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BayesR3 enables fast MCMC blocked processing
for largescale multi-trait genomic prediction and
QTN mapping analysis
Edmond J. Breen 1✉, Iona M. MacLeod1, Phuong N. Ho1, Mekonnen Haile-Mariam1, Jennie E. Pryce1,2,

Carl D. Thomas1, Hans D. Daetwyler1,2 & Michael E. Goddard1,3

Bayesian methods, such as BayesR, for predicting the genetic value or risk of individuals from

their genotypes, such as Single Nucleotide Polymorphisms (SNP), are often implemented

using a Markov Chain Monte Carlo (MCMC) process. However, the generation of Markov

chains is computationally slow. We introduce a form of blocked Gibbs sampling for esti-

mating SNP effects from Markov chains that greatly reduces computational time by sampling

each SNP effect iteratively n-times from conditional block posteriors. Subsequent iteration

over all blocks m-times produces chains of length m × n. We use this strategy to solve large-

scale genomic prediction and fine-mapping problems using the Bayesian MCMC mixed-

effects genetic model, BayesR3. We validate the method using simulated data, followed by

analysis of empirical dairy cattle data using high dimension milk mid infra-red spectra data as

an example of “omics” data and show its use to increase the precision of mapping variants

affecting milk, fat, and protein yields relative to a univariate analysis of milk, fat, and protein.
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Many important traits in medicine, agriculture, and evo-
lution are complex and are quantitative traits controlled
by many genes and environmental factors1–5. Despite

the availability of assays for many thousands of Single Nucleotide
Polymorphisms (SNPs) for around 20 years, knowledge of the
polymorphisms that explain the genetic variation in complex
traits is still limited. There are two difficulties in mapping and
identifying these causal variants—the effects are typically very
small and linkage disequilibria (LD) between polymorphisms
make it hard to identify the true causal variants. Consequently,
the best strategy is likely to be to estimate the effect of variants
simultaneously across the genome, where the effects on the trait,
or phenotype, are treated as random variables sampled from a
distribution. This analysis is known as genomic selection or
genomic prediction (GP)6,7.

Methods of GP use a mixed-effects linear regression model in
which the effect of the marker genotypes, such as SNPs, are
treated as random effects, allowing these effects to be estimated
even when their number is much greater than the number of
phenotypic records. Bayesian methods to do this differ in the
prior distribution assumed for the marker effects in this linear
model. If they are assumed to be drawn from a normal dis-
tribution with mean zero and constant variance, the method is
Best Linear Unbiased Prediction (BLUP). However, experimental
evidence suggests that many SNPs have no effect, some a small
effect and a few a large effect on the trait8,9. To represent such a
distribution, it is common to use a slab and spike prior and the
slab may represent a long-tailed distribution6,7. For instance, Erbe
et al. introduced a model called BayesR in which the SNP effects
follow a mixture of normal distributions including a component
with zero variance and effects (i.e., a spike at zero). Genomic
prediction methods such as BayesR may provide information
about the genetic architecture of complex trait, map the causal
variants to regions of the genome, and predict the genetic value of
individuals from their genotypes. For instance, this might be a
prediction of a person’s risk of disease10–12 or, in agriculture, the
genetic value of individual plants or animals so that the best are
selected as parents of the next generation13,14.

SNP effects are commonly estimated using a Markov Chain
Monte Carlo (MCMC) algorithm, but MCMC methods are slow.
Faster non-MCMC solutions, such as EM algorithms15–17 or
variational Bayes, sacrifice prediction accuracy for speed. There-
fore, attention has focused on making the MCMC process more
efficient. A recent approach18 advocated estimating SNP effects in
parallel, but it required many computer nodes, hundreds of cores,
and twice the expected memory (RAM), thereby restricting its
utility to all but the largest computer facilities. Residual updating
within a Gibbs sampling scheme is a process analogous to a
Gauss-Seidel solution of linear equations in which one SNP is
processed at a time, conditional on knowing the other effects, and
after the solution is updated, the residuals for all records are
updated19–21.The updating of all the residuals for every SNP in
every Gibbs cycle (iteration) is probably the main reason for the
long compute time taken. Calus19 sped up the Bayesian MCMC
procedure SSVS (stochastic search variable selection) by proces-
sing 5 or 6 SNPs at a time. Chen et al.22, exploiting sparsity
between markers, produced an updating procedure by keeping
V′V in memory, where V is the genotype matrix, and updating
SNP effects only when SNP effects were estimated to change. This
approach adds significantly to the amount of computer RAM
required for analysis, especially as the number of phenotypes and
SNPs increase. Still, these MCMC updating procedures remain
slower than a BLUP solution23.

Here, we propose an intermediate strategy in which a block of
SNPs is processed together. We present an iterative Gibbs sampling
of a block conditional posterior distributions of unknown variables.

We use this approach (called BayesR3) to estimate SNP effects for
GP, as in standard BayesR13; multi-trait BayesMT24; and to perform
BayesRC25 that uses prior information on the SNP effects. We
demonstrate that our approach is faster than previous BayesR
methods (12) and show its ability to describe the genetic archi-
tecture of complex traits, by fine-mapping SNP effects to genomic
locations. We apply it to simulated phenotype data, coupled to real
genotypes to demonstrate its properties, and then to empirical data
on milk yield and composition in a large dairy cattle data set of
75,471 mixed breed Australian bulls and cows with genotypes from
an imputed high density 717,463 SNP set. Further, we apply the
method to high dimension milk mid-infrared spectral data to
illustrate its potential application to “omics” data on traits that are
intermediate between genotype and phenotype.

Results
The genetic model. The model assumed for the phenotype or
trait values is:

y ¼ Xuþ Vg þ Zaþ e ð1Þ
where y is an nR ´ 1 column vector of phenotype values, nR is the
number of records; X is a ðnR ´ nFÞ incidence matrix, u is a nF ´ 1
vector of fixed effects and nF is the number of fixed effects; V is a
coded genotype ðnR ´ nMÞ matrix, as constructed in the methods,
representing the observed genotypes of each individual across nM
markers (see Methods); g is a vector containing the SNP effects, Z
is an identity matrix ðnR ´ nRÞ and a is a vector of random genetic
effects not explained by the SNPs with polygenic variance
represented as σ2a; such that a � Nð0;Aσ2aÞ, and A is the rela-
tionship matrix. Note also, that e � Nð0;W�1σ2e Þ, where W is a
diagonal weight matrix as described in the methods.

BayesR3. The mathematics used here for BayesR3 is given in
detail in the methods, but briefly the SNP effects are modelled by
a mixture of four normal distributions with zero mean and
increasing variances as specified by:

pðgjjπ; σ2gÞ ¼ π1 ´N 0; 0 ´ σ2g
� �

þ π2 ´N 0; 10�4 ´ σ2g
� �

þ π3 ´N 0; 10�3 ´ σ2g
� �

þ π4 ´N 0; 10�2 ´ σ2g
� �

:

ð2Þ
Where σ2g is the additive genetic variance explained by the SNPs
cumulatively and is estimated from the data. The choice of 4 dis-
tributions, is historical13, but any number of distributions can be
included in the mixture if needed. For example, it has been reported
that adding the variance group 10�5 ´ σ2g can help identify SNPs
with very small effects if the dataset is very large26. Therefore, the
allocations values 0; 10�4; 10�3; 10�2

� �
seen in Eq. (2) are held

constant and used to scale the genetic variance and to help fit long-
tailed distributions as discussed in Supplementary Note 1. The 10x
scaling between the allocation values allows the distributions gen-
erated to be relatively smooth and effects can shuffle from one
distribution to the next between MCMC cycles. The mixing pro-
portions π are also estimated from the data and are assumed to be
drawn from a Dirichlet distribution with parameter= (1,1,1,1), a
uniform prior, such that any SNP a priori is equally likely to be
assigned to any one of the 4 distributions.

The decrease in processing time reported below is mainly
achieved by processing SNPs in blocks. Here the marker effects
are divided sequentially into nB non-overlapping blocks such that:

Vg ¼ V1g1 þ V2g2 þ ¼ þ VnB
gnB ð3Þ

The number of blocks, nB, is determined from the block size, n,
and is defined as the least integer greater or equal to nM

n . All blocks
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are the same size, except the last block that is often smaller. Using
Gibbs sampling, the SNP effects in each block are also sampled n
times before the next block is processed. Then after m iterations
across all blocks, Markov chains of length nL ¼ m ´ n are created
for each effect. In other words, the Markov chain consists of n
inner cycles within a block and m outer cycles across blocks.

Analysis of simulated data. We applied BayesR3 to data con-
sisting of 400,000 SNPs on 20,000 individuals with simulated
phenotypes. The SNP genotypes of the 20,000 individuals were
real and were taken from 15,220 Holstein and 4780 Jersey cows.
We then tested the predicted SNP effects by their ability to pre-
dict the simulated true breeding values (TBV) for 1725 Australian
Red cows referred to here as RDC using their real genotypes but
simulated SNP effects (see Methods). The traits simulated had
two different levels of narrow-sense heritability (h2): 0.1 (H10)
and 0.3 (H30). The genomic model fitted, also included two fixed
effects, one for the mean and the other for breed (Holstein and
Jersey). Also, a second set of phenotypes for 41,925 cows from
33,555 Holstein and 8370 Jersey genomes was simulated, which
was a superset containing the original 20,000 individuals.

Prediction accuracy and bias. We compared BayesR with no
blocking and nL samples drawn per parameter to two versions of

BayesR3. In one version (here called BR3+) block size n ¼ 25
SNPs and m ´ n samples are drawn per parameter, where m ¼ nL
(i.e., it does the same number of outer iterations as BayesR), and
to a version (here called BR3), where m ¼ nL

n . so that the total
number of samples drawn is the same as BayesR but only 1/25 of
the number drawn from BR3+.

In Fig. 1a, b, the accuracies, as measured by Pearson’s
correlation between predicted breeding value for each animal
and the true simulated breeding value for the 1725 RDC cows are
given. The figure compares three BayesR configurations: (1) BR
(grey bars) represents a standard “non-blocked” BayesR config-
uration; (2) BR3 (blue bars) a blocked BayesR, where the number
of outer iterations m ¼ nL=n and n = 25; therefore, the Markov
Chain lengths are the same as for BR; and (3) BR3+ where:
m ¼ nL and n = 25. For BR3+ the results are graphed against the
number of iterations divided by 25 so that the accuracy etc of
BR3+ and BR can be compared when BR3+ has the same
number of outer cycles as BR has total iterations. In summary: BR
and BR3 produced chains of the same length, while BR3+
produced chains that were 25 times longer. It is seen in Fig. 1a
that BR3+ (shown as orange bars) is consistently more accurate
than BR (grey bars), by around 4% across all iteration levels. This
is somewhat expected because of the large difference in chain
lengths; however, this also proves that the inner cycles are indeed
contributing to the result. In contrast, Fig. 1b shows that BR3+ is

Fig. 1 Correlation between true breeding value (TBV) and estimated breeding value (EBV) with 10% (H10) and 30% (H30) heritabilities. X-axis gives
the number of iterations performed by BR (grey bars), BR3 (sky blue bars), and BR3+ (orange bars). The bar heights in each plot represents the mean
summary statistics obtained from 5 chains and the individual data points from each chain are overlaying on each respective bar. The prediction accuracy for
the 2 heritabilities are given in panels a for 10% heritability data and in b for the 30% heritability data. The prediction biases are given in panels c 10% and
d 30%. Panels e, f give the estimated 10% and 30% heritability with respect to iteration. The horizontal black line on each of these plots shows the
expected heritability for each data set.
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only different from BR3 during low iteration counts, after which
both chains appear to have reached convergence. Comparing BR
(grey bars) with BR3 (blue bars) shows that BR3 requires more
total iterations than BR to reach a maximum accuracy but fewer
outer cycles because BR3 performs 25 inner cycles per outer cycle.
Below we show that it is the number of outer cycles that largely
determines the computing time needed.

As well as high accuracy, we would like the estimated breeding
values to be well-calibrated. That is, we would like the regression
of true breeding value on estimated breeding value to= 1. (This
regression is often referred to as “bias” although it is not the
classical definition of bias). In Fig. 1c, d these biases are shown,
which is given by regression of the TBV on the SNP predicted
EBV and where a coefficient of 1 represents no bias. A slope of 1
means the expectation of u, given û is equal to û. It is seen in
Fig. 1c, d that the bias is generally within 10% of 1, other than at a
low number of iterations.

Convergence. The estimated SNP effects from an MCMC chain
suffer from an error due to sampling. The limited number of
samples taken. How many cycles are necessary for the estimated
effects to approach the effects that would be obtained from an
infinitely long chain? In practice, we run several chains and use
the average SNP effect from the several chains. The chains are all
independent so we will assume that the estimated effects from any
one chain can be modelled as the value from an infinitely long
chain plus a sampling error. If the correlation between the esti-
mated SNP effects between two independent chains is r, then the
correlation between the mean SNP effects from nC chains and the

SNP effects from an infinitely long chain is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nCr= nCr � r þ 1

� �
:

q
Therefore, for example, if nC ¼ 5 and r ¼ 0:8, the correlation of
the average estimated SNP effects and the long term SNP effects is
r ¼ ffiffiffiffiffiffiffiffiffi

0:95
p ¼ 0:97.

Convergence can therefore be checked by comparing the
correlation of the SNP effects across chains, and for 5 chains, the
mean of 10 correlations is produced, as given in Fig. 2. From
Fig. 2 it is seen that BR and BR3+ have essentially converged by
1000 iterations, that is their mean chain correlations are greater
or equal to 0.99. However, BR3 does not approach those values
until 5000 iterations. This suggests that BR3 requires 5 times
more iterations than does the standard Bayes R configuration
(BR).

Estimated heritability. Figure 1e, f gives the estimated heritability
for the sets H10 and H30, where heritability is defined by

h2 ¼ σ2g= σ2g þ σ2e

� �
. When using the H30 data set, all config-

urations of BR, BR3, and BR3+ give good estimates of the
expected value of 0.3 (see Fig. 1f). However, for the H10 data set,
which has a lower signal, there is a consistent 1 to 3% over-
estimation of the expected value of 0.1. This overestimation is a
property of the sample not the method as a GREML estimation of
the heritability from the same data produced for H10 and H30:
0.129 σ ¼ 0:011ð Þ and 0.32 σ ¼ 0:013ð Þ respectively.

The distribution of SNP effects on phenotype. The model for
the simulation and the analysis assumed the SNP effects were
sampled from a mixture of normal distributions so we can assess
the ability of BayesR3 to recover this distribution. The log2 of the
number of SNPs falling into each of the 4 mixture components is
shown in Fig. 3. The number of SNP effects simulated in the 4
distributions were 396,000, 3485, 500, and 15 going from com-
ponent 1 to 4, respectively. All methods estimate the number of
SNPs simulated in each of the 4 distributions with good accuracy,
as compared to the expected counts given by the first stacked bar
in each plot, and this estimate is reached at all iteration numbers,
except for BR3 where at 50 and 100 iterations there appears to be
a lower than the expected number of SNPs falling into the fourth
distribution with the largest SNP effects (orange band) for both
data sets H10 and H30. As expected, just under 396,000 SNPs are
seen to have no effect on the trait, Fig. 3.

Estimated SNP effects. Figure 4 provides a visual correlation
between the true 4000 effects given in Fig. 4a and their estimated
SNP effects for the same 4000 variants using the simulated
training set (H30) embed within three different genotype den-
sities: 400,000 markers Fig. 4b, 40,000 markers Fig. 4c and only
the causal variants Fig. 4d. That is, each case includes the 4000
causal variants but have varying numbers of SNPs, which have no
effect on the trait. All the estimated effects were averaged across
five chains, with chain length 2000. Regardless of the number of
SNPs included in the analysis, the true SNPs with the largest
effects were generally recovered as large effects. However, a large
negative peak on Chromosome 26 was missed in part because its
minor allele frequency was low (0.0025), and in part because of a
breed difference between the Holsteins and Jersey, where pro-
portionally there were 4 times as many Holsteins than Jerseys
with the minor allele.

The values above Fig. 4b–d, are all Pearson’s correlation values.
The first value above each of these figures is the correlation
between estimated and true breeding values, the 2nd correlation
value is between the true 4000 causal SNP effects to their
corresponding estimates, while the 3rd value is the correlation
across all SNPs within each of the analysis to their true values,
Fig. 4b= 400,000 SNPs Fig. 4c= 40,000 SNPs and Fig. 4d= 4000
SNPs. Comparing Fig. 4b, d the effect of including in the analysis
of 396,000 SNPs that have no true effect is to reduce the ability of
the analysis to detect SNPs with small effects.

Processing Speed. The processing speeds for a training set of
20,000 records across 400,000 SNPs are given in Fig. 5a. The time
taken depends largely on the number of outer cycles. Conse-
quently, for the same number of total cycles, BR3 with 25 cycles
per inner block is 25 times faster than BR. BR3+ with the same
number of outer cycles as BR takes approximately the same time.

Effect of block size on processing speed. The time for BayesR3
to process 41,925 records across 400,000 SNPs declines rapidly as

Fig. 2 Across chain convergence analysis. Pearson’s correlations for
iteration {50,100,200,500,1000,2000 and 5000} for the analysis and data
presented in Fig. 1b. The number of chains was 5, therefore each plotted
point represents the mean of 10 correlations. Results obtained from BR are
given in grey, BR3 results are in given in sky blue while the BR3+ results are
shown in orange.
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block size increases (Fig. 5b). We modelled this curve using the
relationship that processing time is proportional to nR þ n

n , where
nR is the number of records and n is block size (Fig. 5c). The
curves in Fig. 5b, c are almost identical, indicating the model is a
good fit. Therefore, for a given number of records we conclude
that the processing time for BR3 is proportional to nR þ n

n

� �
per

SNP, while for BR its speed is expected to be proportional to nR
per SNP. Note also, that the curve in Fig. 5c is scaled to the same
range (min and max) given by the curve shown in Fig. 5b. The

accuracies and bias for across-breed genomic predictions asso-
ciated with selected block sizes from Fig. 5b is given in Fig. 5d.
From these results it is seen that from block size 10 to 215 there is
an approximately 0.5% drop in accuracy indicating that genomic
prediction accuracy, as determined from BayesR3, is robust,
within limits, to block size changes. Therefore, we suggest and
have determined that block size and the number of inner itera-
tions should be equal, and no greater than, the square root of the
number of records (see Supplementary Note 2). For 41,925
records a block size of 205 would be recommended.

Fig. 3 Stacked bar plots for the mixture components inferred with respect to BayesR configuration (BR, BR3 and BR3+) and iterations (50 to 2000).
Y-axis is the log2 of the number of SNPs. Component variance 10�2σ2g is given in vermillion, component 10�3σ2g is given in blue, 10�4σ2g is given in yellow
and 0σ2g is given in a bluish green colour. The expected (Exp) number of SNPs for each component is given in the first bar in each plot where the expected
counts are ð396000; 3485; 500; 15Þ. Panel a gives results observed for the 10% heritability data set H10, while panel b is the equivalent data for the 30%
heritability, H30, data set.

Fig. 4 The true SNP effects for the 4000 simulated causal variants and their estimated effects using the H30 training data set, embedded within three
different genotype densities. All results are from BR3 using five chains, each of length 2,000 and with a block size of 25. The r values above panels
b–d, are all Pearson’s correlation values. The first value above each of these figures is the correlation between estimated and true breeding values, the 2nd

value is the correlation between the true 4000 causal SNP effect values to their corresponding estimates, while the 3rd value is the estimated SNP effects
correlation across all SNPs within each of the analysis to their simulated true values: a the simulated true effects for the 4,000 causal variants. b the effects
of the 4000 causal variants estimated in the training set with 400,000 marker genotypes. c the effects recovered from the training set with 40,000 SNP
genotypes. d the effects recovered when only the true simulated causal variants were used as the genotype set.
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BayesRC (BR3C). BayesR, like most genomic prediction methods,
assumes that the prior probability that a marker affects a trait is
the same for all markers. To address this limitation BayesRC was
introduced by MacLeod et al.25, to take advantage of biological
knowledge associating genes or SNPs to traits. We implemented
BayesRC within our BayesR3 framework (see Methods) and here
this configuration is identified as BR3C. Then we analysed the
simulated data where its 400,000 SNPs were assigned to two
classes: class 1 contained the 4000 known causal variants, while
class 2 contained the other 396,000 SNPs. The effect on predic-
tions accuracy and bias for six test data sets are seen in Table 1
and depending on breed and heritability BR3C improved the
prediction accuracy over BR3. The estimated mixture components
for these two classes are given in Table 2. BayesR3C estimates
the proportion of class 1 SNPs that affect the trait to be ~20%,
whereas it estimates the proportion in class 2 to be 1%. Thus, the
analysis does discover the difference between the 2 classes but

underestimates it (all the SNPs in class 2 should have zero effect).
This lack of power is because of the LD between SNPs in the 2
classes and the large number of SNPs in class 2.

Fig. 5 Processing speeds for the simulated data sets. a Y-axis is time in minutes to process 20,000 phenotypic records of 400,000 SNPs for the 3 Bayes
R configurations as specified in Fig. 1. b Computing time in hours of BR3 with respect to changing block size for Markov chain lengths of 10,000 and for
block sizes: n 2 5; 10; 25; 50;95; 190; 215;430;475;950; 1075; 2150f g, for the simulated data set using 41,925 phenotype records and 400,000 SNPs
composed of Holsteins and Jersey cows only, c ratio of nR þ n

n , for the same block sizes, n, and where nR is the number of records. Note plot in panel c is
scaled to have the same range (min and max) given in plot b. d Aussie Reds genomic prediction mean accuracies (Acc.) and biases (standard deviations)
from 5 MCMC chains of length 10,000 each, for selected block sizes associated to the timings given in b.

Table 1 Comparison between BR3C and BR3 for prediction accuracy for the 10% (H10) and 30% (H30) heritability true breeding
values simulated data sets.

Heritability Breed (# Records) BayesR Method Accuracy (σ) Bias (σ) nSNP

10% (H10) Holstein (3753) BR3C 0.746 (0.002) 0.936 (0.005) 3558
BR3 0.670 (0.003) 0.964 (0.012) 3948

Jersey (1247) BR3C 0.722 (0.003) 0.899 (0.011) 3558
BR3 0.640 (0.004) 0.954 (0.007) 3948

RDC (1725) BR3C 0.649 (0.003) 0.976 (0.014) 3558
BR3 0.534 (0.024) 1.073 (0.033) 3948

30% (H30) Holstein (3753) BR3C 0.850 (0.001) 0.990 (0.005) 3111
BR3 0.754 (0.003) 0.998 (0.005) 4707

Jersey (1247) BR3C 0.809 (0.001) 0.988 (0.006) 3111
BR3 0.683 (0.005) 0.977 (0.007) 4707

RDC (1725) BR3C 0.759 (0.004) 0.961 (0.013) 3111
BR3 0.577 (0.011) 0.949 (0.025) 4707

Prediction accuracy was tested in 3 validation breeds, and the table also shows the average number SNPs (nSNP) included in the model.

Table 2 The average number of SNPs for the 4 mixture
components (k1, k2, k3, k4) retrieved from BayesR3C.

Heritability Class 1 Class 2

k1 k2 k3 k4 k1 k2 k3 k4
H10 3365 60 495 19 392822 3060 57 0.03
H30 2900 328 695 16 393783 2155 0.3 0.03
Expected 0 3485 500 15 396000 0 0 0

Class 1 contains the 4000 casual variants and where the expected counts are seen the row
labelled Expected. Class 2 contains no causal variants. Note, for class 1 the number of SNPs does
not add up to the expected 4000 because 61 variants have a minor allele frequency less than
0.002 in this data set, which was the threshold of inclusion into the analysis.
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Analysis of milk yield and composition
Processing speed and memory requirement. A comparison of
BayesR3 to EM-BayesR15 and to GBLUP (MTG2 software27),
using 25,000 animals with real phenotype data for milk, fat, and
protein yields and 717,463 SNP effects shows that BayesR3 is as
accurate as EM-BayesR, but 4.3%, on average, more accurate than
a GBLUP (Fig. 6a). These accuracies are the correlation between
estimated breeding value and phenotype for bulls that were not
included in the training data. Also, BayesR3’s average processing
time of 4.7 h was more than 19 times faster than the 92.1 h
recorded for EM-BayesR, while the average processing time for
GBLUP was only 3.6 h (Fig. 6b). BayesR3 required 33% less RAM
than either EM-BayesR or MTG2/GBLUP (Fig. 6c).

Multi-trait analysis of mid-infrared spectra from milk of dairy
cattle. Modern measurement techniques often generate data on
many variables. This includes many “omic” technologies. Here
BayesR3’s multi-trait facility was used to analyse mid-infra-red
(MIR) spectrometry on milk samples of 9834 Australian dairy
cows. The MIR data consisted of absorption peaks recorded for
each cow at 537 wavenumbers28. As the traits in the multi-trait
model were assumed to be uncorrelated, the wavenumber peaks,
which are considered here as phenotypes/traits, were first trans-
formed into PCA components, from which the first 17 compo-
nents that accounted for 99% of the total variance were chosen for
multi-trait analysis. The animals had high-density genotypes at
717,463 SNP. Multi-trait BayesR3, like multi-trait BayesR24, has
two additional variables (as explained in the Material and
Methods) describing the mixture distributions. A SNP may be

determined to be excluded from the model (meaning it affects
none of the traits) or included in the model in which case it is
then independently assigned to one of the four distributions for
each trait. Therefore, it is possible but unlikely for a SNP to be
included in the model but be assigned to the null distribution for
all traits. As with the single-trait analysis, multi-trait BayesR3
processes SNPs in blocks to reduce processing time.

The MIR PC trait summary results are given in Fig. 7, including
the observed phenotype variance σ2p for each MIR PC trait plotted
against PC number (Fig. 7a). Note, as expected, PC1 has the largest
variance and it reduced to PC17. There was only a slight tendency
for h2 to decrease from PC1 to PC17 (Fig. 7b). Therefore, both the
genetic and environmental variance decreased proceeding from PC1
to PC17. The average number of SNPs, from 717,463, included in
the model per iteration was 3995, although not all of these were in
the model for any given PC trait. For instance, for PC1, on average
1165 of these SNPs had a non-zero effect or 2830 SNP had a zero
effect. However, the number of SNPs in each mixture component is
remarkably similar as seen in Fig. 7c, d. Across the 17 PCs, SNPs on
average affect 4 traits even though the PCs are uncorrelated.

The number of SNPs with a posterior probability (pp) of being
included in the model > 0.9 was 20 as given in Supplementary
Data 1, sheet S3. Some of these SNPs were well known QTL for
milk fat% or protein% such as DGAT1, the casein gene cluster
and PAEP (Supplementary Table 1) Other SNP marked more
detailed aspects of milk composition such as the SNP on
chromosome 1 at 142.8 Mb which was close to the QTL affecting
phosphorous, magnesium, potassium, and sodium concentration
in milk29,30. However, in other cases no one SNP had a pp > 0.9,
but multiple closely spaced SNPs’ pp summed to >0.9. If several
SNPs are in high LD, it is likely that there is insufficient evidence
to select one over all the others so the MCMC process will fit one
of the SNPs in one iteration and a different SNP in other
iterations. After summing the pp across all SNP in each 50 kb
window, we found 43 segments with sum(pp) >0.9 (Fig. 8a). The
simplest interpretation is that these segments each contain a
causal variant affecting the MIR spectra. A large number of such
segments is consistent with the estimate of 3995 SNPs associated
with the 17 PCs. Some of these 43 segments also correspond to
known QTL for milk composition traits such as the QTL for
lactose concentration on chromosome 27 at 36Mb, at 15Mb on
chromosome 3, and on chromosome 5 at 31Mb31 (see
Supplementary Table 1 & Supplementary Data 1, sheet S7).

Multi-trait analysis of milk production traits of dairy cattle. To
further demonstrate the use of multi-trait BayesR3 for mapping
QTL and to confirm the overlap with MIR QTL, a large data set
was analysed of 65,637 dairy cattle recorded for milk, fat, and
protein yield (traits converted to PC). The observed mixing
proportions and heritabilities are in Supplementary Table 2.
Across the 3 traits a total of 9948 SNPs per iteration had an effect.
Supplementary Table 2 shows that only 140 to 2688 of these 9948
SNPs had no effect on one of the PC traits and thus most of the
9948 SNPs affected all 3 PCs. Most SNP effects are very small
being drawn from the smallest non-zero distribution.

There were 35 individual SNPs with a posterior probability of
inclusion in the model (pp) >0.9 (Supplementary Data 1 sheet S2).
Again, many of these represented known QTL for milk production
traits (e.g., chromosome 3 at 15Mb and chromosome 5 at 31Mb)
but others had not previously been reported (e.g., chromosome 8
at 12Mb, chromosome 17 at 0.5Mb). As with the MIR data, there
are many cases where closely linked SNPs each had a moderate pp.
There were 556 regions with sum(pp) >0.9 that include many
previously reported QTL: for instance, Chromosome 20 at 31Mb
and 58Mb, spanning the growth hormone receptor gene, GHR,

Fig. 6 Comparison of the accuracy of genomic prediction and
computational efficiency between BayesR3 to EM-BayesR (EM) and
GBLUP. Each comparison is for a single trait analysis for milk, fat, and
protein yield, using a reference set of 25,000 Holstein and Jersey cattle
and where accuracy was tested in 3 validation sets: 398 Jersey bulls, 702
Holstein bulls, and 3082 RDC cows and 212 RDC Bulls. a Accuracy of
genomic prediction as a function of trait and breed. Results for BR3 are the
sky-blue bars, EM-BayesR orange bars, and GBLUP yellow bars. Also note,
error bars are not included as GBLUP only provides single-point values.
Computation requirements in terms of b runtime and c memory
requirements. Note with respect b, c Results for milk, fat and protein are
given by blue, vermillion, and reddish-purple bars respectively.
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and the inorganic pyrophosphate transport regulator, ANKH
(Fig. 8a and Supplementary Table 1).

Although the analysis of the MIR data and the milk yield data
used different animals as well as different phenotypes, they

identified many of the same SNPs/QTL regions (Fig. 8a, b). Of the
1000 SNPs with the highest posterior probability, 38 are included
in both lists when only 1 would be expected by chance
(Supplementary Data 1, sheet S5). Therefore, we use the MIR

Fig. 7 MIR PC trait summary results. a The phenotype variance σ2p for each MIR PC trait plotted against PC number. b Estimated heritability for each PC
trait. c Number of SNPs per mixture distribution for each PC trait. Note, count k4 is given in vermillion, count k3 is given in blue, k2 is given in yellow and
count k1 is given in a bluish green. d Raw counts for the number SNPs per distribution for each trait. Note the sum of counts for each PC trait is 3995, which
is the number SNPs estimated to be associated to the traits.

Fig. 8 Manhattan plots for MFP, MIR, and MFP_MIR multi-trait analysis. Y-axis is the sum of the posterior probabilities that SNPs within and centred
on each non-overlapping 50 kb segment of the genome is included in the model. a Result from the 17 PCA MIR multi-trait analysis. b Plot is multi-trait
milk, fat, and protein yields. c Multi-trait milk, fat, and protein yield analysis, using BayesR3C, where class 1 was formed from the top 1000 SNPs identified
from the MIR analysis. Note each plot has the top 10 SNP effects labelled.
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results as prior information in a BayesR3C analysis of the same
milk production data (Supplementary f Our Statistical Analysis
sections has been renamed as Statistics and Reproducibility
Data 1, sheet S3).

BayesR3C was used to re-analyse the milk production data, but
this time the SNPs were divided into 4 classes based on our prior
knowledge of the posterior probability that they were associated
with milk composition as estimated by the analysis of the MIR
data. Classes 1 to 4 were in declining order of the MIR posterior
probability. Supplementary Table 3 shows the mixing proportions
within each of the 4 classes. In class 1, which contains the 992
SNPs with the highest posterior probability to affect MIR traits,
4.8% of the SNPs had a non-zero effect on milk, fat, or protein
yields, whereas in the other 3 classes only 1.6% of the SNPs
influenced milk, fat, or protein yield. In addition, the proportion
of SNPs with a larger effect (distributions 3 and 4) declined
between class 1 to 4. Thus, SNPs with an effect on milk MIR
spectra are more likely to affect milk, fat, or protein yield and
more likely to have a large effect than SNPs that do not affect
MIR spectra. Using the MIR prior information increases the
probability that some SNPs are included in the model for milk,
fat, and protein yield. The number of SNP with pp > 0.9 increased
from 35 to 40 (Fig. 8c). A comparison of BayesR3C using the MIR
prior and BayesR3 for MFP and MIR revealed that some QTL
overlapped between methods, such as chromosome 11 at 103Mb
near PAEP (see Supplementary Table 1). Note also that the
number of segments with pp > 0.9 increased (N= 627) compared
to the BayesR3 (N= 556 50-kb segments) analysis. The y-axis in
Fig. 8 shows the number of SNPs independently associated with
the traits in each 50 kb interval. If there was a single causal variant
in a 50 kb segment this value might be expected to be 1.0.
However, it is sometimes more than 1.0 due to a combination of
multiple causal variants, more than 1 SNP needed to explain a
single causal variant, and sampling error.

Discussion
BayesR can be used for 3 purposes—it can describe the genetic
architecture of a complex trait; it can map SNPs associated with
the trait and it can predict the genetic value or breeding value or
individual risk from an individual’s genotypes at markers such as
SNPs. BayesR assumes a flexible distribution for SNP effects: it
can accommodate many SNPs with no effect, some with a small
effect and a very few with a large effect and this is the pattern we
have found in this analysis and elsewhere32. The more flexible
prior usually results in higher prediction accuracy than methods
that assume all SNP effects are drawn from a single normal
distribution such as GBLUP. However, Bayesian methods that are
implemented by MCMC require longer computer times than
BLUP methods. This paper describes a faster method for imple-
menting BayesR. The increase in speed is achieved by updating
the SNP effects in blocks and cycling through the SNPs within
a block several times before moving to the next block. That is,
there are inner cycles within a block and outer cycles among
the blocks.

The most common method for implementing these Bayesian
models is to update one SNP, then correct the residual phenotype
for all individuals and proceed to the next SNP. Thus, in every
cycle for every SNP a pass is made through the list of individuals
causing the computer time to be proportional to C ´R ´M, where
C is the number of cycles, M is the number of markers and R is
the number of phenotypic records. An alternative22 is to store the
V′V matrix and V′y vector in memory. This avoids processing all
individuals for each SNP, but at the cost of a large matrix mul-
tiplication for every SNP. Consequently, this latter approach is
not advantageous when the number of SNPs is large. The method

proposed here is in between these two approaches—we form
V 0bVb and V 0by for a block of SNPs and cycle around this block n
times, which is also equal to the number of SNPs in the block,
before returning to the outer loop by updating the residuals and
moving to the next block.

Calus19 also used a method that divided the SNPs into blocks
but with two important differences: They used blocks of
approximately 4 to 6 SNPs depending on the number of records
being processed, whereas we use blocks of size equal to
approximately

ffiffiffiffiffi
nR
p

, where nR is the number of records and they
did only one cycle while a block was in core. They achieved a
reduction in time needed by coding a block of about 4 to 6 SNP
genotypes into a single number. This reduced the time necessary
to process the data on all individuals and appears to be compe-
titive with the EM-Hybrid version of BayesR15. However, we
found without hardware support, that storing 4–6 SNP genotypes
as a single number offered little speed advantage compared to
modern matrix routines with built-in vectorization.

The simulation results show that BayesR3 can estimate the pro-
portion of variance explained by the SNPs, the number of SNPs in
each distribution, and the position of the causal variants. The mul-
tiple trait version was used to analyse empirical milk MIR spectra
data represented by their first 17 PCs. Although the 17 PCs were
uncorrelated, they are largely explained by the same SNPs, meaning
that each MIR trait is mostly associated with the same set of SNPs.

On average 3995 SNPs were included in the model and about
1000 of these influenced any given PC trait. The SNPs with a high
posterior probability of being included in the model are pre-
sumably tracking causal variants with which they are in LD. 20
SNPs had a posterior probability >0.9 and many are close to
known polymorphisms (QTL) affecting milk composition. The
use of 17 PCs captures information on more specific traits, such
as lactose concentration, in that QTL affecting lactose con-
centration, phosphorus, and other milk mineral concentrations
were also detected by the analysis.

The multi-trait BayesR3 on milk, fat, and protein yields, found
that 35 SNPs were included in the model on >90% of MCMC
cycles implying there may be a causal variant linked to these
SNPs. However, often the signal from a causal variant is split
among closely linked SNPs. Therefore, we calculated the sum of
posterior probabilities for SNPs within a 50 kb segment and
showed that 556 of such segments had sum(pp) > 0.9, indicating
we mapped 556 QTL for milk, fat, and protein yields to within
50 kb segments of the genome.

As expected, we found considerable overlap between the SNPs
that affected milk, fat, and protein and those that affected the
milk MIR spectra. We used the MIR data to help map the variants
causing variation in milk, fat, and protein using BayesR3C, which
allows different mixing proportions among classes of SNPs. In
this case, we analysed milk, fat, and protein traits but defined
classes based on whether the SNP affected the MIR PCs. The 992
SNPs with the largest posterior probability to affect MIR traits
were enriched for effects on milk, fat, and protein yield and for
large effects on these 3 traits. For instance, of the 992 SNPs with
biggest effect on MIR, 48 SNPs per iteration were included in the
model for milk, fat, and protein. However, among the other
634,879 SNPs, 10,810 were included in the model for milk, fat,
and protein. That is, the 992 SNPs with the biggest effects on MIR
spectra comprise only 0.4% of the total SNPs affecting milk, fat,
and protein. This may illustrate a common problem with using
“omic” traits to identify variants affecting target complex traits:
the individual “omics” datatypes detect only a minority of the
variants affecting the target traits.

In the simulated data, BayesR3C achieved much higher accu-
racy in predicting genetic value of individuals than BayesR3. In
this data the classes defined were extremely different in the
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proportion of causal variants contained, that is class 1 contained
all the causal variants. However, in the milk, fat, and protein yield
data BayesR3C did not achieve a higher accuracy than BayesR3
(see Supplementary Table 4), probably because the four classes
defined from the MIR data did not differ enough in their effect on
milk, fat, and protein yield. However, there was an increase in 8
SNPs with pp > 0.9 (35 to 43) and the number of 50 kb segments
with 90% probability of containing a causal variant increased
from 556 with BR3 to 627 with BR3C.

A limitation of the multi-trait BayesR model is that it assumes
that the genetic and residual covariance matrices are proportional
to each other. This is often a good approximation of the observed
covariances, and it has the advantage of avoiding the use of poorly
estimated covariance matrices which often occur when many
traits are considered. To make the computation easier we trans-
form the traits to uncorrelated traits. However, despite using
uncorrelated traits, the model estimates whether the same SNPs
can explain variation is multiple traits. This is a major advantage
over single trait analysis which often finds two closely linked
SNPs, one affecting one trait and the other another trait. Typi-
cally, we would like to know if one SNP could be used for both
traits and the multi-trait model does this. Nevertheless, a future
development of the method should overcome the need to assume
this proportionality of covariance matrices.

In conclusion, BayesR estimates the number of polymorphisms
affecting a trait and the distribution of their effect sizes, maps the
position of these polymorphisms on the genome, and predicts the
genetic value of individuals with genotypes but no phenotypic
measurement. The methodology (BR3) decreases substantially the
computer time needed for regressing phenotypes against geno-
types such that it is now comparable with a GBLUP analysis. By
applying BR3 to milk yield and composition data, we estimate
that approximately 10,000 high-density SNPs are independently
associated with these traits and for 627 of them we map the causal
variant to within 50 kb. BR3 can also analyse high dimensionality
‘omic’ data and can incorporate prior biological knowledge about
the genome variants used. Using these facilities, we show that
milk MIR spectra identify many variants that affect milk, fat,
and protein yield, but there are 1000’s of variants affecting milk,
fat, and protein yield that were not detected by the MIR
spectral data.

Methods
Data
Simulated data. Phenotypes were simulated using 64,345 real cattle genotypes by
randomly selecting a set of 4000 genome-wide SNP as causal variants (QTN). The
4000 QTNs were chosen from a set of 983,116 imputed autosomal sequence var-
iants. The sequence variants were imputed using Run5 of the 1000 Bull Genomes
Project33 and one of a pair were pruned for high linkage disequilibrium (LD
r2 > 0.9 in 0.5 Mb windows). Variants with MAF < 0.002 were removed, intergenic
variants were reduced to the set overlapping the High-Density Illumina BovineHD
800 K panel (162,583), and half of the remaining variants within and close to genes
(up to 5000 bp from gene start and end positions) were randomly removed leaving
the final set of 983,116 variants. The QTN effects and trait phenotypes were
simulated following the approach described in ref. 25. Briefly, QTN effects were
simulated by sampling 15, 500, and 3485 effects from each of 3 normal distribu-
tions with variance 0.01σ2g , 0.001σ

2
g , and 0.0001σ2g respectively, and where σ2g is the

additive genetic variance (set at 625). The genetic value or true breeding value
(TBV) of each animal was then calculated as: TBVi ¼ ∑4000

j¼1 vijεj where εj is the j
th

QTL effect and vij represents the jth genotype (coded 0, 1, or 2 for genotypes aa, Aa,
and AA) for record i.

An environmental effect for each animal was sampled from a normal
distribution and was added to the genetic value to produce a phenotypic trait
record with a heritability (h2) of either 0.1 (“H10”) or 0.3 (“H30”). The same 4000
QTN positions were used for both trait heritabilities and a new set of QTN effects
were simulated for each trait. The cattle were mainly purebred Holstein, with some
purebred Jersey and Australian Reds (RDC). All 1725 RDC were used as a
validation set, while Holstein and Jersey animals were allocated to the training
populations. From this simulated data, we randomly selected two training sets for

analyses in this study: one with 41,925 Holstein and Jerseys and a second set of
20,000. From the 983,116 SNP genotypes available for each animal, we randomly
selected three subsets of genotypes from the SNP map file, but also included the
4000 QTN: 400,000, 40,000, and 4000 SNP. Thus, the latter set represents the
QTN only.

Empirical milk production data—multi-trait analysis. A training population of
65,637 dairy cows and bulls was available with milk, fat, and protein yield phe-
notypes (MY, PY, and FY, respectively) where the raw data was pre-corrected for
known fixed effects (herd, year, season, and lactation). The bull data was derived
from daughter records. The cattle included Holstein (80%), Jersey (15%), and
crossbreds (5%). All animals were genotyped for either low (~9000 SNP), medium
(~50 K SNP), or high density (HD 800 K SNP) panels. The low-density panels
mainly overlapped the 50 K panel but also included a custom set of ~ 1000 variants
that have been found to be more predictive than random markers for milk and
other traits. Animals with low-density genotypes were imputed to 50 K (imputation
reference of 14,722 animals) and all 50 K genotypes were imputed to the HD panel
(imputation reference of 2700 animals). All markers not overlapping either the HD
or 50 K panel were also imputed for all individuals to generate a final genotype set
of 717,463 SNP. All SNP markers were mapped to the ARS-UCD1.2 reference
genome34 and imputation was done using FImpute and default parameters35. This
set of phenotypes and genotypes was used for a multi-trait analysis to fine-map
candidate genes for these traits. The phenotypes were converted to three principal
component traits.

Milk production data for methods comparison. A subset of 25,000 animals of the
above set of 65,637 (purebred Holstein and Jersey only) were used as a training set
to run a comparison of computational efficiency and accuracy of the BayesR3 to
the previously published EM-BayesR15 and a GBLUP (Genomic Best Linear
Unbiased Prediction) approach using MTG227. The reference set composition was
13,413 Holstein cows, 6623 Jersey cows, 4,289 Holstein bulls, 675 Jersey bulls.
Accuracy was tested using 3 validation sets: 398 Jersey bulls, 702 Holstein bulls, and
3082 RDC cows. Any sires/dams or sons/daughters of the validation animals were
removed from the training set.

MIR data. Milk samples of 9834 Australian Holstein (83%), Jersey (9%), and cross-
bred cows (8%) calved in Spring 2017 from 21 commercial herds were taken (2 to 8
times/cow) and analysed for milk composition by an infrared spectrometer (Model
2000, Bentley Instruments, Chaska, MN) and the corresponding spectra were
stored for this study. Each single spectrum included 899 data points, with each
point representing the absorption of infrared light through the milk sample at
wavelengths from 649 to 3999 cm−1 regions. Several mathematical treatments were
applied to the raw spectra, including removal of noisy and uninformative area,
eliminating outliers, using a standardized Mahalanobis distance calculated with the
‘mahalanobis’ function of the ‘stats’ R package (R Development Core Team, 2020),
and taking the first derivative of the MIR signal using the ‘gapDer’ R function36, as
commonly recommended for MIR studies28. This resulted in 537 wavenumbers per
sample. Each cow supplied on average 3.7 milk samples; therefore, multiple spectra
were averaged resulting in a single spectrum being assigned to each cow for the
analysis. These wavenumbers were then corrected for Herd ID, and age of calving,
leaving only breed (3 levels) and the mean as the fixed effects used in the BayesR
animal genetic model for analysis. The genotype set assigned to each cow was the
same 717,463 SNP set as explained for the milk production data above. Note the
9834 cows used in the MIR analysis are separate from the 65,637 dairy cows used in
milk production data analysis described above.

Statistics and reproducibility

The genotype matrix V. The elements of V were scaled and centred: vij ¼
v�ij � 2pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1� pjÞ
p ,

where v�ij is the genotype of animal i at SNP j. The genotypes are represented by 0
for one homozygote, 1 for heterozygote and 2 for the other homozygote, pj ¼
∑i v

�
ij=ð2nRÞ gives the observed allele frequency for SNP j in the nR records. Note,

SNP j is considered monomorphic if its Minor Allelic Frequency (MAF) is less than
0.002 and it is excluded from the analysis.

The statistical model (single trait). BayesR and Gibbs sampling was used to
implement the mixed effects model: y ¼ Xuþ Vg þ Zaþ e where y is an nR ´ 1
column vector of phenotype/records values, where nR is the number of records; X is
a ðnR ´ nF Þ incidence matrix, u is a nF ´ 1 vector of fixed effects and nF is the
number of fixed effects. V is a coded genotype ðnR ´ nM Þ matrix, as constructed
above, representing the observed genotypes of each individual across nM markers; g
is a vector containing the SNP effects, Z is an identity matrix ðnR ´ nRÞ if all animals
have phenotypes but could be more general if not all animals have a phenotype
and a is a vector of random genetic effects not explained by the SNPs with
additive variance represented as σ2a . Note, that e � Nð0;W�1σ2e Þ and that
a � Nð0;Aσ2aÞ.

In BayesR the SNP effects are modelled by a mixture of four normal
distributions all with zero mean and with zero, very small, small to moderate
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variances, respectively. The prior distributions for the BayesR parameters are
given as:

gjjσ2j � N 0; σ2k
� �

σ2k ¼

0 ´ σ2gwith probability π1

0:0001 ´ σ2gwith probability π2

0:001 ´ σ2gwith probability π3

0:01 ´ σ2gwith probability π4

8>>>><
>>>>:

σ2g ¼ h2t σ
2
t

π � Dirichlet αð Þ

e � N 0;W�1σ2e
� �

a � Nð0;Aσ2aÞ
where α ¼ 1; 1; 1; 1f g represents an uninformative Dirichlet prior, σ2e is the residual
variance, A is the additive relationship matrix, σ2a is the polygenetic variance, and
h2t is the trait heritability. The priors for σ2a and σ2e are scaled inverse chi-squares
with uniform priors37. The trait variance σ2t is the estimated trait variance obtained
from the data, and its exact form is given below (see Material and Methods:
Weighted Analysis). Note, σ2j is the SNP variance which is sampled from the kth

mixture distribution that the jth SNP is in.
BayesR3 can also include prior biological knowledge about the variants being

analysed as done in BayesRC25. It does this by dividing the variants into classes
based on this prior information. Then the mixing proportions that describe the
distribution of variant effects is estimated separately for each class. When there is
only 1 class the model is that for standard BayesR.

Weighted analysis. In terms of a multi-trait model the residual variance for the tth
trait is given by VarðetÞ ¼W�1t σ2e;t , where Wt is a diagonal matrix of weights for
trait t and et are its residuals. If a record i is missing on trait, t then Wi;t ¼ 0. If
there are no record defined weights, or missing values then W = I the identity

matrix. The weighted mean of each trait was determined from �xt ¼
∑nr

i¼1ðyi;t�wi;t Þ
∑nr

i¼1 wi;t

where wi,t is the ith diagonal element of Wt and representing the ith record.
Therefore, an initial estimate of the phenotypic variance, σ2t , for each trait was

obtained from: σ2t ¼
∑

ðyi;t � �xt Þ2

h2
t
þ

1 � h2
t

wi;t

 !
nW � 1 ;8i;wi;t ≠ 0. Note nW is the number of non-zero

weights, and σ2t resolves to the raw phenotypic variance when w ¼ 1. Here,
h2t 2 0; 1½ �, represents the heritability for trait t and is a user-specified value, which
can be a best guess.

Sampling
Blocked Gibbs Sampling with Inner and Outer Iterations. We broke the Vg com-
ponent of the genetic modelled, Eq. (1), into blocks as shown in Eq. (3). Then
Gibbs sampling was used to sample the effects in each block n-times, where n is the
number of makers in the block, before the next block is processed. Then after m
iterations across all blocks, Markov chains of length nL ¼ m ´ n were created for
each effect. By default, the number of SNPs per block and the number of cycles
within a block are the same. This relationship was initially obtained empirically but
was also derived from determining the optimal block size as given in the Sup-
plementary Note 2. Also note, that for smaller last blocks they too must undergo n
inner cycles to ensure all SNPs are sampled nL times.

Let l be an iterator from ½1 : m�. Then at each l iteration (outer iteration), the
effects for each block are determined sequentially. On block entry, the right-hand
sides for the block rb are set up by:

rb ¼ V 0bWe

where W is a diagonal weight matrix and e is the current state of the residuals in
the model, Eq. (1). Gibbs sampling on the following conditional posterior
distributions with residual updating was used to update the SNP effects within a
block, b, at each inner iteration i 2 1; 2; ¼ ; nf g;

giþ1bj � N
rbj þ V 0bWVb

� �
jjg

i
bj

V 0bWVb

� �
jj þ κI

;
σ2e

V 0bWVb

� �
jj þ κI

 !

rb  rb þ V 0bWVb

� �
:j gibj � giþ1bj

� �
where gibj represents the jth SNP effect, at iteration i, n≥ 1 is the number of inner
iterations, rbj is the jth element of rb and, n≥ 1 is the block size and the number of
markers. Note, ðXÞjj represents the jth diagonal element of matrix X, and that Xð Þ:j

is its jth column. Also, κ ¼ σ2e=σ
2
k for a BayesR3 solution. Note, the notation

x x þ 3 signifies that variable x is replaced by the value of x þ 3.
Prior to each update of giþ1bj k, a latent indicator variable, is sampled from the

data using the following multinomial distribution:

k ¼ mink0fk0 2 1; ¼ ; 4f g : ∑k0

i¼1 p
�
i

� �
≥ xg, and where x is a sample drawn from a

uniform distribution: x 2 ½0; 1Þ. Here p�k ¼ pk
∑
k
pk
, where pk ¼ πk�

e
0:5��g2

j
=vk
� ffiffiffi

vk
p , vk ¼

σ2k þ σ2e and �gj ¼
rbjþ V 0bWVbð Þjj gibj

V 0bWVbð Þjj , which has the form of a least-squares estimator.

When k= 1 the SNP effect becomes zero until it is updated again; that is giþ1bj ¼ 0

otherwise giþ1bj is set as given above. Then, at the end of the outer iteration and after

σ2g is sampled, σ2k is updated via: σ2k ¼ ak � σ2g for the next outer iteration and the

mixing proportions are sampled: π � Dirichletðαþ βÞ. Where β ¼ β1
�

; β2; β3; β4
�
,

holds the number of SNPs in each distribution at the end of each out cycle. The
SNP markers that get assigned a k > 1, at a particular iteration, are said to be in the
model, while those with k ¼ 1 are said to be out of the model.

On block exit, and prior to any further sampling for any other effects or blocks,
the errors e are updated via:

e e� V 0bðglþ1b � glbÞ
where glþ1b represents the updated block effect after n inner-cycles of the above
Gibbs sampler and glb represents the block effect prior to updating. After all blocks
are processed once, and at the end of outer iteration l, the variances σ2g and σ2e get
updated from scaled inverse Chi-square distributions as explained below.

Gibbs sampling of the fixed effects u. Let f 2 f1; � � � ; nFg represent a fixed effect
from nF effects and let l 2 f1; � � � ; nlg represent the iteration number and nl the
number of iterations. Set: e0 ¼ y, u0 ¼ 0, and σ2e ¼ σ2t � ð1� h2t Þ. Then at each

iteration the fixed effects were sampled by: 8f : ulþ1f � N
X0f Wel þ X0f WXf u

l
f

X0f WXf
;

σ2e
X 0f WXf

� �
and elþ1 ¼ el � Xf ulþ1f � ulf

� �
. Note that Xf represents the f th column of X.

Gibbs sampling of the genetic effects a. Although not used in any of the analysis
presented here, the sampling of the polygenic genetic effects is considered only for
completeness and is recommended when the SNPs do not explain all the genetic
variance or when it is desired to fit all the SNPs with small effects as well as a small
number of SNPs with larger effects. In the former case one can use the A matrix
derived from the pedigree and in the latter case a GRM based on all the SNPs38

After estimates for g are made the genetic effects a are updated. Z is
accompanied by a genomic relationship matrix often extracted from the pedigree
known as the A-matrix or a GRM, both of which are used to account for genetic
relationships not accounted for by the SNPs.

Let a0 ¼ 0, λ ¼ σ2e=σ
2
a , Then at each iterationland

8i : alþ1i � N
Z0Weð Þi � A�1λað Þi
Z0WZ þ A�1λð Þii þ ali;

σ2e
Z0WZ þ A�1λð Þii

� �
and elþ1 ¼ el � Zi a

lþ1
i � ali

� �
and λ ¼ σ2e=σ

2
a . Note the notation Hð Þi is used to represent the ith element of vector

H, while Hð Þii represents the ith diagonal element of matrix H. For the starting and
initialization, we partition σ2t � h2t using a 1:9 ratio between σ2a;t and σ2g;t
respectively to produce a starting value for σ2a;t . Hence, a0 ¼ 0, σ2a;t ¼ σ2t � h2t � 0:1
and σ2g;t ¼ σ2t � h2t � 0:9.

Sampling the variances. After each Gibbs iteration, and according to a sampling
schedule (see below) the variances were sampled using inverse scaled Chi-square

distributions via: σ2e �
∑
i
ðe2i WiiÞ

χ2ðnw�2Þ, σ
2
a � a0G�1a

χ2ðnr�2Þ and σ2g � nmg
0g

χ2 ðnm�2Þ. Where χ2ðxÞ is a
Chi-square distribution with x degrees of freedom; nw is the number of non-zero
weights and nr is the number of records associated with the specified trait, and nm
is the number of SNPs in the model for this iteration, see also26. That is,
nm ¼ ∑4

k¼2 βk . After which, all σ
2
k are recalculated as given above.

Scheduling sample. To ensure all model effects are sampled within the block scheme
the same number of times as the SNP effects, a sampling scheduling was set up for
scheduling the sampling of these extra effects and variances, by interlacing their
sampling within the outer cycles. The number of outer cycles (m) is determined
from m ¼ nL=n, where nL is the total number of samples to be drawn and
therefore, nL represents the Markov chain length. The rate of the extra sampling
events is determined by sr = max ðnMn2 ; 1Þ, where nM is the number of SNPs and sr is
the sampling rate, and to that end the block size ideally should be in the range
0 < n ≤

ffiffiffiffiffiffi
nM
p

. Then after every sr blocks are processed, the sampling of fixed and
pedigree effects and the sampling of the variance σ2e occurs, while the sampling of
the variance σ2a and the Dirichlet parameters must occur at the end of each outer
cycle because they require all SNP effects to be sampled first.

Multi-trait model and analysis. The multi-trait model for BayesR, was presented
by Kemper et al.24 but we will describe it briefly for completeness. The model for
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each trait is the same as described for the single trait case. That is using subscript t
to indicate trait yt ¼ Xut þ Vgt þ Zat þ et . It is assumed that the traits are
uncorrelated or decorrelated, by being replaced by their respective PCA compo-
nents, or Cholesky transformed traits24,39. However, the multi-trait model includes
an indicator variable J. When J= 0, the current SNP under consideration has zero
effect on all traits. However, if J= 1 then the SNP can be associated with one or
more traits, and in this case the SNP effect is sampled for each trait independently.
Therefore, there is a vector π for each trait which stores the probabilities that k= 1,
2, 3, or 4 for that trait. However, the interpretation of π is slightly different to the
single trait case because it is the probability conditional on J ¼ 1. In BayesR, when
a SNP is processed, first J is sampled based on all traits and if J ¼ 1 the effect on
each trait is sampled independently as in the single trait case.

The multi-trait model requires an additional parameter π� � Betaðα�Þ, for the
probability that J ¼ 1. For the current SNP J is sampled J ¼ 1 with probability p
and J ¼ 0 with probability 1� p where (using subscript t for traits and k for the
component of the mixture within each trait):

p ¼ 1

1þ e p �gjJ¼ 0ð Þ � p �gjJ ¼ 1ð Þð Þ

p �gjJ ¼ 0
� � ¼ log π�0

� �þ∑
t
log Lt;0
� �

p �gjJ ¼ 1
� � ¼ log π�1

� �þ∑
t
log ∑

k
Lt;k � πt;k

� �

Lt;k ¼
ffiffiffiffiffiffiffi
vt;k

p � e�0:5�vt;k��g2j;t

vt;k ¼
1

σ2kt þ σ2et

� �
where �g is the least square estimate of the effect as specified previously and �g2 is its
square. Lt;k is the likelihood for trait t of SNP j being sampled from distribution k.
If J ¼ 1, then the sampling of the effect of each trait was as described for the single
trait case and each trait was processed independently.

The probabilities that a SNP is in the model (π*) is sampled at the end of each
outer iteration using: π� � Betaðα� þ β�Þ. where α� ¼ f1; 1g and β� ¼ fβ�1 ; β�2g
where β�1 is the number of SNPs currently not in the model and β�2 is the number of
SNPs currently in the model. The initial values, for the first iteration were set to
π� ¼ f0:95; 0:05g.

Comparative analysis: BayesR3, EM-BayesR and GBLUP. The computational
efficiency of BayesR3 was compared to a GBLUP approach as well as the previously
published fast version of BayesR, referred to as EM-BayesR15. For each approach,
we ran the equivalent univariate models for three milk trait phenotypes using the
25,000-animal training set described above. The animals were genotyped for
717,463 SNP and 87,698 of those with minor allele frequency <0.005 were not
included in the analyses. The GBLUP approach was implemented using
MTG2 software27, and this requires the genomic relationship matrix (GRM) to be
pre-calculated prior to running GBLUP so we first calculated the GRM using
GCTA software40 invoking the multi-threading option.

The EM-BayesR approach was implemented as described in ref. 15 using in
house software written in C++. The EM part of the analysis completed either
when convergence of 1e-7 was reached or a maximum of 1500 iterations,
whichever came first. The BayesR part of the analysis was set to run for 4000
iterations. For both the EM-BayesR and the BayesR3, five MCMC chains were run
in parallel to check that the results had stabilised across chains. BayesR3 was run
for 40,000 iterations, with 20,000 as burn-in. The accuracy of prediction was
calculated as the correlation between the predicted and known phenotypes for each
of the three validation sets. The accuracy and bias were calculated for each chain
and then averaged.

The analyses for all three methods were run on a Linux High Performance
Computer cluster (described below) using Intel® Xeon® Platinum 8168 Processors
(2.70 GHz), each with 24 cores, 48 CPU, and 740 Gb memory.

BayesR3 software. The software is written in C++ using the Eigen (version 3.4.0)
C++ template library for linear algebra. It has been compiled for the Linux
platform using Intel’s compiler ICPC with the Eigen’s Intel MKL and openMP
library options turned on, and it has also been built for the Windows 10 platform
using Visual Studio Community (2022) edition of C++ version 17.1.6

Computing specifications. The Agriculture Victoria Biosciences Advanced Sci-
entific Computing platform (BASC) was used here. It is a Beowulf style cluster that
consists of 129 Nodes, with a total of 5832 cores, 103TiB of RAM and 1.5PiB of
local scratch disk. 2 × DDN GS14Ks, running Spectrum Scale, that provided 8PiB
capable of delivering an aggregate of 50 GB/s. A Full fat-tree network running at
100 Gb/s backbone and 25 Gb/s to each compute node. System software included:
OS: Centos Linux 7.6.1810, Resource Manager: SLURM 19.05.2, Software Build
System: EasyBuild 4.1.1, and Filesystem: IBM Spectrum Scale 5.0.3–3. Program

were run on a dual socket system with 2 × Xeon Platinum 8168 CPUs, with a total
of 48 cores and Hyperthreading disabled. 24 × DDR4-2666 ECC REG DIMM,
24 TB of local scratch space.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Requests for data sharing will only be considered for research purposes because the data
is owned by Australian dairy farmers. It was obtained through DataGene,
https://datagene.com.au/, an Organisation that is responsible for genetic evaluation of
dairy cattle in Australia Data used to generate the manuscript Figures are given in
Supplementary Data 2.xlsx.

Code availability
An R code version of BayesR3 is given in the Supplementary Software 1.zip together with
example genotype and phenotype data. An executable with usage and example data will
be made freely available for research purposes on request.
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