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Abstract
Background. Pretreatment assessments for glioblastoma (GBM) patients, especially elderly or frail patients, are 
critical for treatment planning. However, genetic profiling with intracranial biopsy carries a significant risk of per-
manent morbidity. We previously demonstrated that the CUL2 gene, encoding the scaffold cullin2 protein in the 
cullin2-RING E3 ligase (CRL2), can predict GBM radiosensitivity and prognosis. CUL2 expression levels are closely 
regulated with its copy number variations (CNVs). This study aims to develop artificial neural networks (ANNs) for 
pretreatment evaluation of GBM patients with inputs obtainable without intracranial surgical biopsies.
Methods. Public datasets including Ivy-GAP, The Cancer Genome Atlas Glioblastoma (TCGA-GBM), and the Chinese 
Glioma Genome Atlas (CGGA) were used for training and testing of the ANNs. T1 images from corresponding cases 
were studied using automated segmentation for features of heterogeneity and tumor edge contouring. A ratio 
comparing the surface area of tumor borders versus the total volume (SvV) was derived from the DICOM-SEG con-
versions of segmented tumors. The edges of these borders were detected using the canny edge detector. Packages 
including Keras, Pytorch, and TensorFlow were tested to build the ANNs. A 4-layered ANN (8-8-8-2) with a binary 
output was built with optimal performance after extensive testing.
Results. The 4-layered deep learning ANN can identify a GBM patient’s overall survival (OS) cohort with 80%–85% 
accuracy. The ANN requires 4 inputs, including CUL2 copy number, patients’ age at GBM diagnosis, Karnofsky 
Performance Scale (KPS), and SvV ratio.
Conclusion. Quantifiable image features can significantly improve the ability of ANNs to identify a GBM patients’ 
survival cohort. Features such as clinical measures, genetic data, and image data, can be integrated into a single 
ANN for GBM pretreatment evaluation.

Key Points

• This study establishes a noninvasive pretreatment evaluation of GBM patients.

• Artificial neural network (ANN) performs deep learning with 4 inputs.

• ANN facilitates GBM prognosis prediction and can guide treatment planning.

Glioblastoma (GBM) is an aggressive form of tumor in the cen-
tral nervous system (CNS), with less than 5% of patients sur-
viving for 5 years following initial diagnosis.1 While concurrent 
and adjuvant chemoradiotherapy constitutes standardized 

treatment for GBM after the Stupp et al. clinical trial in 2005, 
finding methods of refining treatment planning are urgently 
needed for better clinical outcomes.2 Furthermore, treatment for 
elderly and frail GBM patients is not standardized as they were 
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excluded in the Stupp et al. trial.2 Therefore, pretreatment 
evaluation is extremely valuable in guiding the selection of 
treatment options.

Recent advances on GBM radiomics as well as ma-
chine learning (ML) applications in neuroimaging analysis 
promises a personalized treatment strategy that can lead 
to the paradigm shift for GBM management.3,4 Aspects of 
deep learning (DL), a subfield of ML concerned with multi-
layered ANNs, stand to benefit GBM research in particular 
given that applications in incorporating medical image 
processing and genetic data mining.4–6 However, acquisi-
tion of genetic data, including RNA-sequence (RNA-Seq), 
isocitrate dehydrogenase (IDH) mutation, and cytosine-
phosphate-guanine (CpG) island methylator phenotype 
(G-CIMP) status, requires intracranial biopsy which carries 
a significant risk of perioperative complication.7 Therefore, 
a noninvasive method is urgently needed in the presurgical 
evaluation of GBM patients, particularly for those elderly 
and frail.8,9

We recently demonstrated that expression levels of 
CUL2, which encodes the cullin2 scaffold protein in the 
cullin2-RING E3 ligase (CRL2) complex, can predict GBM 
radiosensitivity and prognosis.10 CRL2 is the E3 ligase that 
degrades critical proteins such as hypoxia-inducible factor 
1 (HIF-1) α that is involved in GBM neovascularization, and 
epidermal growth factor receptor (EGFR) that is involved 
in GBM progression.10 CUL2 copy number variation (CNV) 
dictates expression levels, suggesting that models could 
rely on CNVs measured through noninvasive methods 
rather than expression levels to predict patients’ survival 
rates.10,11 In this study, we attempted to integrate quantifi-
able image data, genetic information such as CUL2 CNVs, 
and clinical data such as Karnofsky Performance Scale 
(KPS) in a functional ANN for noninvasive presurgical eval-
uation GBM patients.

Materials and Methods

Public Datasets

Datasets including genetic data regarding CUL2 CNVs and 
expression levels, clinical data indicating patient demo-
graphic and overall survival (OS), and T1 magnetic res-
onance imaging (MRI) images enabled this study. Such 
datasets include The Cancer Genome Atlas Glioblastoma 
(TCGA-GBM), the Ivy Glioblastoma Atlas Project (Ivy-GAP), 

and the Chinese Glioma Genome Atlas (CGGA).12–14 Clinical 
and genetic data from the TCGA-GBM were acquired 
through the Xena platform (https://xena.ucsc.edu/).15 
TCGA-GBM images were made available through The 
Cancer Imaging Archive (TCIA).16 This also includes skull-
stripped and co-registered segmentations of TCGA-GBM 
images made available by Bakas et al., as well as DICOM-
SEG conversions of these segmented images created by 
Beers et al.16 Images from the Ivy-GAP dataset were also 
acquired through TCIA, with clinical and genetic data made 
available by Puchalski et al.13

T1 MRI Image Segmentation

While images considered in this research included post-
gadolinium T1-weighted DICOM images from the original 
TCGA-GBM dataset, the features used in modeling were 
derived from the most voluminous DICOM-SEG conver-
sions of images in the segmented image dataset for each 
patient. Python packages for processing image files in 
the DICOM, DICOM-SEG, and NIfTI file formats include 
pydicom, pydicom_seg, and nibabel, respectively.

Image Analyses

To explore the value of image features in forecasting pa-
tient outcomes, a ratio comparing the surface area of 
tumor borders to the total volume of borders was derived 
from the DICOM-SEG conversions of segmented tumors. 
The edges of these borders can be detected using the  
canny edge detector such as the one available from  
the Skimage, or Scikit-image, Python package. Finding 
the sum of the pixels forming these edges gives a close 
approximation of surface area. Tumor border volume can 
be calculated by summing up all pixels within the tumor 
borders. Calculating the tumor surface area versus volume 
(SvV) ratio between the two is then as simple as dividing 
the surface area by volume (SvV = Surface Area/Volume). 
This results in a value unique to each patient that is indica-
tive of tumor border regularity.17

Kaplan–Meier (K–M) Survival Analysis

K–M survival analyses for GBM with differential CUL2 copy 
numbers, KPS rankings, age at GBM diagnosis, surface 
area, and SvV ratios were conducted using the Lifelines 

Importance of the Study

Pretreatment evaluation is critical for person-
alized GBM treatment planning, particularly 
for those frail and elderly patients. Artificial 
neural network (ANN) provides a unique op-
portunity to integrate critical information from 
different clinical aspects to facilitate the deci-
sion-making process right at the diagnosis of 
the GBM. This study provides a model of ANN 

that uses 4 simple inputs, that is, CUL2 copy 
number, Karnofsky Performance Scale (KPS), 
age at GBM diagnosis, and surface versus 
volume (SvV) ratio of T1 MRI, all of which are 
obtainable without intracranial interventions. 
This study offers a new perspective in how to 
incorporate recent development of machine 
learning (ML) in better cancer patient care.
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library. The data set is split into two at the mean value of 
any of respective attributes above. Any value above the 
mean for that attribute is placed in the upper group, while 
any value below the mean is placed in the lower group. 
Therefore, the number of patients in either group varies 
from attribute to attribute. The number of patients in any 
one group is labeled next to the legend for that group on 
its graph. Log-Rank analyses for P-values smaller than .05 
were considered statistically significant.

ANN of GBM Genomics and Clinical Features

Four different ANNs were created for the purpose of 
predicting patients’ OS cohort and to test whether meas-
uring patient CUL2 copy numbers would yield similar re-
sults to CUL2 expression levels. Results are determined 
by how often a neural network can identify a patient’s OS 
cohort based on clinical data. Four different loss functions 
were used to test on all 4 of our neural networks, resulting 
in 16 different results to compare. The loss functions we 
chose were Binary Crossentropy, Mean Absolute Error, 
Mean Error Squared, and Categorical Crossentropy. The 
packages used for creating these neural networks include 
Keras, Pytorch, and TensorFlow. After extensive testing, a 
4-layer model (8-8-8-2), with a binary output, was built. The 
first layer consists of 8 nodes and takes number of inputs 
based on the information we are passing to it. The groups of 
information being passed to our neural networks are as fol-
lows: Baseline (Age, KPS, longest dimension), Expression 
(CUL2 expression, Age, KPS, longest dimension), CNV 
(CUL2 copy numbers, Age, KPS, longest dimension), and 
Feature Data (CUL2 copy numbers, Age, SvV). Each neural 
network consequently requires different numbers of inputs. 
The second and third layer feature 8 nodes and employ a 
ReLU activation function. Finally, the output layer is binary.

The output layer of the ANN splits each dataset into OS 
cohorts. Patients who are assigned a “1” survived longer, 
and those who did not are assigned a “0.” The data are split 
to be approximately 55%–45% in favor of “0” targets, with 
the exception of the feature dataset which is split approx-
imately 60%–40% in favor of “0” targets. This is to ensure 
a balance of training and testing datasets with the relevant 
features. Figure 3A is a schematic overview of the architec-
ture of the ANN.

Results

CUL2 CNVs and GBM Genotype

Copy number loss of chromosome (chr) 10 is one of the 
initial driver events of non-cytosine-phosphate-guanine 
(CpG) island methylator phenotype (non-G-CIMP) GBM 
tumorigenesis.18 In GBM patients (n  =  576) derived from 
TCGA dataset, we found that copy number loss of CUL2, 
located in chr10p11 (chr10p), is related with non-G-CIMP, 
IDH1 wildtype (IDH1WT) GBM (Figure 1A). IDH1 mutations 
status and G-CIMP positivity are key genotypic biomarkers 
critical for GBM classification, prognosis, and treatment 
planning.19 Therefore, these results indicate that CUL2 copy 
numbers can reflect the fundamental genetic background 

of GBM. CUL2 CNVs have a strong positive correlation with 
its expression levels in GBM (Figure 1A). We went further to 
study the correlation of CUL2 CNVs and expression in other 
cell types derived from both cranial and extracranial tissue. 
We found linear correlation between CUL2 CNVs and ex-
pression levels in cancer cell lines derived from cranial (eg, 
glioma, medulloblastoma, meningioma) and extracranial 
(eg, B-/T-cell leukemia, multiple myeloma, small cell lung 
cancer [SCLC], pancreatic cancer, soft tissue, breast cancer, 
thyroid cancer) tissues (Figure 1B). Notably, the linear cor-
relation between CUL2 CNVs and expressions levels in 
pancreatic cancer and SCLC exhibit a coefficient of deter-
mination (R2) (0.71 and 0.78, respectively) and may be de-
scribed by equations (y = 1.021*x+ 3.4467 and y = 1.288*x 
+ 3.7066, respectively). These relationships prove similar to 
those in glioma cancer cells (R2 = 0.71, y = 1.15*x + 3.6955) 
(Figure 1C–E). This elucidates the valuable linear relation-
ship between CUL2 CNVs and expression levels. CUL2 
levels in extracranial tissue may also reflect expression 
levels in central neural system (CNS) malignancies.

GBM T1 MRI Segmentation and Tumor Surface 
Regularity

Many radiomic features serve as predictors for GBM OS 
rates.20 These include attributes such as first order statis-
tics, texture features, and data describing the shape of the 
tumor. One method of systematically measuring shape 
involves finding the SvV of tumor borders.21 Using the 
most voluminous binary segmentation masks attainable 
from DICOM-SEG (DSO) conversions for the TCGA-GBM 
segmentation dataset for each patient, the surface areas 
of tumor borders were approximated by summing the 
number of pixels belonging to edges of 2D slices deter-
mined via canny edge detection (Figure 2A). The volumes 
of segmented tumors masks were then approximated by 
summing up all pixels of each slice (Figure 2A). Applying 
this approach on the segmented image dataset creates sur-
face area (S), volume (V), and SvV ratio data for 102 pa-
tients, 98 of these patients have CUL2 CNV data. We found 
the correlation of S and V with equation S = 3.5887*V0.7228 
(R2 = 0.8346) (Figure 2C). Calculation of partial derivative 
of the equation gets the equation ∂s/∂v = 2.59391*v-0.2772 
(Figure 2B,C). These results indicate that SvV ratios provide 
unique feature to GBM patients (Figure 2B,C).

Segmented Image Features

To further investigate the clinical relevance of proposed 
segmentation methods, we studied the prognostic value 
of quantifiable image features in GBM. These features in-
clude the total surface area, tumor volume and SvV ratio. 
In Kaplan–Meier analyses where median values are used 
as cutoffs, we found no difference in OS between groups 
with High and Low values for surface, volume and SvV 
values (Supplementary Figure 1). However, given that 
each parameter in the MRI images is unique for individual 
GBM patient, we tested these image features as additional 
inputs in our neural network to evaluate their predictive 
value.
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Constructed ANNs Indicate Likely GBM 
Survival Cohort

The chosen loss function may afford or disallow op-
timal ANN performance depending on the nature of the 
problem.22 To find an appropriate loss function for the clas-
sification of a patient’s OS cohort, we tested 4 different loss 
functions on 4 neural networks. This resulted in 16 different 
results to compare. The loss functions we tested included 
Binary Crossentropy, Mean Absolute Error, Mean Error 
Squared, and Categorical Crossentropy (Supplementary 
Figure 2).22 The structure of the ANN we chose is a 4-layer 
model (8-8-8-2), with a binary output (Figure 3A). Due to 
limited cases with image data to calculate SvV, we used 
the longest dimension of GBM tumor mass as an input in 
certain ANNs. The first layer consists of 8 nodes with sets 
of inputs as follows: Baseline dataset (age, KPS, longest 
dimension), Expression dataset (CUL2 expression, age, 
KPS, longest dimension), CNV dataset (CUL2 copy num-
bers, age, KPS, longest dimension), and Feature Data 
dataset (CUL2 copy numbers, age, SvV) (Supplementary 
Figure 2). The second and third layer are also 8 nodes with 

a rectified linear activation function (ReLU). The last layer 
features binary output. Patients who are assigned a “1” 
will likely exhibit greater OS, and those who are assigned 
a “0” will not (Figure 3A). As expected, the Baseline neural 
network with fewer features performed poorest in all 4 
trials (Supplementary Figure 2). We found the CNV neural 
network slightly outperformed the Expression neural net-
work (Supplementary Figure 2, Figure 3C). Therefore, 
CUL2 expression levels or CUL2 copy numbers will yield 
similar results, with around 75% accuracy as displayed on 
the average of the 4 loss functions combined in a single 
visual (Figure 3C). Employing image feature data as in-
puts afforded the greatest performance of about 80%–85% 
(Figure 3C).

To achieve these results and identify the set of in-
puts that produce the best performing ANN, we per-
formed a set number of trials for each of our 16 neural 
networks. Each of the ANNs were run 1000 times for a 
total of 16,000 trials and 16 ANNs. The best performing 
model for each input was saved for the purpose of dis-
tribution and to view the model’s structure and weights. 
To reiterate, the best performing ANN employed the 
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Figure 2. Glioblastoma (GBM) T1 image segmentation. (A) Example of binary segmentation masks attainable from DICOM-SEG (DSO) conversions 
for the TCGA-GBM dataset. The surface area of tumor borders calculated by summing up edges of 2D slices derived with a canny edge detector. 
The volumes were approximated by summing up all pixels of each slice. (B) GBM cases (n = 84) were aligned based on increasing volume. The sur-
face area, surface versus volume (SvV), and partial derivative ∂s/∂v were aligned accordingly. (C) Relationship between surface area and volume of 
GBM based on segmented images (n = 84).
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Feature Data dataset with CUL2 copy numbers, Age, 
and SvV to allow a consistent 80%–85% accuracy across 
all loss functions (Supplementary Figure 2, Figure 3C). 
The Kaplan–Meier survival analysis for the test set of 20 
GBM patients in the Feature Data group was presented 
(P = .0005; Figure 3B).

Discussion

We previously demonstrated that one may evaluate CUL2 
gene expression levels and CNVs to predict radiosensitivity 
and overall survival (OS) in GBM patients.10 This study ex-
plored the potential value of this concept to the training 
of ANNs and deep learning (DL) of clinical information, T1 
MRI-based imaging features, and CUL2 copy numbers in 
pretreatment evaluation. In our best performing ANN, we 
consistently identified the OS cohort of GBM patients with 
accuracies of 80%–85% using CUL2 copy numbers, pa-
tients’ ages at GBM diagnosis, and SvV ratio in segmented 
images as inputs. All these inputs are objective quantifi-
able parameters that can be obtained without any intracra-
nial biopsy which carries significant risk of causing serious 
permanent morbidity (5%).7 Therefore, our model provides 
a unique tool for noninvasive presurgical evaluation of 
GBM patients regarding prognosis, which will be of great 
value for treatment planning.

We found the usage of tumor border surface area and 
volume led to improved accuracy for each ANN model. 

This not only suggests that the uniqueness of these 
measurements, but also illustrates the general value of 
quantifiable features derived from image processing in 
anticipating treatment outcomes. In addition to including 
other measurements of shape indicating surface regu-
larity, future models could also potentially integrate first 
order statistics regarding gray level intensity, textural 
features, and a myriad of radiomic features with demon-
strable impact on GBM survival. Artificial intelligence-
based automated image segmentation will play a critical 
role in this aspect.

Processing medical images such as T1 images involves 
numerous challenges, but several approaches exist to 
extract hundreds of potentially useful features of each 
category. Image processing solutions that employ convo-
lutional neural network architectures such as 3D U-Net to 
automate tumor segmentation allow the systematic tumor 
segmentation, though atlas. Ultimately, additional image 
features derived using DL solutions stand to improve the 
already promising model by introducing more noninvasive 
data alongside CUL2 CNVs, further indicating the value of 
combining such measurements to predictions concerning 
treatment response.

Although we built a promising model for noninvasive 
presurgical evaluation of GBM patients, several steps may 
be performed to further test and enhance these findings. 
Firstly, the incorporation of additional image features 
would likely improve the predictive value of our existing 
neural networks. Secondly, solely leveraging data from 
select prior studies for both training and testing may limit 
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diagnosis, and SvV. (B) Kaplan–Meier analysis of the test set of GBM cases assigned by the Feature Data-based neural network to group “1” and 
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generalizability. Clinical trial and additional testing of the 
model on other cohorts would assist in validating whether 
the given ANNs can guide RT treatment planning in future 
contexts. Furthermore, the reliance on subjective clinical 
parameters may introduce unnecessary risk. Developing 
neural networks that perform consistently with only im-
aging data and patients’ age would markedly improve the 
value of such models. Finally, the value of the discussed 
model is limited by the binary output layer. Future models 
developed with additional data could support a higher res-
olution of output and bolster treatment planning.

In summary, the previously established relationship be-
tween CUL2 CNVs and clinically significant attributes such 
as radiosensitivity prompted the testing of ANNs capable 
of aiding in pretreatment evaluation. Noninvasive clinical, 
genetic, and image data were leveraged in training to af-
ford the ability to identify a patient’s OS cohort with accur-
acies of 80%–85%. The best performing model consistently 
achieved these scores by training with CUL2 CNVs, pa-
tient age, and tumor surface area versus volume. Further 
testing with additional cohorts and the introduction of 
additional image features may improve generalizability, 
enhance output resolution, and afford greater accuracy. 
Nonetheless, the given model stands to both assist GBM 
pretreatment evaluation and demonstrate the value of DL 
in the relevant decision-making processes.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
Advances online.
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