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Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system (CNS),
which affects mostly older adults. In recent years, the incidence of PD has been dramatically increasing with the aging
population expanding. Due to the lack of effective biomarkers, the accurate diagnosis and precise treatment of PD are
currently compromised. Notably, metabolites have been considered as the most direct reflection of the physiological
and pathological conditions in individuals and represent attractive candidates to provide deep insights into disease
phenotypes. By profiling the metabolites in biofluids (cerebrospinal fluid, blood, urine), feces and brain tissues,
metabolomics has become a powerful and promising tool to identify novel biomarkers and provide valuable insights
into the etiopathogenesis of neurological diseases. In this review, we will summarize the recent advancements of major
analytical platforms implemented in metabolomics studies, dedicated to the improvement and extension of
metabolome coverage for in-depth biological research. Based on the current metabolomics studies in both clinical
populations and experimental PD models, this review will present new findings in metabolomics biomarkers research
and abnormal metabolic pathways in PD, and will discuss the correlation between metabolomic changes and clinical
conditions of PD. A better understanding of the biological underpinning of PD pathogenesis might offer novel
diagnostic, prognostic, and therapeutic approaches to this devastating disease.
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Background
Parkinson’s disease (PD) is a progressive, multi-focal
neurodegenerative disorder, affecting approximately 1%
of people over the age of 60 [1, 2]. The diagnosis of PD
mainly relies on clinical symptoms, medical history, and
response to dopaminergic treatment, which results in a
high rate of misdiagnosis in the clinical practice of PD
[3, 4]. In addition, the clinical manifestations of PD pa-
tients usually lag behind the underlying pathological
changes in the brain, making the early diagnosis of PD a
great challenge [5]. Currently, the most commonly used
therapeutic strategy for PD, dopamine replacement ther-
apy, can only improve the clinical motor symptoms and

is incapable of slowing or halting disease progression.
Markedly, long-term medical treatment can lead to ser-
ious, irreversible motor complications, such as L-dopa
induced dyskinesia (LID) [6]. Although, a range of bio-
markers derived from clinical, neuroimaging, genetic,
and biochemical studies have been proposed [7–12],
sensitive, specific, and reliable biomarkers for PD remain
elusive. Deterioration of dopaminergic neurons within
the substantia nigra pars compacta and the accumula-
tion of intracytoplasmic inclusions known as Lewy Bod-
ies are hallmarks of the PD pathobiology [13]. Currently,
the proposed hypotheses for the pathogenesis of PD in-
clude protein misfolding and aggregation, mitochondrial
injury, oxidative stress and inflammation [14, 15]. How-
ever, since PD is a multifactorial disease, it is likely that
multiple mechanisms may contribute to its pathogenesis.
Despite decades of research, the underlying etiopatho-
genesis of PD is still not fully elucidated. Given the lack
of knowledge regarding the mechanisms that regulate
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the onset and progression of the disease pathology, new
approaches dedicated to the discovery of specific bio-
markers that offer more accurate diagnosis, and better
monitoring of PD progression and prognosis are in ur-
gent need. Furthermore, the identification of reliable tar-
gets might lead to the development of novel drugs,
which could reverse the neurodegeneration and progres-
sion of PD.
Metabolomics is an emerging technique that aims to in-

vestigate the global changes of numerous metabolites
within a given sample, followed by deep data mining and
bioinformatic analysis [16, 17] (Fig. 1). These metabolites
are not only endogenous, but are also derived from the
metabolism of pharmaceuticals, environmental chemicals,
and the co-metabolism between host and gut microbiota
[17]. Minor changes of endogenous and exogenous factors
can be reflected at the level of metabolites; thus, the study
of metabolomics has immense potential to link the gen-
etic, environmental, and physiological elements to specific
pathological states [18]. In the past decades, metabolomics
has become a powerful tool for investigating metabolic
processes, identifying potential biomarkers and unraveling
metabolic reprogramming in various diseases [5, 19–21].
Advancements and achievements in both biological sam-
ple preparation and instrumental techniques have made
the high-throughput analysis of a broad range of metabo-
lites possible, stimulating a great interest regarding its po-
tential application in PD research.
In this review, we summarized major improvements in

analytical platforms and recent advancements in meta-
bolomics studies, and discussed the advantage and
limitation of each methodology. Then, we reviewed

applications of metabolomics in PD research, and dis-
cussed the major metabolic findings in the metabolome
of cerebrospinal fluid (CSF), blood, urine, feces and
brain tissue in clinical populations as well as in experi-
mental PD models. Finally, we outlined several abnormal
metabolic pathways in PD, which may improve our
knowledge on the molecular mechanisms mediating PD
development, which can help develop new therapeutic
strategies for this devastating disease.

Major analytical platforms in metabolomics research
Nuclear magnetic resonance (NMR) spectroscopy and mass
spectrometry (MS) are two predominant analytical platforms
used in metabolomics [22]. Particularly, chromatograph-MS
coupled systems including liquid chromatography-MS
(LC-MS) and gas chromatography-MS (GC-MS) are the
most popular techniques.

Nuclear magnetic resonance spectroscopy
NMR is a powerful tool commonly used for the identifica-
tion of metabolites. It offers various relevant and excellent
attributes such as simple sample preparation, short ana-
lysis time, robust signal, and absolute quantification of
metabolites [23]. However, the relative low sensitivity of
NMR makes it incapable of measuring low-abundance
metabolites. Due to the absence of a proper separation
system, thousands of metabolites signals are overlapped,
which make accurate structure identification a compli-
cated and difficult task. Nonetheless, recent technological
achievements have minimized these drawbacks and have
improved the sensitivity and resolution of NMR tech-
niques; the applications of highly sensitive cryoprobes and

Fig. 1 Analytical workflow of metabolomics studies. The typical metabolomics study including experimental design, sample collection, sample
preparation, data acquisition, statistical analysis and functional interpretation stages
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microprobes benefit to detect low-abundance metabo-
lites with the detection limit reduced by 3 ~ 5 times
[24, 25]. In addition, advanced NMR methods include
two-dimensional (2D) NMR techniques, such as HSQC
and TOCSY as well as hyphenated LC-MS-NMR, which
have made great progress in recent years, improving both
spectral resolution and metabolite identification capabil-
ities [26, 27].

Gas chromatography-mass spectrometry
GC-MS has been extensively used in metabolomics, par-
ticularly given its high separation power and reliable
structure annotation capacity [28]. GC can be coupled
to diverse types of mass analyzers, such as single quad-
rupole (Q), triple quadrupole (QqQ), ion trap (IT), and
time of flight (TOF). Recently, the newly developed GC/
Q-Orbitrap MS system has been shown to greatly im-
prove the ability to identify unknown metabolites, due to
its higher sensitivity, resolution, and mass accuracy [29].
In addition, chromatography separation techniques have
been also improved. By combining two orthogonal col-
umns, 2D GC yielded a multiplicative increase in peak
capacity [30].
GC-MS is mainly used to analyze volatile (i.e., natur-

ally volatile and made volatile by derivatization) and
thermally stable metabolites. Among a multitude of
chemical derivatization methods, a two-step process that
includes oximation followed by trimethylsilylation, pro-
vides a broad coverage of metabolites and is currently
the most commonly used approach [31]. The metabolites
detected by GC-MS are mainly associated with tricarb-
oxylic acid (TCA) cycle, glycolysis, urea cycle, amino acid
metabolism, and fatty acid metabolism, among others.
Recently, a group of fast and sensitive GC-MS-based
methods have been developed for the quantification of
short-chain and medium-chain fatty acids, and proved to
be effective tools for exploring the effects of host-gut
microbiota [32, 33]. GC-MS has been also used to explore
the dysregulation of neurotransmitter, hormones, and pur-
ine metabolism in different neurological diseases [34, 35].

Liquid chromatography-mass spectrometry
LC-MS is a widely used analytical platform in metabolo-
mics research. Reverse-phase liquid chromatography
(RPLC) and hydrophilic interaction liquid chromatog-
raphy (HILIC) are two major chromatographic separ-
ation techniques [36], which provide complementary
metabolic information [37]. Recently, 2D and multidi-
mensional LC have emerged as powerful analytical tech-
niques that provide higher peak capacity and better
resolution by combining two or more columns with or-
thogonal characteristics [36]. The newly established
2D-LC-MS method enables the simultaneous analysis of
metabolome and lipidome in one single run and is

viewed as an efficient tool for large-scale metabolomics
studies with a limited amount of samples [38].
Untargeted and targeted analyses are two traditional

strategies for metabolomics studies [39]. Untargeted
metabolomics has the best metabolites coverage, how-
ever it holds poor reproducibility and limited sensitivity
for low-abundance metabolites [40]. Targeted metabolo-
mics has been regarded as the gold standard for metab-
olite quantification due to its high sensitivity, broad
dynamic range, and reliable quantification accuracy, al-
though it covers limited pre-known metabolic information
[41]. Dynamic multiple reaction monitoring (MRM)-based
pseudo-targeted metabolomics quantification and parallel
reaction monitoring (PRM)-based larger-scale targeted
metabolomics quantification, are two newly emerged
strategies, both of which can measure a large number of
metabolites with reliable quantitative arrays and are now
proved to be powerful tools for metabolomics studies [42].
Although all of these techniques enable simultaneous

identification and quantitation of multitudinous metabo-
lites coexisting in one single sample, none of them are
able to cover the entire metabolome yet. Nevertheless,
the combination of multiple analytical platforms can
contribute to an improved metabolic coverage.

Metabolomics studies in patients with PD
Initially, traditional targeted approaches were mainly im-
plemented in the evaluation of a few selected metabo-
lites of interest, including catecholamines, amino acids,
purines and urate [43–45]. Until the last decade, untar-
geted metabolomics has been applied to PD research,
counting on its enormous potential for the identification
of novel biomarkers. Most of these studies are based on
CSF and blood analysis, although some studies have ex-
amined other biological samples such as urine, feces or
brain tissue. In the following section, we will review pri-
mary metabolomics-based findings in the metabolome
of different sample matrices obtained from PD patients.

Cerebrospinal fluid metabolome
CSF composition abnormalities are directly related to
pathological changes in the brain, making CSF one of
the preferred samples for neuropathological studies.
Given the marked depletion of the nigrostriatal dopa-
minergic neurotransmission in PD patients, measure-
ments of dopamine levels and its metabolites may
provide a path to the discovery of a reliable trait bio-
marker [43]. Using the LC- electrochemistry array
(LCECA) based targeted approach, significant reduction
of catecholamines including homovanillic acid [46]
(HVA), dihydroxyphenylacetic acid (DOPAC), L-dopa,
and dihydroxyphenylglycol has been reported in PD
[43]. Among others, DOPAC levels showed high accur-
acy in distinguishing PD (including early onset) from

Shao and Le Molecular Neurodegeneration            (2019) 14:3 Page 3 of 12



controls. However, low levels of DOPAC are not specific
for PD, and a marked reduction of catechols has been
also observed in patients with other synucleinopathies
like pure autonomic failure and multiple system atrophy
(MSA) [43].
Other metabolites of interest in the CSF of PD are pu-

rines. An exploratory study investigating the levels of
xanthine and HVA in PD versus controls using the
LCECA platform, found that the ratio of xanthine to
HVA in CSF permitted an excellent distinction of PD
from controls [47]. In addition, statistically significant
high-levels of 8-hydroxy-2-deoxyguanosine (8-OHdG)
and 8-hydroxyguanosine (8-OHG) were observed in PD,
when compared to controls in two independent studies
[48, 49], indicating that oxidative stress markers could
be potentially useful in the diagnosis of PD.
The wide metabolites coverage and high-throughput

analysis of untargeted metabolomics make it an effective
tool for the discovery of novel PD biomarkers. Using
GC-TOF/MS-based metabolomics, significant reduc-
tions in tryptophan, creatinine, and 3-hydroxyisovalerate
levels were reported in PD compared to controls [50].
Another study based on NMR metabolomics further
identified a panel of metabolites (alanine, creatinine,
dimethylamine, glucose, lactate, mannose, phenylalanine,
3-hydroxyisobutyric acid and 3-hydroxyisovaleric acid)
that exhibited a good capacity to discriminate PD from
controls [51]. Recently, using untargeted MS-driven ap-
proach, specific metabolic signatures of PD in early stages
of the disease were uncovered [5, 52]. These PD-specific
metabolites have been shown to be involved in antioxida-
tive stress responses, and metabolic pathways of sphingo-
lipid, glycerophospholipid and amino acid, which may aid
in the accurate diagnosis of early-stage PD [5, 52]. It was
noteworthy that Stoessel et al. demonstrated a relatively
high overlapping of metabolome in CSF and blood, imply-
ing a joint analysis of multiple biofluids collected from the
same subject will be more valuable in reflecting the overall
metabolism [52].

Blood metabolome
Compared with CSF metabolomics research, a larger
number of untargeted metabolomics-based studies have
been reported using plasma/serum samples, possibly due
to its minimally invasive nature and relatively easy avail-
ability of blood samples. We summarized the major
findings of blood metabolome studies of PD published
over the past decade (Table 1). In general, case-control
studies accounted for the majority, except for several
studies including subgroups of PD such as LRRK2 muta-
tion [16] and patients with or without LID [6]. The dif-
ferential metabolites between PD and matched controls
can be classified as amino acids, fatty acids, acylcarni-
tines, lipids, purines, organic acids and sugars, which are

parts of branched chain amino acids (BCAAs) metabol-
ism, tryptophan metabolism, lipid metabolism, energy
metabolism, purine metabolism, and oxidative stress/
redox homeostasis pathways. Recently, a group of
studies consistently demonstrated the dysregulation of
kynurenine pathway in PD [19, 53, 54]. The alterations
of kynurenine metabolites in PD not only provide poten-
tial biomarker candidates and novel avenues for investi-
gating PD pathogenesis, but also offer a new therapeutic
strategy for PD with the supplement of kynurenic acid
or the reduction of quinolinic acid using kynurenine
3-monooxygenase inhibitors [19].
Plenty of biological, epidemiological and clinical stud-

ies have convergently suggested urate as a promising
biomarker of the risk, diagnosis and prognosis of PD.
Significantly reduced level of urate in both CSF and
blood of PD was reported compared to controls [45, 55],
and a high level of urate may indicate a lower risk,
slower progress of the disease [55–57]. As an important
endogenous antioxidant [55], increased level of urate
may contribute to fight against oxidative stress in the
pathogenesis of PD [58]. Detailed elaborations of the
correlation between urate and PD have been reviewed
elsewhere [55, 59].
As previously mentioned, PD is a multifactorial disease

with compelling epidemiological data that suggest a
probable link between traumatic brain injury (TBI) and
PD; however, such association is still controversial due
to the lack of mechanistic basis [60]. Based on untar-
geted and targeted LC-MS approaches, a statistically sig-
nificant alteration of glutamate level was identified in
blood samples from both TBI and PD, implying a pos-
sible “excitotoxic” link between TBI and PD [61]. Add-
itionally, the overlap of clinical symptoms between PD
and other neurodegenerative diseases, such as primary
progressive multiple sclerosis (PPMS), progressive supra-
nuclear palsy (PAP) and MSA often lead to high rates of
misdiagnosis for PD [3]. Recently, two studies using
NMR and LC-MS based metabolomics profiled the
blood metabolome of patients with PD, PPMS, PAP, and
MSA versus controls, showing that BCAAs were signifi-
cantly increased in PD, PAP, and MSA compared to con-
trols [3], and a set of 20 metabolites involved in
glycerophospholipid and linoleic acid pathways were
specifically altered in PPMS which were distinguishable
from PD [48].
Metabolomics can also reveal biomolecular and path-

way changes implicated in disease onset and progression.
To this end, it has been reported that the level of
N8-acetyl spermidine may be a predictive marker for a
fast motor progression disease phenotype, which may
provide a novel strategy for delaying or slowing down
the progression of PD [49]. Based on metabolomics ap-
proaches, plasma metabolic profiles of serine, purine,
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fatty acid, polyamines, and metabolites associated with
tryptophan metabolism have presented a high correl-
ation with the progression of PD [6, 19, 53]. Addition-
ally, it has been shown that kynurenine metabolism is
also associated with the development of LID, and in-
creased plasma ratio of 3-hydroxykynurenine /kynurenic
acid may predict the possibility of LID [6, 19].

Urine metabolome
Given the easy availability and noninvasive sampling of
urine samples, they are ideal sources of biomarkers for
clinical analysis. Incipiently, research studies were fo-
cused on evaluating oxidative stress markers by targeted
analysis strategies [62–64]. Under the attack of reactive
oxidative species, the bases in DNA can be hydroxylated
and oxidized; 8-OHdG and 8-OHG are two of the most

prominent products of DNA impairment [65]. The
resulting 8-OHdG can be excreted into urine without
further metabolism, which is regarded as an indicator of
oxidative DNA damage [63]. Previous studies demon-
strated elevation of 8-OHdG level in the substantia nigra
of the brain [66, 67] as well as in the serum and CSF of
PD [68]. Based on targeted analysis, it was demonstrated
that level of 8-OHdG in the urine alone or the ratio of
8-OHdG/2′-deoxyguanosine can significantly distinguish
PD from the controls [63]. In addition, level of urinary
8-OHdG showed a progressive increase with PD ad-
vances, suggesting that it may be an useful biomarker to
track disease progression [62]. Moreover, utilizing
non-targeted metabolomic profiling method, biopyrrin
was identified as a new marker for sporadic PD [69].
Biopyrrin, the oxidative product of bilirubin, has been

Table 1 Overview of metabolomic studies in the blood metabolome of PD clinical populations

Analytical platform Subjects Differential metabolites/metabolic pathways Statistics Validation Reference

HILIC-TOF/MS Early PD (n = 80)
Controls (n = 76)

Ethanolamine, N-Lauroylglycine,
Alpha-N-Phenylacetyl-L-glutamine,
Sarcosine, Glu-Ile, 1,3-Dimethyluracil,
Arg-Ala, PCs, SMs, Lyso-PAF C-16, etc.

ROC
(AUC = 0.80)

No Stoessel D et al. [52]

CE-TOF/MS
LC-TOOF/MS

PD (n = 109)
Controls (n = 32)

Long chain acylcarnitines ROC
(AUC = 0.895)

Yes Saiki S et al. [102]

LC-MS PD (LID, n = 10,
non-LID, n = 8,
unmedicated, n = 8)
Controls (n = 14)

3-hydroxykynurenine/kynurenic acid
Ratio

t-test, p < 0.05 No Havelund JF et al. [6]

Nontargeted MS-based
metabolomics

Early PD (n = 41)
Controls (n = 40)

Hexanoylglutamine, Decanoylcarnitine,
Myristoleoylcarnitine, Octanoylcarnitine,
Oleoylcarnitine, Palmitoleoylcarnitine,
Suberoylcarnitine, Octadecanedioate,
3-hydroxysebacate

ROC
(AUC = 0.857)

No Burté F et al. [111]

UPLC-MS/MS
GC-MS

PD (n = 35)
Controls (n = 15)

Lower levels of tryptophan, caffeine, bilirubin
and ergothioneine; higher levels of levodopa
metabolites and biliverdin

random forest
classification

No Hatano T et al. [112]

NMR PD (n = 43)
Controls (n = 37)

Myoinositol, sorbitol, citrate, acetate, succinate
and pyruvate

PLS-DA No Ahmed SS et al. [113]

LCECA LRRK2 PD (n = 12)
idiopathic PD (n = 41)
Controls (n = 46)

Purine metabolism (uric acid, hypoxanthine,
xanthine, etc.)

PLS-DA No Johansen KK et al.
[16]

LCECA PD (n = 66)
Controls (n = 25)

8-OHdG, glutathione, uric acid PLS-DA No Bogdanov M et al.
[17]

GC-TOFMS PD (n = 20)
Controls (n = 20)

Amino acids (pyroglutamate and
2-oxoisocaproate), C16-C18 saturated and
unsaturated fatty acids

OPLS-DA No Trupp M et al. [50]

LC-MS
GC-MS

PD (n = 82)
RLS (n = 95)
Controls (n = 1272)

Long-chain (polyunsaturated) fatty acids,
inositol metabolites

No Kassubek J et al. [101]

UPLC-TOF/MS PD (cohort 1, n = 82,
cohort 2, n = 118)
Controls (cohort 1, n = 82,
cohort 2, n = 37)
Huntington’s disease
(cohort2, n = 22)

Kynurenic acid, quinolinic acid, ratio of
kynurenic acid /kynurenine, ratio of
quinolinic acid/ kynurenic acid

OPLS-DA Yes Chang KH et al. [19]

LC-QE/MS Slow. PD (n = 41)
Rapid. PD (n = 39)
Controls (n = 20)

N8-acetyl spermidine OPLS-DA No Roede JR et al. [49]
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regarded as the indicator of increased oxidative stress,
showed high predictable ability for different stages of PD
(AUC = 0.95 ~ 0.98) [69].
The urine, which contains abundant metabolites, has

seldom been investigated by untargeted metabolomics in
PD research. Using LC-MS and a random forest model,
a recent study profiled urinary metabolites in sporadic
PD versus controls and identified a panel of metabolites
that yielded with > 90% accuracy in distinguishing PD
from controls [70]. Based on GC-MS and LC-MS tech-
nologies, another study of the same group identified 18
metabolites that showed progressive increases with the
development of PD [71]. Both of these studies indicate
that the dysregulation of steroidogenesis, glycine deriv-
ation, tryptophan and phenylalanine metabolic pathways
are related to the development and progression of PD
[71]. Recently, an assay combining UPLC-MS/MS with
in situ selective derivatization was developed to detect a
wide range of neurochemicals in urine samples, present-
ing a promising analytical platform to screen potential
biomarkers that can aid in the diagnostic accuracy and
tracking of PD prognosis [72].

Fecal metabolome
Recent investigations have highlighted the crucial role of
the gut microbiota in the development of neurodegener-
ative diseases including PD [73–75]. Fecal metabolome,
can provide information regarding the metabolic interac-
tions between host, diet, and gut microbes, presenting a
promising avenue to “fingerprint” the functional status
of the intestinal microbiota and explore links between
microbiome and host phenotypes [76]. Fecal metabolo-
mics has been widely used in both biomarker identifica-
tion and functional annotation for various diseases, such
as irritable bowel syndrome, nonalcoholic fatty liver dis-
ease, obesity, and autism [77–79]; however, this ap-
proach has been rarely used for the investigation of
neurodegenerative diseases. Recently, a reduction of
fecal short chain fatty acids (SCFAs) was identified in
PD, when compared to controls by GC-based quantita-
tive analysis [80]. Since SCFAs can regulate the function
of the enteric nervous system and promote gastrointes-
tinal motility, a reduction of SCFAs might contribute to
the development of gastrointestinal motility disorders in
PD [80, 81].

Tissue metabolome
Human brain metabolomics studies are mainly based on
NMR spectroscopy techniques, which enable non-destructive
detection of the chemical composition of a specific
area in a living body. In vivo PD brain metabolomics
based on NMR spectroscopy has been reviewed else-
where [82]. In summary, these studies are mainly focused
on the mitochondrial dysfunctions observed in PD

patients by tracing the levels of creatine, phosphocreatine,
ATP, high-energy phosphates, phospholipids, and lactate
[82–85], and indicate impaired mitochondrial oxidative
phosphorylation events in the brain of PD patients, even
in the absence of a clinical phenotype. Moreover, the
mitochondrial machinery in patients carrying a PINK1
mutation, was more susceptible to these events than idio-
pathic PD [86]. Notably, the combined evaluation of
N-acetylaspartate/creatine levels from both the pontine
base and putamen in brain tissues may offer effective strat-
egies to distinguish MSA with predominant Parkinsonism
from PD, as reported by a number of studies [82, 87, 88].
By implementing a LC-MS-based lipidomics technique, a
recent study identified abnormal levels of diacylglycerols
in the frontal cortex of PD patients who presented no neo-
cortical pathology [89]. These data suggest that the eleva-
tion of plasma levels of diacylglycerols in PD may be a
promising marker for neurodegenerative processes that
ought to be further investigated.

Metabolomics studies in PD models
Although various types of animal models have been
established for PD research, only a few of them have
been used for metabolomics studies. We summarized
these studies in Table 2, the genetic models used in-
clude α-synuclein (α-Syn) knockout, α-Syn transgenic,
α-Syn overexpressed [90–92] and Park2 knockout ani-
mal models [93], while toxicological models are mainly
induced by paraquat, rotenone, 1-methyl-4-phenyl-1,
2,3,6-tetrahydropyridine (MPTP), methyl-4-phenylpy
ridinium, and 6-hydroxydopamine (6-OHDA) [94–96].
In these animal studies, the metabolic profiles identified
originated primarily from brain tissues (whole brain or
specific areas), which better reflect the patho-physiological
changes.
Recently, a mouse model of prodromal PD was estab-

lished via unilateral injection of preformed α-Syn fibrils
in the olfactory bulb [97]. Contrary to earlier reports,
both brain tissue and serum were collected and sub-
jected to metabolomics analysis for the development of
early diagnostic markers of PD. The pathway enrichment
of the brain data suggested a dysregulation of taurine
and hypotaurine metabolism, bile acid biosynthesis, gly-
cine, serine and threonine metabolism and the TCA
cycle were in correlation with the onset and progression
of α-Syn pathology, while the results from the serum
highlighted only phospholipid metabolism alterations in
α-Syn PFF-injected mice that may provide evidence for
the possible interaction between lipid metabolism and
α-Syn aggregation [97].
Consistently, studies from three different groups, al-

though, based on different animal models, showed a rela-
tively limited impact of the genotype on metabolites levels,
when compared to aging or toxic exposure [90, 91, 93]. It
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was found that lipidomic profiles were age-dependent in
the wild type-mice, and the α-Syn genotype-dependent
phospholipid differences indicated a strong interaction of
age and α-Syn gene dosage [90]. Based on metabolomics
and mathematical model, Poliquin et al. investigated and
compared the energy deregulation in the cerebral tissue of
genetic (Park2 knockout) and CCCP-induced models of
PD, and the findings suggested that genetic perturbations
are not sufficient to lead to significant metabolic changes
compared to toxin exposure [93].
Toxicological models can, to some extent, simulate the

roles of oxidative stress, mitochondrial dysfunction, and
dopamine metabolism associated with the pathogenesis
of PD, which may contribute to α-Syn misfolding and
aggregation [98]. A generally profound reduction of lipid
species was found in brain tissues of PD models induced
by rotenone and 6-OHDA, except for a few lipids that
showed elevated levels, such as mono-oxygenated cardi-
olipins (CLs) [99] and several lysophosphatidylcholines
[100], all pointing to an increased oxidative damage, in-
sufficient energy and mitochondrial dysfunction in PD.
In contrast, the most striking metabolic alterations in-
duced by paraquat treatment were the selective
up-regulation of the pentose phosphate pathway (PPP)
and the down-regulation of the glycolysis and the TCA
cycle [92, 98]. Powers et al. indicated that the alterations
in energy metabolism were not bystanders to energy fail-
ure, but also played important roles in dopaminergic cell

death via gene (α-Syn)-environment (paraquat) interac-
tions [92].
Metabolic alteration differences among the various

genetic/toxic-induced models highlight the multifactorial
nature of PD. Future longitudinal metabolic profiling
studies based on representative animal models will be
able to contribute to a better understanding of the onset
and development of the disease.

Dysregulation of metabolic pathways in PD
PD exhibits high heterogeneity, having multiple path-
ways and molecular mechanisms mediating its molecular
pathogenesis. Based on metabolomic findings in clinical
and experimental models, the metabolic pathways that
are majorly perturbed in PD are related to the metabol-
ism of lipids, energy (TCA cycle, glycolysis, PPP, BCAA,
acylcarnitines), fatty acids, bile acids, polyamine, and
amino acids (Fig. 2) [49, 50, 90, 98, 99, 101, 102].
Markedly, a significant reduction of catecholamine

metabolite level has been shown for both PD patients
and PD animal models, due to the marked depletion of
nigrostriatal dopaminergic neurons in PD pathology.
The treatment with the different dopaminergic drugs
available could selectively increase the levels of these
metabolites [103]. In addition, L-DOPA treatment has
been also shown to have a profound impact on aromatic
amino acid metabolic pathways. Notably, kynurenine
metabolism, a pathway of tryptophan metabolism, may

Table 2 Overview of metabolomic studies in experimental models of PD

Analytical platform Models Differential metabolites/metabolic pathways Reference

GC-MS PQ-exposed Drosophila Amino acids, fatty acids, carbohydrates, etc. Shukla AK et al. [21]

NMR, DI-ESI-MS PQ-exposed dopaminergic cell Pentose phosphate pathway (PPP),
glycolysis, TCA cycle

Lei S et al. [98]

NMR MPTP-induced PD goldfish BCAAs, alanine, myo-inositol, fatty acids, taurine,
creatinine, N-acetylaspartate, (phospho)creatine,
phosphatidylcholines, cholesterols,

Lu Z et al. [114]

LC-MS Rotenone-treated rats Oxidizable PUFA-containing cardiolipin Tyurina YY et al. [99]

HPLC-ESI-MS/MS 6-OHDA-induced rats Phosphatidylcholine and lysophosphotidylcholine
lipid

Farmer K et al. [100]

MS-based lipidomics α-Syn KO, α-Syn TG mice Age-related phospholipids Rappley I et al. [90]

NMR, LC-MS Mouse model of prodromal PD Taurine and hypotaurine metabolism, bile acid
biosynthesis, glycine, serine, and threonine
metabolism, and citric acid cycle

Graham SF et al. [97]

NMR, DIESI-MS PQ -induced dopaminergic N27 cells Glucose metabolism Anandhan A et al. [92]

NMR 6-OHDA-induced rats GABA, Glu, Gln, lactate, N-acetylaspartate,
creatine, taurine, and myo-inositol.

Zheng H et al. [115]

UPLC-QTOF-MS MPTP-induced PD mice Tyrosine metabolism, mitochondrial beta-oxidation
of long chain saturated fatty acids, fatty acid
metabolism, methionine metabolism, and
sphingolipid metabolism

Li XZ et al. [116]

UPLC-MS α-Syn A53T TG mice Alanine metabolism, redox and acetyl-CoA
biosynthesis pathways

Chen X et la. [91]

LC-MS Park2 kO mice, CCCP-treated mice Energy metabolism Poliquin PO et al. [93]
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have a strong link with PD progression and the risk of
LID development [6, 53].
Moreover, accumulating evidence have corroborated

that α-Syn plays an important role in the pathogenesis
of PD via lipid binding, regulating the composition of
membrane, modulating fatty acid metabolism and influ-
encing the release of the neurotransmitter by interacting
with specific lipids [90, 104]. The general reduction of
lipids levels, such as polyunsaturated fatty acids (PUFAs)
and phospholipids in PD models, presumably due to an
excess of oxidative stress, given that membrane phos-
pholipids are major targets for free radicals. The alter-
ations of PUFA-CLs and oxidized CLs not only point to
mitochondrial dysfunction, but also indicate possible
mitophagy and apoptosis processes in the development
of PD [99].
In normal brain function, threonine and glycine can

be converted into creatine, which in turn provides phos-
phate groups for ADP to produce ATP [97]. TCA cycle

is an important pathway in the production of ATP
through the oxidative phosphorylation of acetyl-CoA in
the mitochondrial. With the beginning of α-Syn aggrega-
tion during the onset of the neurodegenerative processes
in PD, the metabolism of glycine, serine, and threonine,
as well as the TCA cycle, appear to be downregulated
[97], which indicate an energy insufficient and mito-
chondrial dysfunction in PD. In paraquat-induced
models, central carbon metabolism has been shown to
contribute to dopaminergic cell death by regulating the
effect of α-Syn on paraquat toxicity, and inhibiting the
metabolism and transport of glucose and PPP can re-
duce paraquat-induced oxidative stress and cell death
[92, 98, 105].
Furthermore, alteration of bile acids has been found in

both PD patients and PD animal models [97, 102]. Bile
acids are produced in the liver from cholesterol and then
metabolized by gut microbiota-derived enzymes into
secondary bile acids such as ursodeoxycholic acid or

Fig. 2 Overview of the metabolic pathway dysregulations in PD. The alterations of some metabolites may be different (upregulation or downregulation)
in different sample matrices of drug-naïve patients, L-dopa treated patients or different PD models, thus the changes of these metabolites are not shown
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tauroursodeoxycholic acid [106]. In addition, it has been
demonstrated that tauroursodeoxycholic acid can rescue
mitochondrial function and prevent MPTP-induced
dopaminergic cell death in different animal models of
PD [107].
Currently, the drugs designed to treat or prevent PD

are focused on the prevention or elimination of α-Syn
aggregation; however, no successful cases have been re-
ported yet. In contrast, an alternative and more effective
strategy may be the development of specific inhibitors/
activators designed to directly target metabolic processes
[108, 109]. Importantly, metabolomics studies can pro-
vide comprehensive biochemical underpinnings to un-
ravel the molecular mechanisms of PD pathogenesis,
offering biomarkers that reflect pathological processes
and may substantially improve drug development strat-
egies against PD.

Conclusions
Merits and caveats of metabolomics for PD research
Metabolic changes are the direct results of alterations in
protein and enzyme activities. Therefore, metabolomics
may offer valuable information on PD-related physio-
logical process, molecular interactions and metabolic
pathways. By providing an overall “fingerprint” of metab-
olite alterations in multiple biofluids and tissues, meta-
bolomics has provided a myriad of potential biomarkers
and therapeutic targets. Nevertheless, metabolomics is
still in its infancy, particularly when it comes to PD re-
search. The identification of the unknown metabolites is
one of the major challenges. Although great progress
has been made during the last decade, the public and
commercial databases of metabolites are still limited and
incomplete, the current metabolic findings may be only
the “tip of the iceberg” of the whole picture of PD eti-
ology. Another important issue is the heterogeneous na-
ture of the individuals. Differences in genotype, medical
history, disease progression, lifestyle and diet, etc. of the
subjects are likely to affect their metabolome, which may
obscure the direct influence from the disease. Besides,
the reported works usually used different analytical tech-
niques and different sample preparation methods based
on different designs, thus it is not surprised to obtain
controversial conclusions.

Future perspectives
Confirmatory studies based on optimized experimental
protocols are urgently needed. The potential biomarkers
and metabolic pathways revealed in the present studies
require to be validated by independent large-scale popu-
lations. As highlighted above, further stratification of PD
may allow the identification of specific targets among
the different subtypes of PD. Also, a joint analysis of
multiple biofluids and tissues using complementary

analytical platforms should be employed in parallel to
reveal the “bigger picture” for an in-depth biological in-
vestigation. It is noteworthy that other related diseases
that have similar clinical symptoms with PD should be
included in future studies. Identifying metabolites that
are specifically changed in PD compared with controls
and other related diseases will be of great significance
for clinical differential diagnosis. In addition, accumulat-
ing evidences suggest that microbiome dysbiosis and
changes in microbial metabolite levels are strongly asso-
ciated with the pathogenesis of PD [74, 75]. Several me-
tabolites involved in the regulation of brain function
have been found in the gut, the concentrations of which
can be regulated by gut microbiota, further influencing
the function of neurons [110]. Given that metabolomics
has been shown to be a powerful tool to fingerprint
metabolic profiles in multiple matrices, the combination
of metabolomics with other techniques, such as metage-
nomics, proteomics, and transcriptomics may lead to a
better understanding of host–microbe interactions and
yield potential novel biomarkers for PD diagnosis and
therapeutic targets for effective treatment options.
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