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Abstract: Anthocyanins and proanthocyanidins, the major flavonoids in black and red rice grains,
respectively, are mainly derived from 3′,4′-dihydroxylated leucocyanidin. 3′-Hydroxylation of
flavonoids in rice is catalyzed by flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21). We isolated cDNA
clones of the two rice F3′H genes (CYP75B3 and CYP75B4) from Korean varieties of white, black, and
red rice. Sequence analysis revealed allelic variants of each gene containing one or two amino acid
substitutions. Heterologous expression in yeast demonstrated that CYP75B3 preferred kaempferol
to other substrates, and had a low preference for dihydrokaempferol. CYP75B4 exhibited a higher
preference for apigenin than for other substrates. CYP75B3 from black rice showed an approximately
two-fold increase in catalytic efficiencies for naringenin and dihydrokaempferol compared to
CYP75B3s from white and red rice. The F3′H activity of CYP75B3 was much higher than that
of CYP75B4. Gene expression analysis showed that CYP75B3, CYP75B4, and most other flavonoid
pathway genes were predominantly expressed in the developing seeds of black rice, but not in those
of white and red rice, which is consistent with the pigmentation patterns of the seeds. The expression
levels of CYP75B4 were relatively higher than those of CYP75B3 in the developing seeds, leaves, and
roots of white rice.

Keywords: anthocyanins; flavonoid 3′-hydroxylase; flavonoids; leucocyanidins; pigmented
rice; proanthocyanidins

1. Introduction

Rice is a staple food in many Asian countries. Although white rice is most commonly consumed,
pigmented rice is also used in Asian diets. Numerous lines of evidence suggest that pigmented rice
has important biological activities, such as antioxidant [1–4], anti-tumor [5–7], anti-allergic [8,9], and
neuro-protective activities [10]. Pigmented rice grains contain large amounts of flavonoids. The major
flavonoids in black rice grains are anthocyanins, which are mainly composed of cyanidin-3-O-glucoside,
and peonidin-3-O-glucoside, and in red rice grains are proanthocyanidins and flavan-3-ols oligomers,
which have catechin as the main extension unit [11–15]. Additionally, small quantities of aglycones and
glycosides of flavanones, flavones, dihydroflavonols, and flavonols are also present in black and red
rice grains [13,15–17]. Flavonoids are barely detected in white rice grains, except for small quantities
of tricin (3′,5′-dimethoxylated flavone) [18,19]. Tricin, like anthocyanins and proanthocyanidins,
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functions as a strong antioxidant in rice plants [20], and tricin derivatives were reported to be
incorporated into rice lignin [21], thereby functioning in biotic and abiotic stress protection and
plant growth. The flavonoid biosynthesis pathway in rice has been suggested by several studies,
which identified the genes and enzymes involved in the pathway (Figure 1). In the first committed
step, the activity of chalcone synthase (CHS) leads to the formation of chalcone, which is converted to
naringenin by the action of chalcone isomerase (CHI). Naringenin is then used as a universal substrate
for the biosynthesis of various flavonoids. Anthocyanin and proanthocyanidin biosynthesis both
include steps that are catalyzed by flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase
(DFR). Anthocyanidin is synthesized by anthocyanidin synthase (ANS), whereas proanthocyanidin is
synthesized by leucoanthocyanidin reductase (LAR) during late steps of the pathway. F3′H, which
catalyze B-ring hydroxylation of flavonoids, adds diversity to the composition of flavonoids in rice
grains. Tricin is synthesized through a different pathway in which apigenin formed by the action
of flavone synthase II (FNSII) is utilized. Flavanone 2-hydroxylase (F2H) converts naringenin to
2-hydroxyflavanone in the C-glycosylflavone biosynthesis pathway (Figure 1).
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anthocyanidin synthase; UGT, UDP-glucosyl transferase; LAR, leucoanthocyanidin reductase; ANR, 
anthocyanidin reductase; FNSII, flavone synthase II; OMT, O-methyltransferase; F2H, flavanone  
2-hydroxylase; CGT, C-glucosyl transferase; and DH, dehydratase. 

Most anthocyanins and proanthocyanidins accumulated in pigmented rice grains are commonly 
derived from 3′4′-dihydroxylated leucocyanidin, whereas those compounds derived from  
4′-hydroxylated leucopelargonidin are absent in pigmented rice grains, which implies that activity of 
F3′H is prominent in pigmented rice grains. Two rice F3’H genes belonging to the cytochrome P450 
family, CYP75B3 and CYP75B4, have been identified. CYP75B3, which catalyzes the 3′-hydroxylation 
of the B-ring of flavonoids, was identified by complementation of the Arabidopsis thaliana transparent 
testa mutant 7 (tt7), which has a defective allele for F3′H [22]. CYP75B4 was characterized more 
recently and catalyzes not only the 3′-hydroxylation of flavonoids, but also the 5′-hydroxylation of 
the 3′-methoxylated flavone chrysoeriol to generate selgin, which is further converted to tricin in a 
reaction catalyzed by O-methyltransferase [19]. 

Rice grain pigmentation is determined by the functional activities of transcription factors. The 
Kala3 gene, which encodes R2R3-Myb, and the Kala4 gene, which encodes basic helix-loop-helix 
(bHLH), activate the flavonoid biosynthesis genes, including CHS, DFR, and ANS in black rice, 
resulting in anthocyanin pigment accumulation in the grain [23,24]. The Rc gene encoding bHLH 
activates CHS, DFR, and LAR in red rice, resulting in proanthocyanidin pigment accumulation in the 
grain [25]. In white rice, the promoter of Kala4 has a different structure to that of pigmented rice,  
and 14 base pairs were deleted within the open reading frame of the Rc, which causes an absence of 

Figure 1. Proposed flavonoid biosynthesis pathway in rice grain. The abbreviations of enzyme names
are as follows: CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase;
FLS, flavonol synthase; F3′H, flavonoid 3’-hydroxylase; DFR, dihydroflavonol 4-reductase; ANS,
anthocyanidin synthase; UGT, UDP-glucosyl transferase; LAR, leucoanthocyanidin reductase; ANR,
anthocyanidin reductase; FNSII, flavone synthase II; OMT, O-methyltransferase; F2H, flavanone
2-hydroxylase; CGT, C-glucosyl transferase; and DH, dehydratase.

Most anthocyanins and proanthocyanidins accumulated in pigmented rice grains are
commonly derived from 3′4′-dihydroxylated leucocyanidin, whereas those compounds derived from
4′-hydroxylated leucopelargonidin are absent in pigmented rice grains, which implies that activity of
F3′H is prominent in pigmented rice grains. Two rice F3′H genes belonging to the cytochrome P450
family, CYP75B3 and CYP75B4, have been identified. CYP75B3, which catalyzes the 3′-hydroxylation
of the B-ring of flavonoids, was identified by complementation of the Arabidopsis thaliana transparent
testa mutant 7 (tt7), which has a defective allele for F3′H [22]. CYP75B4 was characterized more
recently and catalyzes not only the 3′-hydroxylation of flavonoids, but also the 5′-hydroxylation of the
3′-methoxylated flavone chrysoeriol to generate selgin, which is further converted to tricin in a reaction
catalyzed by O-methyltransferase [19].

Rice grain pigmentation is determined by the functional activities of transcription factors.
The Kala3 gene, which encodes R2R3-Myb, and the Kala4 gene, which encodes basic helix-loop-helix
(bHLH), activate the flavonoid biosynthesis genes, including CHS, DFR, and ANS in black rice,
resulting in anthocyanin pigment accumulation in the grain [23,24]. The Rc gene encoding bHLH
activates CHS, DFR, and LAR in red rice, resulting in proanthocyanidin pigment accumulation in the
grain [25]. In white rice, the promoter of Kala4 has a different structure to that of pigmented rice, and
14 base pairs were deleted within the open reading frame of the Rc, which causes an absence of pigment
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in the grain. Oikawa et al. [24] showed that CYP75B3 is highly expressed along with other flavonoid
pathway genes in pigmented rice grains. This is in accordance with the predominant accumulation
of leucocyanidin-derived anthocyanins and proanthocyanidins in pigmented rice grains. However,
it is still unclear whether 3′-hydroxylation takes place at the flavanone level or the dihydroflavonol
level and why leucopelargonidin derivatives are absent, because of a lack of information about the
enzymatic properties of CYP75B3, CYP75B4, and some of the other flavonoid pathway enzymes, and
about metabolon formation in the flavonoid pathway in rice.

Aiming to evaluate the roles of CYP75B3 and CYP75B4 in flavonoid biosynthesis in rice grain,
we isolated the coding regions of these genes from Korean varieties of white, black, and red rice.
Consequently, we identified allelic variants of each gene in different varieties. These genes were
heterologously expressed in yeast to evaluate their enzyme activities and substrate preferences, and
the changes in transcript levels of CYP75B3 and CYP75B4 during the development of pigmented and
non-pigmented rice grain were analyzed along with other flavonoid pathway genes. In addition, their
relative expression levels in other tissues of rice seedlings were also examined.

2. Results

2.1. Sequence Analysis of CYP75B3s and CYP75B4s

cDNA clones of CYP75B3 and CYP75B4 were isolated from the white rice, Iimi (IM), black rice,
Heugnam (HN) and Heugjinju (HJJ), and red rice, Jeogjinju (JJJ) and Hongjinju (HoJJ). Three cDNA
clones of CYP75B3 encoded proteins of 526 amino acids (CYP75B3-IM, CYP75B3-HN, and CYP75B3-JJJ)
and five cDNA clones of CYP75B4-encoded proteins of 535 amino acids (CYP75B4-IM, CYP75B4-HN,
CYP75B4-HJJ, CYP75B4-JJJ, and CYP75B4-HoJJ). Amino acid sequence comparison (Figure 2) revealed
that CYP75B3-IM and CYP75B3-JJJ are identical to the registered sequence in the public database,
but one amino acid was substituted in the CYP75B3-HN sequence at position 27. CYP75B4-IM was
identical to the registered sequence in the public database, but an amino acid substitution at position
351 was shared by CYP75B4-HN and CYP75B4-HJJ from black rice and another substitution at positions
seven was shared by CYP75B4-JJJ and CYP75B4-HoJJ from red rice. An additional substitution was
observed in the CYP75B4-HJJ sequence at position 258. His27 of CYP75B3-HN and Val7 of CYP75B4-JJJ
and CYP75B4-HoJJ were located at the N-terminal membrane anchor region; however, the other
cytochrome P450-specific conserved regions, such as the oxygen binding pocket, the ExxR motif, and
the heme binding domain, were identical among all of the isolated genes, while most of the substrate
recognition sites (SRS) were different between CYP75B3s and CYP75B4s, except for SRS5. The Thr504
of each CYP75B3 and the Leu512 of each CYP75B4, known as functional determinants for the specific
enzyme activities, were conserved [19,26]. The other substitutions, His258 of CYP75B4-HJJ and Gln351
of CYP75B4-HN and CYP75B4-HJJ, were located out of the functional regions.

2.2. Yeast Expression of CYP75Bs and CYP75B4s and Enzyme Assays

We cloned the coding regions of two CYP75B3s (CYP75B3-IM and CYP75B3-HN) and of
three CYP75B4s (CYP75B4-IM, CYP75B4-HN and CYP75B4-JJJ) into the yeast expression vector
pYES-DEST52. CYP75B3-JJJ was not cloned, as its sequence is identical to that of CYP75B3-IM. All of
the constructs, including the empty vector pYES-DEST52, were transformed into yeast strain WAT11.
The transformed yeast cultures, induced by galactose, were supplied with apigenin and kaempferol
and the racemic mixtures of naringenin and dihydrokaempferol for 7.5 h and the formation of each
3′-hydroxylated product by F3′H activity was analyzed by high-performance liquid chromatography
(HPLC) (Figure 3). All five recombinant proteins exhibited F3′H activity in the substrate feeding assay
but did not exhibit F3′5′H activity. CYP75B3-IM and CYP75B3-HN metabolized all substrates tested,
and CYP75B4-IM, CYP75B4-HN, and CYP75B4-JJJ metabolized naringenin, apigenin, and kaempferol,
but did not metabolize dihydrokaempferol. CYP75B3s metabolized much higher levels of substrates
compared to CYP75B4s.
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Vmax values were 0.193, 0.161, 0.281, and 0.270 µM∙min−1∙mg−1, respectively. The catalytic efficiency 
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of CYP75B3 and CYP75B4 proteins from the white (IM), black (HN and HJJ), and red rice varieties (JJJ
and HoJJ) were compared. Amino acid substitutions were indicated with rectangles. The two dashed
lines located in the N-terminal region indicate the predicted membrane spanning anchors of CYP75B3
and CYP75B4 and the solid lines indicate specific conserved regions of cytochrome P450 enzymes.
A: hinge region, B: substrate recognition site 1 (SRS1), C: SRS2, D: oxygen binding pocket, E: SRS4,
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indicated by an arrow.

To determine kinetic values of the recombinant proteins, we conducted kinetic analyses with
microsomal proteins for NADPH-dependent flavonoid 3′-hydroxylation with naringenin, apigenin,
dihydrokaempferol, and kaempferol as substrates (Table 1). The kinetic analyses were conducted
with only CYP75B3-IM, CYP75B3-HN, and CYP75B4-IM, since CYP75B4-HN and CYP75B4-JJJ
showed extremely low activities in the substrate feeding assay. The Km values of CYP75B3-IM
for naringenin, apigenin, dihydrokaempferol, and kaempferol were measured to be 0.286, 0.072, 2.494,
and 0.110 µM, and their Vmax values were 0.214, 0.131, 0.430, and 0.240 µM·min−1·mg−1, respectively.
The Km values of CYP75B3-HN for these flavonoids were 0.108, 0.085, 1.034, and 0.098 µM, and
their Vmax values were 0.193, 0.161, 0.281, and 0.270 µM·min−1·mg−1, respectively. The catalytic
efficiency (Vmax/Km) of CYP75B3-IM for dihydrokaempferol was 4.3-, 10.5-, and 12.6-fold lower
than those for naringenin, apigenin, and kaempferol, respectively, and the catalytic efficiency of
CYP75B3-HN for dihydrokaempferol was 6.6-, 7.0-, and 10.2-fold lower than those for naringenin,
apigenin, and kaempferol, respectively, which indicated that kaempferol is the preferred substrate and
dihydrokaempferol is the poorest substrate for CYP75B3-IM and CYP75B3-HN (Table 1). Interestingly,
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the catalytic efficiencies of CYP75B3-HN for naringenin and dihydrokaempferol were approximately
two-fold higher than those of CYP75B3-IM for naringenin and dihydrokaempferol. This discrepancy
might be attributed to the single amino acid substitution in the N-terminal region of CYP75B3-HN.
Dihydrokaempferol was excluded from the analyses as a substrate in the kinetic analyses of CYP75B4
because it was not metabolized by CYP75B4s in the substrate feeding assay (Figure 3). CYP75B4-IM
exhibited, respectively, 0.240 and 2.948 µM of Km values and 0.008 and 0.007 µM·min−1·mg−1 of Vmax

values for apigenin and kaempferol. The catalytic efficiency of CYP75B4-IM for apigenin was 17-fold
higher than that for kaempferol, indicating that apigenin is the optimum substrate for F3′H activity of
CYP75B4. Naringenin was not converted to eriodictyol in the in vitro assay, but was metabolized in the
substrate feeding assay by CYP75B4-IM; therefore, naringenin is the poorest substrate for CYP75B4-IM
(Table 1). In comparison with F3′H from other plant species assayed through yeast microsomal
expression, overall levels of the Km values of CYP75B3s were lower than those of Fragaria vesca
(4–48 µM) [27] and Camellia sinensis F3′Hs (17–44 µM) [28] and comparable to those of Dahlia variabilis
F3′H (0.5–3.5 µM) [29], whereas the Vmax values of CYP75B3s were lower than those of the Fragaria vesca
(18–210 µM·min−1·mg−1) and Dahlia variabilis F3′Hs (7–22 µM·min−1·mg−1) but higher than those of
the Camellia sinensis F3′H (10–49 pM·min−1·mg−1).
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Figure 3. HPLC profiles of yeast transformed with CYP75Bs, CYP75B4s, and vector control. Induced
yeast cells were fed with naringenin (NAR), apigenin (API), dihydrokaempferol (DHK), and kaempferol
(KAM), respectively, and production of their 3′-hydroxylated (eriodictyol (ERI), luteolin (LUT),
dihydroquercetin (DHK), and quercetin (QUE)) and 3′,5′-hydroxylated products (tricetin (TRI) and
myricetin (MYR)) were analyzed after 7.5 h incubation. The products were identified according to
retention time and UV spectra of authentic standards. The UV spectra of standards are displayed as
insets and the corresponding peaks in the chromatograms are indicated by arrows.



Int. J. Mol. Sci. 2016, 17, 1549 6 of 14

Table 1. Kinetic parameters for 3′-hydroxylation of CYP75B3s- and CYP75B4-containing yeast
microsomal proteins.

OsF3′Hs
Substrates

NAR API DHK KAM

CYP75B3-IM
(CYP75B3-JJJ)

Km (µM) 0.286 ± 0.015 0.072 ± 0.011 2.494 ± 0.350 0.110 ± 0.008
Vmax (µM·min−1·mg−1) 0.214 ± 0.015 0.131 ± 0.011 0.430 ± 0.05 0.240 ± 0.014

Vmax/Km (1·min−1·mg−1) 0.746 ± 0.067 1.809 ± 0.168 0.173 ± 0.018 2.178 ± 0.282

CYP75B3-HN
Km (µM) 0.108 ± 0.009 0.085 ± 0.015 1.034 ± 0.107 0.098 ± 0.013

Vmax (µM·min−1·mg−1) 0.193 ± 0.029 0.161 ± 0.008 0.281 ± 0.023 0.270 ± 0.021
Vmax/Km (1·min−1·mg−1) 1.796 ± 0.240 1.887 ± 0.156 0.271 ± 0.034 2.755 ± 0.323

CYP75B4-IM
Km (µM) ND 0.240 ± 0.042 * 2.948 ± 0.330

Vmax (µM·min−1·mg−1) ND 0.008 ± 0.001 * 0.007 ± 0.001
Vmax/Km (1·min−1·mg−1) ND 0.034 ± 0.003 * 0.002 ± 0.001

ND = Not detectable; * = Not investigated. The data represent the mean ± SD of three independent
measurements. NAR, naringenin; API, apigenin; DHK, dihydrokaempferol; KAM, kaempferol.

We performed an immunoblot analysis with equal amounts of the microsomal proteins to verify
the expression levels of the recombinant proteins in the microsomes (Figure 4). The expression levels
of CYP75B3-IM and CYP75B4-IM proteins were comparable but CYP75B3-HN expression levels were
approximately two- to three-fold lower than those of the other proteins. This result indicated that the
large differences between F3′H activities of CYP75B3s and CYP75B4 did not result from the difference
in the amount of recombinant proteins in microsomes. Therefore, it was clear that, overall, F3’H
activities of CYP75B3 for various substrates were significantly higher than those of CYP75B4.
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Figure 4. Immunoblot analysis of yeast microsomal proteins containing CYP75B3s and CYP75B4.
Equal amounts of microsomal proteins (15 µg) prepared from yeast cells expressing vector control,
CYP75B3-IM, CYP75B3-HN, and CYP75B4-IM were subjected to immunoblot analysis with antibody
that recognizes the 6xHis tag fused to recombinant proteins (upper panel), and were stained with
Coomassie Blue R-250 (Biosesang, Seongnam, Korea) (lower panel) after SDS-PAGE.

2.3. Gene Expression Analysis

We compared the expression patterns of CYP75B3, CYP75B4, and other rice flavonoid pathway
genes, including CHS, CHI, FNSII (CYP93G1), F3H, DFR, and ANS, in the seeds of non-pigmented
and pigmented rice during maturation. IM, HN, and JJJ were used as representative samples of
white, black, and red rice varieties, respectively (Figure 5A). All of the genes, except for CYP93G1,
were expressed predominantly in HN seeds. CHS, DFR, CYP75B3, and CYP75B4 showed similar
expression patterns in the HN seeds, with expression being low on five days after pollination (DAP)
and gradually increasing to a maximum by 30 DAP, while the expression levels of CHI, F3H, and
ANS increased to a maximum by 15 DAP, and then decreased over time. CYP93G1 expression level
remained low until 15 DAP, and then rapidly increased to a maximum by 20 DAP. Overall expression
levels of these genes in JJJ seeds were much lower than those in the HN grain, and the expression
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levels of CHS, CHI, CYP75B3, F3H, and DFR reached a maximum at 10 DAP, and then gradually
decreased by 30 DAP. The transcripts of CHS, CYP75B3, F3H, DFR, and ANS were barely detectable in
IM seeds, whereas CHI, CYP93G1, and CYP75B4 were expressed at high or detectable levels. On the
whole, the expression patterns of CHI and CYP93G1 were distinct among genes examined, which
suggests that the expression of these two genes might be minimally affected by the Kala4 or Rc
regulatory mechanisms, unlike the other genes. The expression patterns in the HN seeds reflect
a highly induced anthocyanin pathway, and the predominant expression of CYP75B3 and CYP75B4
represents an abundance of leucocyanidin-derived anthocyanin in black rice grains and substantial
quantities of tricin in pigmented rice grains [17], while the relatively low levels of gene expression in
JJJ imply that the metabolic flow toward proanthocyanidin and tricin biosynthesis in JJJ seeds is not
plentiful compared to HN seeds. The expression of CYP75B3 in the IM seeds was almost absent, but
high levels of CYP93G1 and low levels of CYP75B4 expression were observed, which corresponds with
tricin being the major flavonoid in white rice grains [18,19]. The anthocyanin pigmentation pattern in
the HN seeds during maturation was consistent with the gene expression patterns in the HN seeds,
whereas pigmentation was not observed in the JJJ seeds until 30 DAP, which suggests that the relatively
low expression levels of most of the genes in the JJJ seeds might be insufficient to accumulate visible
levels of pigment in the JJJ seeds until 30 DAP (Figure 5B).
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Figure 5. Expression of the flavonoid pathway genes in the seeds of white, black, and red rice
varieties, and pigmentation patterns of the seeds during maturation. (A) Relative expression patterns
of flavonoid pathway genes, including CYP75B3 and CYP75B4, in IM, HN, and JJJ seeds at different
time points during maturation (5, 10, 15, 20, and 30 DAP) were analyzed by quantitative PCR
(qPCR). UBQ5 expression was used as an internal reference. The data represent the mean ± SD
of three replicates; (B) Pigmentation patterns of dehulled IM, HN, and JJJ seeds during maturation.
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The expression patterns of CYP75B3 and CYP75B4 in different tissues of seedlings were also
examined. Both genes were highly expressed in the leaves compared to the roots, and the expression
levels of both genes in the leaves were highest in the JJJ and lowest in the IM. As with the expression in
the developing seeds, the expression levels of CYP75B4 were relatively higher than those of CYP75B3
in the leaves and roots of IM (Figure 6).Int. J. Mol. Sci. 2016, 17, 1549 8 of 14 

 

 
Figure 6. Expression of CYP75B3 and CYP75B4 in leaves and roots of white, black, and red rice 
varieties. Relative expression patterns of CYP75B3 and CYP75B4 in leaves (L) and roots (R) of IM, 
HN, and JJJ were analyzed by qPCR. UBQ5 expression was used as an internal reference. The data 
represent the mean ± SD of three replicates. 

3. Discussion 

The types and contents of flavonoids in rice grains vary among the different colored varieties 
and even among varieties of the same color. For instance, the Korean black rice variety, HN, was 
found to contain 0.6 mg∙g−1 of cyanidin-3-O-glucoside and 0.023 mg∙g−1 of peonidin-3-O-glucoside, 
while another Korean black rice variety, HJJ, contained 3.02 mg∙g−1 of cyanidin-3-O-glucoside and 
0.09 mg∙g−1 of peonidin-3-O-glucoside [13]. In another study, the Italian black rice variety “Artemide”, 
which is phylogenetically distant from the other black rice varieties HN and HJJ, contained 1 mg∙g−1 
and 0.12 mg∙g−1 of the respective anthocyanins. Moreover, Artemide contained 0.033 mg∙g−1 of 
mavidin-3-glucoside derived from 3′,5′-dimethoxy delphinidin [15]. Between the two Korean black 
rice varieties included in our study, there was approximately a four- to five-fold difference in the 
contents of anthocyanins, but the ratios of cyanidin to peonidin were similar (26:1 in HN and 33:1 in 
HJJ), whereas, in Artemide, the ratio (8:1) differed markedly from those in the Korean varieties. These 
findings suggest that some allelic variants of the flavonoid pathway genes may be present in the 
genomes of diverse rice varieties. The majority of known F3′5′Hs among diverse species are members 
of the CYP75A subfamily. CYP75A11, a single CYP75A member in rice, was known to have non-
functional F3′5′H activity [19]. Therefore, the presence of mavidin-3-glucoside in Artemide grain 
implies that Artemide may have a functional CYP75A11 or an F3′H possessing F3′5′H activity. In our 
results, the Thr504 and Leu512 residues, which are regarded to be functional determinants for the 
specific activities of CYP75B3 and CYP75B4, respectively, were conserved in both proteins (Figure 2), 
suggesting that the functions of these enzymes were not altered to exhibit F3′5′H activity. 
Correspondingly, we did not detect the 3′5′-hydroxylated products of the flavonoid substrates in the 
substrate feeding assay (Figure 3) or in the in vitro assay. Interestingly, there was a single amino acid 
difference between CYP75B3-IM and CYP75B3-HN in the N-terminal membrane anchor region, and 
CYP75B3-HN exhibited lower Km values for naringenin and dihydrokaempferol, resulting in 
approximately a two-fold increase in catalytic efficiencies for these substrates in comparison to 
CYP75B3-IM (Table 1), which suggests that the N-terminal region of CYP75B3 plays an additional 
role in specifying substrates, and the increased preferences for the substrates in the activity of 
CYP75B3-HN might contribute to the large accumulation of anthocyanins in HN grains. 

The kinetic values revealed that CYP75B3s exhibited remarkably lower catalytic efficiencies for 
dihydrokaempferol than for naringenin, apigenin, and kaempferol (Table 1). Particularly, the 
catalytic efficiencies of CYP75B3-IM and CYP75B3-HN for dihydrokaempferol were, respectively, 
4.3- and 6.7-fold lower than those for naringenin, which suggests that 3′-hydroxylation catalyzed by 
CYP75B3 may occur at the flavanone level rather than the dihydroflavonol level in rice grains. 
Therefore, it can be speculated that naringenin is preferentially 3′-hydroxylated to eriodictyol by 
CYP75B3, and then F3H converts eriodictyol to dihydroquercetin, which is acted upon by DFR and 
ANS, or DFR and LAR to generate anthocyanin or proanthocyanidin, respectively. This hypothesis 
is supported by the previous finding that F3H prefers eriodictyol to naringenin [30]. 

The flavonoid biosynthesis enzymes likely function as a metabolon, which facilitates the direct 
transfer, or channeling of active sites [31]. Previously, Shih et al. [22] showed a possibility that 
metabolon formation in rice consists of CHS, F3′H, F3H, DFR, and ANS, which is plausible because 
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were analyzed by qPCR. UBQ5 expression was used as an internal reference. The data represent the
mean ± SD of three replicates.

3. Discussion

The types and contents of flavonoids in rice grains vary among the different colored varieties
and even among varieties of the same color. For instance, the Korean black rice variety, HN, was
found to contain 0.6 mg·g−1 of cyanidin-3-O-glucoside and 0.023 mg·g−1 of peonidin-3-O-glucoside,
while another Korean black rice variety, HJJ, contained 3.02 mg·g−1 of cyanidin-3-O-glucoside and
0.09 mg·g−1 of peonidin-3-O-glucoside [13]. In another study, the Italian black rice variety “Artemide”,
which is phylogenetically distant from the other black rice varieties HN and HJJ, contained 1 mg·g−1

and 0.12 mg·g−1 of the respective anthocyanins. Moreover, Artemide contained 0.033 mg·g−1 of
mavidin-3-glucoside derived from 3′,5′-dimethoxy delphinidin [15]. Between the two Korean black rice
varieties included in our study, there was approximately a four- to five-fold difference in the contents of
anthocyanins, but the ratios of cyanidin to peonidin were similar (26:1 in HN and 33:1 in HJJ), whereas,
in Artemide, the ratio (8:1) differed markedly from those in the Korean varieties. These findings suggest
that some allelic variants of the flavonoid pathway genes may be present in the genomes of diverse rice
varieties. The majority of known F3′5′Hs among diverse species are members of the CYP75A subfamily.
CYP75A11, a single CYP75A member in rice, was known to have non-functional F3′5′H activity [19].
Therefore, the presence of mavidin-3-glucoside in Artemide grain implies that Artemide may have
a functional CYP75A11 or an F3′H possessing F3′5′H activity. In our results, the Thr504 and Leu512
residues, which are regarded to be functional determinants for the specific activities of CYP75B3 and
CYP75B4, respectively, were conserved in both proteins (Figure 2), suggesting that the functions of
these enzymes were not altered to exhibit F3′5′H activity. Correspondingly, we did not detect the
3′5′-hydroxylated products of the flavonoid substrates in the substrate feeding assay (Figure 3) or
in the in vitro assay. Interestingly, there was a single amino acid difference between CYP75B3-IM
and CYP75B3-HN in the N-terminal membrane anchor region, and CYP75B3-HN exhibited lower
Km values for naringenin and dihydrokaempferol, resulting in approximately a two-fold increase
in catalytic efficiencies for these substrates in comparison to CYP75B3-IM (Table 1), which suggests
that the N-terminal region of CYP75B3 plays an additional role in specifying substrates, and the
increased preferences for the substrates in the activity of CYP75B3-HN might contribute to the large
accumulation of anthocyanins in HN grains.

The kinetic values revealed that CYP75B3s exhibited remarkably lower catalytic efficiencies for
dihydrokaempferol than for naringenin, apigenin, and kaempferol (Table 1). Particularly, the catalytic
efficiencies of CYP75B3-IM and CYP75B3-HN for dihydrokaempferol were, respectively, 4.3- and
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6.7-fold lower than those for naringenin, which suggests that 3′-hydroxylation catalyzed by CYP75B3
may occur at the flavanone level rather than the dihydroflavonol level in rice grains. Therefore, it can
be speculated that naringenin is preferentially 3′-hydroxylated to eriodictyol by CYP75B3, and then
F3H converts eriodictyol to dihydroquercetin, which is acted upon by DFR and ANS, or DFR and
LAR to generate anthocyanin or proanthocyanidin, respectively. This hypothesis is supported by the
previous finding that F3H prefers eriodictyol to naringenin [30].

The flavonoid biosynthesis enzymes likely function as a metabolon, which facilitates the direct
transfer, or channeling of active sites [31]. Previously, Shih et al. [22] showed a possibility that
metabolon formation in rice consists of CHS, F3′H, F3H, DFR, and ANS, which is plausible because
extremely low levels of intermediates were found in pigmented rice grains. Therefore, anthocyanin or
proanthocyanidin biosynthesis may proceed within the metabolon without releasing intermediates, and
CYP75B3 may act prior to F3H in the sequential arrangement of the enzymes composing the metabolon.

In the tricin pathway in rice, CYP93G1 (OsFNSII) converts naringenin to apigenin, and
then CYP75B4 converts apigenin to luteolin, which is further metabolized to tricin through the
O-methyltransferase activity and the chrysoeriol 5′-hydroxylase activity of CYP75B4 [19]. Our results
indicated that apigenin is the best substrate and naringenin is the worst substrate for the F3′H activity
of CYP75B4 (Figure 3 and Table 1), which matches up with the functional property of CYP75B4
in tricin biosynthesis. According to the current understanding of the rice flavonoid pathway in
pigmented rice grains, F3H, CYP93G1, and CYP93G2 (OsF2H: flavanone 2-hydroxylase) compete
for naringenin [32,33]. However, the substrate preferences of F3H [30] and CYP75B3 suggest that
CYP75B3, CYP93G1, and CYP93G2 may compete for naringenin in pigmented rice grains. In white rice
grains, F3H and CYP75B3 were almost not expressed (Figure 5A); thus, only CYP93G1 and CYP93G2
may compete for naringenin. CYP93G2 converts naringenin to 2-hydroxyflavanone, which is further
converted to C-glycosylflavone by the activities of C-glucosyltransferase (OsCGT) and dehydratase
(DH) [34]. However, CYP93G2 seems to play a smaller role than CYP93G1 in the competition for
naringenin in vivo, because the major flavone in white rice grains is tricin and not C-glycosylflavone.

The tricin content in pigmented rice grain is as much as 16 times lower than the total anthocyanin
content [17]; however, the expression levels of both CYP75B3 and CYP75B4 increased in accordance
with anthocyanin accumulation in black rice grains (Figure 5A,B), suggesting that the lower levels of
tricin compared to anthocyanin contents in pigmented rice grains might be attributed to relatively
low F3′H activity of CYP75B4 compared to that of CYP75B3. It seems that the low levels of tricin in
pigmented rice grains did not result from an insufficient supply of apigenin to CYP75B4, because
the increase of CYP93G1 expression during seed maturation in the HN and the JJJ (Figure 5A,B)
reflects a sufficient supply of apigenin to CYP75B4 for the tricin biosynthesis. According to a previous
investigation, the relative levels of apigenin accumulation in a CYP75B4 knockout mutant rice seedling
were significantly higher than those in a wild-type seedling, despite CYP75B3 being equally expressed
in both seedlings [19], indicating that there is a limit to utilizing apigenin as a substrate by CYP75B3,
which also underpins the hypothesis that rice F3′H participates in anthocycanin biosynthesis as
a member of the metabolon. Therefore, the role of CYP75B3 in luteolin generation in the tricin
biosynthesis pathway could be neglected, although the catalytic efficiency of CYP75B3 for apigenin
was found to be approximately 53-fold higher compared to CYP75B4 in this study (Table 1).

The expression level of CHS is usually very low in white rice grains [24]. Likewise, CHS expression
in IM developing seeds was barely detectable, as shown in Figure 5A. Nevertheless, substantial
quantities of apigenin and tricin were detected in white rice grains [13,18]. Our results suggested that
even though the expression levels of CYP75B4 in the IM seeds and the F3′H activity of CYP75B4 were
very low (Figure 5A and Table 1), highly-expressed CYP93G1 could maximize the apigenin supply in
the IM seeds.

Both CYP75B3 and CYP75B4 were substantially expressed in the leaves and roots of the IM
seedlings (Figure 6). Moreover, the expression levels of CYP75B4 were relatively higher than CYP75B3
in these tissues like their expression patterns in the IM developing seeds. From these results, it can be
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speculated that the increased physiological and environmental risks caused by the lack of flavonoids in
non-pigmented rice would be partially attenuated by the increase of tricin resulting from the enhanced
level of CYP75B4 expression.

Our results reported here provide valuable information for metabolic engineering efforts aimed at
increasing the abundance of useful flavonoids in rice grain. Furthermore, our findings provide insight
into the flavonoid pathway in rice.

4. Materials and Methods

4.1. Plant Materials

Seeds of the following non-pigmented and pigmented rice (Oryza sativa L.) varieties were obtained
from the Agricultural Genetic Resources Center at the National Academy of Agricultural Science
(Jeonju, Korea): white rice, Ilmi (IM); black rice, Heugnam (HN) and Heugjinju (HJJ); and red rice,
Jeogjinju (JJJ) and Hongjinju (HoJJ).

4.2. Isolation of CYP75B3 and CYP75B4 cDNAs from Non-Pigmented and Pigmented Rice

Total RNA samples were extracted from seeds of IM, HN, HJJ, JJJ, and HoJJ harvested 20 DAP
using Fruit-mate for RNA Purification (Takara, Otsu, Japan) and Plant RNA Purification Reagent
(Invitrogen, Carlsbad, CA, USA) according to the manufacturers′ instructions. The first-strand cDNAs
were synthesized with amfiRivert cDNA Synthesis Platinum Master Mix (GenDEPOT, Barker, TX,
USA). To amplify the coding regions of CYP75B3 and CYP75B4 without the stop codon, gene-specific
primers were designed based on the two sequences in the public database. PCR was performed in
50-µL reactions containing 1 µL of four-fold-diluted cDNA, 0.4 µM of each primer (Table 2), PrimeSTAR
HS DNA polymerase, and 5× reaction buffer (Takara) under the following conditions: 98 ◦C for 2 min;
30 cycles at 98 ◦C for 10 s, 60 ◦C for 15 s, 72 ◦C for 2 min; and a final extension at 72 ◦C for 5 min.
The amplicons were subcloned into the pENTR-SD/D-TOPO vector (Invitrogen) via directional cloning
technology and verified by DNA sequencing.

4.3. Yeast Expression of CYP75B3s and CYP75B4s and Substrate Feeding Assay

Each coding regions of the five cDNAs cloned into the entry vector (pENTR-CYP75B3-IM,
pENTR-CYP75B3-HN, pENTR-CYP75B4-IM, pENTR-CYP75B4-HN, and pENTR-CYP75B4-JJJ) were
transferred to a yeast expression vector pYES-DEST52 in frame with the V5 and 6×His tag using
Gateway™ LR clonase (Invitrogen). The resulting plasmids were transformed into the yeast strain
WAT11 in which the endogenous NADPH-cytochrome P450 reductase has been replaced with
an Arabidopsis thaliana NADPH-cytochrome P450 reductase, ATR1 [35]. Yeast was also transformed
with the empty vector pYES-DEST52 as a control. Yeast transformation was performed as previously
described [36]. Transformants were grown in 50 mL of SGI medium (3.4 g·L−1 yeast nitrogen base,
5 g·L−1 Bacto Casamino Acids, 40 mg·L−1 tryptophan, 150 mg·L−1 adenine hemisulfate and 20 g·L−1

glucose) at 28 ◦C for 24 h. Cells collected from the SGI medium were transferred into 50 mL of
SLI medium (3.4 g·L−1 yeast nitrogen base, 5 g·L−1 Bacto Casamino Acids, 40 mg·L−1 tryptophan,
150 mg·L−1 adenine hemisulfate and 20 g·L−1 galactose) to induce protein expression and incubated
at 20 ◦C for one day. Induced cells were spun down and resuspended in fresh SLI medium containing
50 µM substrates and the cultures were incubated at 28 ◦C for 7.5 h. Then, 1 mL aliquots of the cultures
were sonicated and extracted with 700 µL of ethyl acetate. After evaporation, the residues dissolved in
methanol were subjected to high-performance liquid chromatography (HPLC). Flavonoid substrates
and standards used in this study are as follows: (±)-naringenin, (±)-eridodictyol, apigenin, luteolin,
tricetin, (±)-dihydrokaempferol, (±)-dihydroquercetin, kaempferol, quercetin, and myricetin.



Int. J. Mol. Sci. 2016, 17, 1549 11 of 14

4.4. Microsomal Protein Preparation

Yeast transformants induced in 50 ml of SLI medium were collected by centrifugation (5000× g,
5 min, 4 ◦C) and the pellets were resuspended in 10 mL of TEK (50 mM Tris pH 7.5, 1 mM EDTA,
and 100 mM KCl). After centrifugation (5000× g, 5 min, 4 ◦C), collected cells were resuspended
in TES (50 mM Tris pH 7.5, 1 mM EDTA, 0.6 M sorbitol, 20 mM β-mercaptoethanol, and 1 mM
phenylmethylsulfonyl fluoride) and were disrupted by bead beating using glass beads. NaCl and
PEG4000 were added to the microsome-containing supernatants obtained by centrifugation (5000× g,
5 min, 4 ◦C) to final concentrations of 150 mM and 0.1 g·mL−1, respectively. After incubation on ice
for 15 min, the microsomal fractions were collected by centrifugation (10,000× g, 10 min, 4 ◦C) and
resuspended in 200 µL of TEG (50 mM Tris pH 7.5, 1 mM EDTA, and 30% glycerol). The aliquots of the
microsomal fractions were shock frozen in liquid nitrogen and then stored at −80 ◦C until further use.
The concentrations of microsomal proteins were determined by the Bradford method [37] with bovine
serum albumin as the standard.

Table 2. List of primers used for qPCR and cloning of cDNAs.

Target Locus ID Forward (5′ to 3′) Reverse (5′ to 3′)

qPCR

CYP75B3 Os10g0320100 ACGGATTCATCAACGAAAGG AGCAGCACGCTTAGAAGGTC
CYP75B4 Os10g0317900 TCTCCCATCCGCTTACAATA ACCAATCTACCAACATACAACAA
CHS Os11g0530600 GGGCTCATCTCGAAGAACAT * CCTCATCCTCTCCTTGTCCA *
CHI Os03g0819600 AATCGAGCTGCGAATTAACC * CGCGATTTCTCCTTTCCTTT *
FNSII Os04g0101400 GATTGGCAGTGCATGGACA TTGTATTACGGTGCGTTACAGG
F3H Os04g0662600 AGCACAGAAGCCCAAGTCTC * CTTCGATTTTCGACGGAAGA *
DFR Os01g0633500 GCGAGAAGGAACCGATACTG * TCCAAATCTCGCATTGTGAA *
ANS Os01g0372500 GCATCGAACGGAATGAGAAC * TTCGCTTCCGTTGAACATTA *
UBQ5 Os01g0328400 GAAGTAAGGAAGGAGGAGGA * AAGGTGTTCAGTTCCAAGG *

Cloning

CYP75B3 CACCATGGACGTTGTGCCTCTCCCGC TACTCCATAAGCCGATGGAAGCAGC
CYP75B4 CACCATGGAGGTCGCCGCCATGG TGCAATATTGTAAGCGGATGGGAGAAG

* = Identical sequence to a primer used in a previous study [38].

4.5. Standard Enzyme Assay

Microsomal protein was incubated in 100 µL of total reaction containing 100 mM Tris pH 7.5,
substrate, and 1 mM NADPH, or without NADPH (as a negative control), at 30 ◦C for 10–30 min.
The reaction was stopped by the addition of 37.5 µL of stop solution (acetonitrile/concentrated HCl
(99/1, v/v)). After centrifugation, clear supernatant was subjected to HPLC.

4.6. HPLC Analysis

HPLC analysis was performed on an LC-20A HPLC system (Shimadzu, Kyoto, Japan) equipped
with an Inertsil-ODS3 C18 column (5 µm, 250 mm × 4.6 mm, GL Science, Tokyo, Japan). The mobile
phase was composed of water containing 0.1% formic acid (A) and acetonitrile containing 0.1% formic
acid (B). The gradient profile was optimized as follows: 0–30 min, linear gradient 5%–55% (v/v) B;
30–45 min, linear gradient 55%–65% (v/v) B; 45–50 min, linear gradient 65%–100% (v/v) B at a flow rate
of 1 mL·min−1. The temperature of the column compartment was maintained at 40 ◦C. A diode-array
detector was used to detect compounds. The spectra of the compounds were recorded between 210
and 800 nm. The compounds were identified by comparing the retention times and UV spectra with
those of the standards.

4.7. Immunoblot Analysis

Yeast microsomal proteins (15 µg) were separated by 12% SDS-PAGE and were electrotransferred
onto a polyvinylidene fluoride membrane and then placed in blocking buffer (50 mM Tris-Cl pH 7.4,
150 mM NaCl, 0.1% Tween 20, and 5% skim milk) at room temperature for 1 h prior to being probed
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with antibodies. Anti-penta His antibodies (Qiagen, Valencia, CA, USA), diluted 1/2000 with blocking
buffer, were applied at 4 ◦C for 10 h. After washing the membrane with TBS-T buffer (50 mM Tris-Cl
pH 7.4, 150 mM NaCl, and 0.1% Tween 20), HRP-conjugated secondary antibodies (Milipore, Bedford,
MA, USA), diluted 1/5000 with blocking buffer, were applied at 4 ◦C for 2 h. Chemiluminescent
signals were detected using ECL Western Blotting Detection Reagents (Amersham, Buckinghamshire,
UK) and an ImageQuant™ LAS 4000 system (Fujifilm, Tokyo, Japan).

4.8. Gene Expression Analysis

Total RNA samples were prepared from the developing seeds harvested at 5, 10, 15, 20, and
30 DAP, and leaves and roots of two-week-old rice seedlings. The first strand cDNAs were synthesized
from 2 µg of total RNA using cDNA EcoDry Premix (Oligo dT18) (Clontech, Palo Alto, CA, USA).
qPCR was performed in 15-µL reactions containing 3 µL of four-fold-diluted cDNA, AccuPower 2×
Greenstar qPCR Master Mix (Bioneer, Daejun, Korea), and 0.3 µM of each primer (Table 2) on a BioRad
CFX96 Detection System (Bio-Rad Laboratories, Hercules, CA, USA). To normalize the expression of
the target genes, UBQ5 was used as an internal reference. All PCR reactions were performed under the
following conditions: 95 ◦C for 5 min; 40 cycles at 95 ◦C for 15 s, and 55 ◦C for 30 s. The amplification
specificity was verified by melting curve analysis (55–95 ◦C). The data were expressed as the mean
value of three replicates.

5. Conclusions

The coding regions of CYP75B3 and CYP75B4 were isolated from Korean varieties of white, black,
and red rice, and their enzymatic properties and expression patterns were analyzed. We found that
there were allelic variants of each gene containing one or two amino acids substitutions and that the
allelic variant of CYP75B3 from black rice showed enhanced catalytic efficiencies for naringenin and
kaempferol compared to the CYP75B3s from white and red rice. The best and worst substrates for
CYP75B3 were kaempferol and dihydrokaempferol, respectively, and for CYP75B4 were apigenin and
naringenin, respectively, but CYP75B4 could not utilize dihydrokaempferol. Overall, the F3′H activities
of CYP75B3 for the substrates were much higher than those of CYP75B4. Gene expression analysis
revealed that CYP75B3, CYP75B4, and most flavonoid pathway genes evaluated were expressed
predominantly in the developing seeds of black rice and not in those of white and red rice, which is
consistent with the pigmentation patterns of the seeds during maturation. Furthermore, these two
genes were highly expressed in the leaves and weakly expressed in the roots. In particular, CYP75B4
expression was relatively higher than CYP75B3 expression in white rice. These results provide valuable
information for better understanding of rice flavonoid pathway.
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