proposed a novel parametrization of the hydrogen-bond poten-

tials that can be implemented in traditional force fields to obtain more

reliable and chemically aware MIFs. An extension of the approach led to

in silico descriptors that can be used to estimate the site of reaction.

We used DFT calculations on a diverse set of 66,000 molecules to

extract the EP at each atom and derived new dynamic hydrogen-bond

potential values (dEmin) through atom type specific equations. Then,

tree-structured fingerprints were used to describe the atomic environ-

ment and PLS were used to establish a relationship between this atom

environment description and the dEmin parameter. Unlike EP which has

an atom-specific scale (i.e., AT specific scale), dEmin can simultaneously

describe different HB donor/acceptor atom types coherently with their

experimental behavior, a key requirement for usability in drug design

and medicinal chemistry applications. A comparison with experimental

acidity and basicity scales for organic compounds showed an inverse

correlation of �0.85 to �0.9, demonstrating that dEmin is describing

well the HB acidity and basicity, in line with other authors (e.g., Kenny

and co-workers77) who have also shown that EP correlates with H-

bonding properties referring to the EP close to the vdW surface.

Our primary goal was to optimize the GRID force field parametriza-

tion, and we believe we have demonstrated that more chemically aware

MIFs can be generated from the proposed dEmin; using the static ver-

sion of the Emin all of the results presented here would not have been

possible (e.g., see Figure 3 or Figure 1). Moreover, a novel descriptor to

estimate atomic reactivity via electronic properties has been intro-

duced, and it is application demonstrated using proof-of-concept exam-

ples in the field of medicinal chemistry. This descriptor has been

implemented in the newest version of VolSurf (VS3), which is freely

available for non-profit research institutions.

Overall, we believe that such novel in silico parameterization will

enhance the quality of the drug design studies based on the tradi-

tional force fields and derived MIFs and molecular descriptors, ulti-

mately providing medicinal chemists with a more accurate description

of the compounds that they strive to optimize.
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