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Prostate cancer identification and assessment of clinical significance continues to be a challenge. Routine multipa-
rametric magnetic resonance imaging has shown to be useful in assessing disease progression. Although dy-
namic contrastenhanced imaging (DCE) has the ability to characterize perfusion across time and has shown enor-
mous utility, radiological assessment (Prostate Imaging-Reporting and Data System or PIRADS version 2) has lim-

ited its use owing to lack of consistency and nonquantitative nature. In our work, we propose a systematic
methodology to quantify perfusion dynamics for the DCE imaging. Using these metrics, 7 different subregions or perfu-
sion habitats of the targeted lesions are localized and related to clinical significance. We found that quantitative fea-
tures describing the habitat based on the late area under the DCE time-activity curve was a good predictor of clinical
significance disease. The best predictive feature in the habitat had an AUC of 0.82, CI [0.81-0.83].

INTRODUCTION
Prostate cancer is the second leading cause of cancer deaths
among men in the United States and accounts to be the third
largest among newly diagnosed cancer cases (19%) (1). Rising
prostatic-specific antigen and abnormal digital-rectal examina-
tion have been traditionally used in the diagnosis of prostate
cancer. Advent of improved imaging resulted in the inclusion of
multiparametric magnetic resonance imaging (mpMRI) in the
clinical workflow (2). Recently, the United States Preventive
Services Task Force (USPSTF) has recommended against the
routine use of prostatic-specific antigen testing for diagnosis of
prostate cancer, owing to the risk of overdiagnosis and over-
treatment (3, 4). Advancements in image acquisition and reso-
lution of mpMRI coupled with the use of fusion-based transrectal
ultrasonography (TRUS)- guided biopsy has improved disease de-
tection and shown promise in improving diagnosis and treat-
ment (5). Routine MP-MRI includes T2-weighted (T2W) imaging
that describes the prostate anatomy, diffusion-weighted imag-
ing (DWI) that measures the density of cellular space by quan-
tifying the diffusion of water molecules. DCE image data shows
the dynamics of the administered contrast agent, which charac-
terizes the blood flow into prostate tissue and allows the iden-
tification of suspicious lesions by localizing abnormal contrast
absorption.

DCE analysis can be quantitative or semiquantitative. The
first approach is based on a contrast concentration model used

to determine the rate of contrast transfer from the blood plasma
into the tissue’s extravascular extracellular space (6, 7). The
second approach describes different contrast absorption pat-
terns based on the characteristics of time-activity curves
(8-10). The Prostate Imaging-Reporting and Data System
(PI-RADSv2) currently includes DCE along with T2W and
DWI, but their added value in diagnosis seems to be limited
(11). PI-RADSv2 limits the use of DCE to the peripheral zone
(PZ) when DWI is not conclusive. The standard limits the use
of DCE to a single binary observation: presence or absence of
uptake. This could be attributed to the lack of consensus in
the community to use better metrics. Traditionally, these DCE
curves are qualitatively characterized, which includes wash-in and
wash-out slopes and time-to-peak (12). These have been related to
tumor aggressiveness (13). The difficulty in establishing consistent
features from the DCE curves, as well as the high interobserver
variability, has limited the use of DCE in a quantitative fashion.
Nonetheless, there have been successful efforts to semiquantita-
tively characterize DCE and use these parameters for classification
of prostate cancer aggressiveness (14, 15).

Recently, radiomic analysis of habitats defined by textural
kinetic features has been used to predict recurrence-free survival
in patients with breast cancer (16). DCE-based habitats have
shown to correlate with estrogen receptor and nodal metastatic
status in breast cancer. Habitats in MRI imaging have also been
useful in identifying disease progression in glioblastoma (17).
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Figure 1. Block diagram shows the DCE habitat identification and processing. A perfusion tumor habitat was localized for
each DCE feature map and these regions were characterized (by DCE features). Classification models were applied to iden-

tify features that can discriminate clinically significant prostate cancers.

MRI-defined features have been used to define radiotherapy
treatment planning in prostate cancer (18).

In this study, we obtained the tumor region based on radi-
ologist delineation on a T2W sequence. The region was centered
on the TRUS biopsy location that was imported directly from the
fused TRUS/MRI system. DCE characteristics at voxel level,
across time, were quantified. Each feature map was used to form
a habitat or localization of voxels. These new habitat regions
were limited by a boundary around the known biopsy location
that was quantified. The ability of the features to discriminate
clinically significant cancers was evaluated for these specific
habitats. Figure 1 shows the methodology followed.

METHODS

Patients and MRI Acquisition

Patient imaging and histopathology records were collected at H.
Lee Moffitt Cancer Center, retrospective investigatory protocol
approved by the University of South Florida IRB. Informed
consent was waived for retrospective access of deidentified
patient records. The study included patients that had MRI-
guided targeted biopsy acquired between November 2015 and
February 2018. Suspicious lesions were marked by a clinical
radiologist on MRI. The patients in the study cohort had at least
one biopsy with an assigned Gleason Score (GS) sum =6. The
data set consisted of 72 biopsies from 54 patients. The average
interval between imaging and biopsy sampling was 27 days. In
this study, patients were grouped in 2 categories: clinically
insignificant cancer (GS = 6) and clinically significant cancer
(GS = 7). All statistics were performed using this grouping. The
data set consisted of 25 clinically insignificant and 47 clinically
significant biopsies.
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MRI Acquisition and DCE Normalization

Routine clinical MP-MRI acquisition includes T2-weighted im-
aging (T2W), DCE, and DWI. The DWI includes an apparent
diffusion coefficient (ADC) map generated at the time of acqui-
sition. Patients were injected with contrast agent Gadavist
(Bayer HealthCare, Whippany, NJ) with a dose of 0.1 mL/kg
before MRI-DCE acquisition. In total, 27 patients were imaged
using a Siemens -SymphonyTim (Siemens, Munich, Germany)
scanner at 1.5 T and endorectal coil (ERC) (eCoil, Medrad, Pitts-
burgh, PA) with median repetition time (TR) of 7.7 seconds
(range, 6.4-9.5 seconds) and median echo time (TE) of 95 mil-
liseconds (range, 94 -95 milliseconds) for DWI. For DCE, TR was
4.72 milliseconds, TE was 1.34 milliseconds, flip angle was 12°,
and temporal resolution was 11.45 seconds. Twenty-two pa-
tients were imaged using a Siemens-Skyra (Siemens, Munich,
Germany) scanner at 3 T and a pelvic phased-array coil with a
median TR of 4.6 seconds (range, 4.5-5.8 seconds) and a median
TE of 77 milliseconds (range, 67— 84 milliseconds) for DWI. For
DCE, the median TR was 4.5 milliseconds (range, 4.5-5.08 mil-
liseconds), the median TE was 1.71 milliseconds (range 1.71-
1.87 milliseconds), flip angle was 12° (n = 20), and 15° (n = 2);
temporal resolution was 11.45 seconds (n 20) and 13.75
seconds (n 2). Three patients were imaged on a Philips-
Ingenia scanner at 3 T and a pelvic phased-array coil with a
median TR of 6.0 seconds (range, 4.5- 6.2 seconds) and a median
TE of 114 milliseconds (range, 91-114 milliseconds) for DWIL
For DCE, the median TR was 4.21 milliseconds (range, 3.56 -
4.28 milliseconds), the median TE was 2.02 milliseconds (range,
1.62-2.08 milliseconds), flip angle was 10°, and temporal res-
olution was 13.75 seconds. In summary, 27 patients (38
biopsies, 14 clinically insignificant and 24 clinically signifi-
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Table 1. Patients Enrolled in the Study With Their Biopsies Clinical Status and Scanner Differences

Patients Biopsies
1.5 T/ERC 27 38
3T 25 34
Total 52 72

Clinically Clinically
Insignificant Significant
14 24
11 23
25 47

cant) were imaged at 1.5 T with ERC and 25 patients (34
biopsies, 11 clinically insignificant and 23 clinically signifi-
cant) at 3 T with a phased-array pelvic coil (Table 1).

Image registration against the T2W image was performed for
all modalities using gradient descent of mutual information on the
space spanned by 3D affine transformations. Manual contours of
the prostate, PZ, and the radiologist finding in the prebiopsy MRI
were stored as RT-DICOM structures. The peak-absorption time
point Speax Was identified in DCE using the AIF (arterial input
function) signal as reference. All other time points were registered
to Speak. DCE data were normalized using an automatically seg-
mented arterial contour as described in the literature (19), which
makes the signal proportional to the change in relaxation rate
caused by the contrast agent weighted by the initial spin-lattice
relaxation time (20).

DCE-Feature Maps

Seven features were extracted from the DCE time-activity
curves, which describe both early and late enhancement
(Table 2). DCE time-activity curves were represented using a
biexponential semiquantitative model (12) that has the follow-
ing 5 parameters: initial static intensity s,, plateau s,,, start of
enhancement 7y, time-to-peak fau, and wash-out slope, wo. The
online Supplemental Figure 1 shows an example with the pa-
rameters used to characterize the DCE time activity curve. Peak
enhancement s, = s,, — So, wash-in slope wi = s,/tau. In
addition, we computed 2 features that describe the area under
the DCE curve between a time interval, namely: AUCy;(, is the
area under the biexponential fitted DCE curve between time t1
and t2. AUCi = AUCo_10+60 measures the early wash-in uptake
curve and AUCf = AUCio+240—t0+270 measures the late wash-

Table 2. List of DCE Features

out curve. The seventh feature computes the multiplicative ef-
fect of wash-in and wash-out slopes and was computed as m;,=
wi* wo. Each one of these parameters was used to generate a 3D
DCE-feature map that was used to obtain a habitat (Figure 2).

Habitat Representation

We localized the regions of interest (ROIs) based on each of
the 7 DCE feature maps, which includes intra and peritumoral
regions around the biopsy location, referred to as DCE based
Habitats. A sphere (radius » = 15 mm) around the biopsy
location was placed on each DCE feature map used to bound
the tumor habitat. This region was additionally bounded by
the prostate zones (PZ or peripheral zone, TZ or transitional zone)
allowing convergence of largest lesion volume. The values for each
feature map within the localized sphere were used to obtain the
region defined by either the lower or upper quartile depending on
the feature. The converged habitats were labeled as H-DCE feature.
The mean DCE signal at the converged habitat region at each
sampling time was used as a representative perfusion curve for the
patient biopsy. DICE index between each habitat and the radiolo-
gist’s lesion ROI were computed to assess the volume of intratu-
moral habitat.

Statistical Analysis

Univariate analysis of the 7 DCE features was performed to
evaluate the overall discrimination using support vector ma-
chines (SVMs) to discriminate clinically significant cancers.
Sensitivity, specificity, and AUC were computed on the habitats
(Table 3). Pair-wise multivariable analysis was performed by
exhaustive comparison of all possible DCE features. The under-
represented GS class was oversampled using SMOTE (21), cali-

Number Feature ID

1 Sp

2 tau

3 wi

4 wo

5 AUCi

6 AUCF

7 Mio

Feature Description Dice
Peak enhancement, su-so 0.22
Time-to-peak 0.42
Wash-in slope 0.21
Wash-out slope 0.25
Initial AUC, AUCi010+60 0.33
Final (late) AUC, AUC0+24010+270 0.22
Slope product, wi X wo 0.17

The DCE features were used in this paper to converge a habitat from the associated feature map and to characterize the average time activity curve in each

habitat.
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brated so that both classes had matched sample size. Classifier
performance was evaluated using leave-1-out cross-validation.
Each classification experiment was repeated 50 times. Further,
95% confidence intervals for sensitivity, specificity, and AUC
were estimated. Image processing and segmentations were per-
formed on commercial imaging Picture Archive Communication
System (PACS) workstation (MIM Corporation, Cleveland, OH,
USA). Classifiers and feature computations were developed us-
ing custom code written in C++ and Matlab.

RESULTS

In this study we evaluated the predictive performance of DCE
(perfusion) habitats, confined regions with similar perfusion be-
havior in the intra and peritumoral regions, using established char-
acteristics of the DCE time activity curves. We determined a set of
7 parameters from a biexponential curve fitting of these curves (see
online Supplemental Figure 1). These parameters generate feature
maps (Figure 2) that were used to generate 1 habitat for each
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identified lesion. DICE score between habitats and manual lesion
contours ranged between 0.17 and 0.42 (Table 2).

The discriminatory ability of each feature was evaluated per-
forming univariate classification using SVM, repeated for each
habitat (Table 3 and online Supplemental Table 1). The top per-
forming habitat was the slope product habitat (H-m;,), with AUC for
its DCE features in the range 0.46 - 0.78. The best predictive features
were tau (AUC, 0.71 [0.69, 0.73]; sensitivity, 0.66 [0.64, 0.69]),
followed by wo (AUC, 0.74 [0.73, 0.75]; sensitivity, 0.62 [0.60,
0.64]) and m;, (AUC, 0.78 [0.77, 0.79]; sensitivity, 0.68 [0.68, 0.68]).

Additionally, we separated the samples for consistent scan-
ner types. For 1.5 T/ERC, the top performing habitats were the
late AUC habitat (H-AUCf) and H-m;, (Table 4 and online
Supplemental Table 2). For H-AUCY, the best predictive feature
was wi (AUC, 0.81 [0.80, 0.82]; sensitivity, 0.74 [0.72, 0.75]), and
for H-m;,, the best predictive feature was s, (AUC, 0.78 [0.76,
0.80]; sensitivity, 0.79 [0.76, 0.81]). For 3 T, the top performing
habitats were H-AUCf and the peak enhancement habitat (H-s,,)

71



TONO ’

DCE Habitats and Significance of Prostate Cancer

Table 3. Univariate Evaluation of DCE-Based Habitats Versus DCE Features

Sp tau wi
Habitat
H-sp
Sensitivity 0.54 0.76 0.60
Specificity 0.58 0.66 0.69
AUC 0.56 0.71 0.65
H-tau
Sensitivity 0.44 0.55 0.71
Specificity 0.37 0.54 0.61
AUC 0.41 0.55 0.66
H-wi
Sensitivity 0.48 0.40 0.54
Specificity 0.49 0.55 0.52
AUC 0.48 0.48 0.53
H-wo
Sensitivity 0.55 0.71 0.60
Specificity 0.48 0.57 0.62
AUC 0.52 0.64 0.61
H-AUCi
Sensitivity 0.57 0.49 0.47
Specificity 0.48 0.63 0.45
AUC 0.53 0.56 0.46
H-AUCf
Sensitivity 0.55 0.68 0.66
Specificity 0.68 0.74 0.49
AUC 0.62 0.71 0.58
H-mio
Sensitivity 0.65 0.66 0.42
Specificity 0.57 0.75 0.69
AUC 0.61 0.71 0.56

Feature

wo AUCi AUCF mio
0.68 0.43 0.56 0.64
0.52 0.50 0.53 0.63
0.60 0.47 0.54 0.63
0.59 0.49 0.71 0.71
0.52 0.53 0.62 0.46
0.55 0.51 0.67 0.58
0.51 0.58 0.58 0.44
0.45 0.54 0.49 0.53
0.48 0.56 0.53 0.49
0.65 0.59 0.56 0.58
0.70 0.55 0.50 0.70
0.67 0.57 0.53 0.64
0.59 0.55 0.55 0.55
0.46 0.52 0.59 0.45
0.52 0.53 0.57 0.50
0.63 0.68 0.57 0.71
0.51 0.58 0.52 0.57
0.57 0.63 0.54 0.64
0.62 0.45 0.57 0.68
0.86 0.46 0.41 0.88
0.74 0.46 0.49 0.78

Seven habitats were outlined by thresholding DCE feature maps (columns). For each habitat, the mean DCE feature values were computed (rows). Mean
sensitivity, mean specificity, and mean AUC for classification between clinically insignificant and clinically significant cancer, based on MRI-guided
biopsies. SVMs were used as classifiers with leave-1-out cross-validation. All patients in the study were included.

(Table 5 and online Supplemental Table 3). For the habitat
based on the late area under the DCE time-activity curve
(H-AUCf), the best predictive feature was tau (AUC, 0.83
[0.82, 0.85]; sensitivity, 0.69 [0.69, 0.70]), and for the H-s),
the best predictive feature was wo (AUC, 0.81 [0.80, 0.83];
sensitivity, 0.85 [0.83, 0.86]).

The late AUC habitat (H-AUCf) was selected for pair-wise
feature analysis because it had shown accurate features for both
cohorts being robust for scanner strength/acquisition coil. Pair-
wise analysis of this habitat showed that 2 pairs of features were
predictive in both the 1.5/ERC data set and the 3 T data set. These
pairs were (tau, wi) and (wo, AUCI) (Table 6 and online Supple-
mental Tables 4 and 5). Classification using the feature pair (tau,
wi) had an AUC of 0.80 [0.79, 0.81] and a sensitivity 0.71 [0.70,
0.72] for 1.5 T and an AUC of 0.84 [0.83, 0.85] and a sensitivity
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0.76 [0.75, 0.77] for 3 T. Classification using the feature pair (wo,
AUCi) had an AUC of 0.82 [0.81, 0.83] and a sensitivity 0.80
[0.79, 0.81] for 1.5 T and an AUC of 0.81 [0.80, 0.82] and a
sensitivity 0.73 [0.72, 0.75] for 3 T.

DISCUSSION

In our current work we present an approach to converge on a
region (habitat) and quantify its DCE (perfusion) characteristics
to discriminate clinically aggressive cancers. Prior work on
perfusion characterization has shown DCE values extracted
from ROIs correlates with pathological assessment (GS), using
intra-subject nonlinear matrix factorization to identify a suspi-
cious region (10). Owing to varied scanner types, using direct
voxel intensity values, coupled with the nondeterministic nature
of non-negative matrix factorization, limits the ability of the
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Table 4. Univariate Evaluation of 1.5 T ERC DCE-Based Habitats Versus DCE Features

1.5 TERC Sp tau wi
Habitat
H-sp
Sensitivity 0.54 0.63 0.58
Specificity 0.45 0.7 0.67
AUC 0.49 0.66 0.63
H-tau
Sensitivity 0.47 0.6 0.64
Specificity 0.45 0.53 0.68
AUC 0.46 0.57 0.66
H-wi
Sensitivity 0.39 0.56 0.6
Specificity 0.53 0.59 0.43
AUC 0.46 0.57 0.52
H-wo
Sensitivity 0.42 0.59 0.67
Specificity 0.65 0.51 0.6
AUC 0.54 0.55 0.64
H-AUCi
Sensitivity 0.43 0.71 0.64
Specificity 0.55 0.69 0.52
AUC 0.49 0.7 0.58
H-AUCF
Sensitivity 0.42 0.55 0.74
Specificity 0.42 0.74 0.88
AUC 0.42 0.64 0.81
H-mio
Sensitivity 0.79 0.65 0.61
Specificity 0.78 0.63 0.81
AUC 0.78 0.64 0.71

Feature
wo AUCi AUCF mjo
0.7 0.58 0.51 0.52
0.53 0.59 0.5 0.42
0.62 0.59 0.5 0.47
0.72 0.5 0.53 0.62
0.53 0.55 0.52 0.49
0.62 0.53 0.52 0.56
0.52 0.49 0.51 0.47
0.63 0.54 0.51 0.44
0.57 0.52 0.51 0.46
0.43 0.55 0.57 0.57
0.49 0.58 0.42 0.52
0.46 0.57 0.49 0.54
0.52 0.51 0.37 0.59
0.64 0.43 0.45 0.55
0.58 0.47 0.41 0.57
0.46 0.72 0.56 0.65
0.48 0.76 0.64 0.66
0.47 0.74 0.6 0.66
0.66 0.72 0.72 0.63
0.59 0.79 0.66 0.46
0.62 0.75 0.69 0.55

Seven habitats were outlined by thresholding DCE feature maps (columns). For each habitat, the mean DCE feature values were computed (rows). Mean
sensitivity, mean specificity, and mean AUC for classification between clinically insignificant and clinically significant cancer, based on MRI-guided
biopsies. SVMs were used as classifiers with leave-1-out cross-validation. All patients in the study were included. The two features with the largest AUC

amongst all habitats have been indicated in boldface.

method to reproduce across varied cohorts. The habitat model
presented here addresses the key issue of showing a means to
localize the ROI before quantification. We use SVM classifiers to
discern the habitat and quantified features on this habitat that
improved the ability to discriminate aggressive cancers (22).

The use of parameters from pharmacokinetics modeling has
shown to lack robustness. A recent study has shown usability of
Ktrans map to localize the tumor region and these maps have
been reported to be predictive of tumor aggressiveness (13). It
has also been reported that repeatability of Ktrans maps across
institutions has been low, and a recent report shows a coefficient
of variation to be as high as 0.59 (23).

There is an open debate about the accuracy of ERC and
pelvic phased-array coil for the detection of prostate cancer. At
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1.5 T, ERC produces a higher-quality imaging of the prostate
with common artifacts in the PZ. At 3 T, the pelvic phased-array
coil produces high-quality images without the inconvenience
and cost of an ERC. Because both of these technologies are
currently used in the clinic, we strive to find DCE features that
are robust to both acquisition coil and magnetic field strength of
the scanner. It is imperative to develop prognostic features that
work well with both types of coils. In this paper we review the
robustness of DCE features in the prediction of clinically aggres-
sive cancers, with respect to the acquisition settings.

To improve the accuracy and reproducibility of classifications,
the patients were divided according to the MRI acquisition charac-
teristics, and their habitats were analyzed separately, identifying
DCE features that were common in both subsets. The late AUC
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Table 5. Univariate Evaluation of 3 T Pelvic Coil DCE-Based Habitats Versus DCE Features

3 T PELVIC Sp tau wi
Habitat
H-sp
Sensitivity 0.52 0.59 0.6
Specificity 0.62 0.8 0.89
AUC 0.57 0.7 0.74
H-tau
Sensitivity 0.67 0.49 0.64
Specificity 0.69 0.66 0.6
AUC 0.68 0.57 0.62
H-wi
Sensitivity 0.78 0.31 0.54
Specificity 0.68 0.64 0.57
AUC 0.73 0.48 0.55
H-wo
Sensitivity 0.66 0.46 0.45
Specificity 0.56 0.36 0.47
AUC 0.61 0.41 0.46
H-AUCi
Sensitivity 0.54 0.5 0.56
Specificity 0.63 0.6 0.55
AUC 0.59 0.55 0.55
H-AUCF
Sensitivity 0.66 0.69 0.64
Specificity 0.62 0.97 0.68
AUC 0.64 0.83 0.66
H-mio
Sensitivity 0.68 0.59 0.51
Specificity 0.53 0.61 0.58
AUC 0.6 0.6 0.54

Feature

wo AUCi AUCF mio
0.85 0.7 0.65 0.67
0.78 0.54 0.71 0.79
0.81 0.62 0.68 0.73
0.58 0.4 0.68 0.69
0.56 0.61 0.79 0.58
0.57 0.51 0.73 0.63
0.51 0.68 0.59 0.57
0.46 0.57 0.69 0.57
0.48 0.63 0.64 0.57
0.56 0.45 0.72 0.5
0.67 0.48 0.52 0.61
0.61 0.46 0.62 0.56
0.58 0.58 0.69 0.7
0.67 0.62 0.8 0.6
0.63 0.6 0.75 0.65
0.53 0.56 0.66 0.58
0.87 0.65 0.64 0.89
0.7 0.6 0.65 0.73
0.47 0.55 0.48 0.52
0.66 0.52 0.39 0.69
0.57 0.54 0.44 0.61

Seven habitats were outlined by thresholding DCE feature maps (columns). For each habitat, the mean DCE feature values were computed (rows). Mean
sensitivity, mean specificity, and mean AUC for classification between clinically insignificant and clinically significant cancer, based on MRI-guided
biopsies. SVMs were used as classifiers with leave-1-out cross-validation. All patients in the study were included. The two features with the largest AUC

amongst all habitats have been indicated in boldface.

habitat (H-AUCf) showed good performance (with features having
an AUC greater than 0.8) for both scanner settings. The peak
enhancement habitat (H-s,) in the 3 T data set had the largest
sensitivity with the wo feature (AUC, 0.81 [0.80, 0.83]; sensitivity,
0.85 [0.83, 0.86]) but failed to be robust with the 1.5 T/ERC cohort
(AUC, 0.62 [0.60, 0.64]; sensitivity, 0.70 [0.68, 0.72]).

Further pair-wise analysis of the H-AUCS habitat showed
improvement for classification accuracy. For 3 T, 10 pairs of
features showed AUC larger or equal to 0.8, while for 1.5 T/ERC,
there were only 3 pairs. This may suggest that 3 T acquisition
provides better predictive features on DCE images compared to
1.5 T with endorectal coil. The H-AUCf habitat had a DICE score
of 0.22, suggesting that this habitat was mostly exploring the
peritumoral region, adding information to the model from the
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surrounding environment. Two DCE feature pairs performed well:
(tau, wi) and (wo, AUCI). The (wo, AUCI) pair had a sensitivity of
0.80 for 1.5 T/ERC and the (tau, wi) pair had a sensitivity of 0.76 for
3 T. Because we are aiming for features with high accuracy and
high sensitivity, future experiments should evaluate if the tuple
(wo, AUCI, tau, wi) would provide robust accuracy with high sen-
sitivity. The main limitation of this study is the small sample size
used for training; we expect using a conservative approach such as
ours, would have a better chance of reproducibility.

CONCLUSION

We present a systematic quantitative methodology to identify DCE
perfusion regions that provide quantitative assessment of DCE
characteristics in these regions. We show that these metrics identify
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Table 6. Evaluation of pairs of DCE features for habitat H-AUCF

Sp

Sensitivity

9 0.42
fau

wi

wo

AUCi

AUCF

Mio

Specificity

S 0.42
fau

wi

wo

AUCi

AUCF

Mio

AUC

S 0.42
fau

wi

wo

AUCi

AUCF

Mio

fau

0.74
0.55

0.91
0.74

0.83
0.64

1.5 TERC
wi wo
0.64 0.75
0.71 0.76
0.74 0.63
0.46
0.89 0.75
0.89 0.72
0.88 0.77
0.48
0.76 0.75
0.80 0.74
0.81 0.70
0.47

AUCi

0.70
0.76
0.73
0.80
0.72

0.77
0.81

0.84
0.84
0.76

0.74
0.79
0.78
0.82
0.74

AUCf

0.60
0.72
0.68
0.69
0.73
0.56

0.56
0.86
0.87
0.66
0.79
0.64

0.58
0.79
0.78
0.67
0.76
0.60

mjo

0.64
0.70
0.60
0.72
0.69
0.63
0.65

0.62
0.70
0.84
0.67
0.84
0.63
0.66

0.63
0.70
0.72
0.69
0.76
0.63
0.66

Sp

0.66

0.62

0.64

fau

0.76
0.69

0.82
0.98

0.79
0.83

0.61
0.76
0.64

0.81
0.93
0.68

0.71
0.84
0.66

3T

0.70
0.75
0.63
0.53

0.91

0.98
0.93
0.87

0.80
0.87
0.78
0.70

AUCi

0.74
0.70
0.61

0.73
0.56

0.83
0.84
0.85
0.88
0.65

0.79
0.77
0.73
0.81
0.60

AUCf

0.65
0.70
0.70
0.75
0.77
0.66

0.77
0.83
0.82
0.91
0.83
0.64

0.71
0.76
0.76
0.83
0.80
0.65

mjo

0.74
0.68
0.73
0.69
0.64
0.74
0.58

0.97
0.94
0.95
0.94
0.93
0.91
0.89

0.85
0.81
0.84
0.82
0.79
0.83
0.73

the largest average AUC between 1.5 T and 3 T acquisitions have been indicated in boldface.

clinically significant cancers. In particular, we find that habitat regions
identified by the late area under the DCE time-activity curve (H-AUCf)
yield features to be related to clinically significant cancers. We also
find that using a cohesive cohort with higher magnetic field strength (3
T) seems to improve the predictor performance.
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