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Pathogen Identification Direct 
From Polymicrobial Specimens 
Using Membrane Glycolipids
William E. Fondrie   1, Tao Liang2, Benjamin L. Oyler   3, Lisa M. Leung4,5, Robert K. Ernst4, 
Dudley K. Strickland1,6,7 & David R. Goodlett2

With the increased prevalence of multidrug-resistant Gram-negative bacteria, the use of colistin and 
other last-line antimicrobials is being revisited clinically. As a result, there has been an emergence of 
colistin-resistant bacterial species, including Acinetobacter baumannii and Klebsiella pneumoniae. The 
rapid identification of such pathogens is vitally important for the effective treatment of patients. We 
previously demonstrated that mass spectrometry of bacterial glycolipids has the capacity to identify 
and detect colistin resistance in a variety of bacterial species. In this study, we present a machine 
learning paradigm that is capable of identifying A. baumannii, K. pneumoniae and their colistin-resistant 
forms using a manually curated dataset of lipid mass spectra from 48 additional Gram-positive and 
-negative organisms. We demonstrate that these classifiers detect A. baumannii and K. pneumoniae in 
isolate and polymicrobial specimens, establishing a framework to translate glycolipid mass spectra into 
pathogen identifications.

The rapid identification and characterization of pathogens in an infection is critical to inform treatment deci-
sions and improve patient outcome. The detection of antimicrobial-resistant pathogens has become increasingly 
important due to the growing prevalence of antimicrobial-resistant isolates1. The current standard for pathogen 
identification and characterization in clinical laboratories incorporates morphological and biochemical methods, 
which are often slow to perform and yield incomplete diagnoses2. Matrix-assisted laser desorption/ionization 
time-of-flight mass spectrometry (MALDI-TOF MS) of protein fingerprints has gained popularity as the pre-
dominant method for pathogen identification with the FDA-approved implementations of the Bruker MALDI 
Biotyper and the bioMérieux VITEK MS systems3–6. Though robust and facile in comparison to the traditional 
methods, these MALDI-TOF MS platforms still suffer from the need for prior cell culture to obtain pure colo-
nies and cannot distinguish organisms in a polymicrobial infection or direct from biological samples, such as 
blood, urine, or wound effluent. Additionally, detection of antimicrobial resistance is currently unavailable on the 
FDA-approved platforms, though β-lactamase detection is implemented on the Biotyper research-only platform. 
In an effort to develop a complementary method to the protein-based MALDI-TOF MS strategies, we previously 
demonstrated the use of microbial membrane glycolipids as analytes for MALDI-TOF MS identification of path-
ogens, which extends a long line of work identifying bacteria by their respective lipid profiles7–10.

Microbial membranes are composed, in part, of complex glycolipids that are present in high abundance. In 
Gram-negative bacteria, the major glycolipid constituent of the outer membrane’s outer leaflet is lipopolysaccha-
ride (LPS)11. For E. coli, these glycolipids have been estimated at 106 copies per bacterium12. Previous studies have 
demonstrated diversity in the structure of LPS across bacterial species including the LPS membrane anchor com-
ponent, lipid A13. This LPS component comprises a diglucosamine backbone substituted with fatty acyl chains 
and terminal phosphate residues. The structural diversity of lipid A has been observed in the species-specific 
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composition of fatty acyl chains and phosphate modifications that result in unique mass spectral profiles13,14. 
Additionally, we and others have described lipid A modifications to the terminal phosphates that occur with 
antimicrobial resistance, which include phosphoethanolamine and aminoarabinose additions15–20. With analo-
gous membrane lipids present in Gram-positive bacterial membranes, such as lipoteichoic acid, and ubiquitous 
lipids like cardiolipin, high mass lipids are useful for the identification of virtually all bacterial species by mass 
spectrometry21.

Our previous work found that pathogens are distinguishable by MALDI-TOF MS of membrane glycolipids. 
This work generated a glycolipid mass spectral dataset containing 2068 mass spectra of intact molecular ions from 
50 microbial species7. One notable advantage of our glycolipid-based approach over the popular protein-based 
method is that culture can be circumvented and polymicrobial infections detected. In this study, we sought to 
utilize this published dataset to develop generalizable methods for bacterial species identification and detection 
of antimicrobial resistance through robust feature extraction and machine learning. Furthermore, we aimed to 
evaluate the potential of using glycolipid MALDI-TOF mass spectra to identify pathogens directly from polymi-
crobial infections in urine. These complex infections are often difficult to treat and characterize, and generally 
result in increased risk for the patient22–24.

We selected two prototypical organisms as targets for these tasks: Acinetobacter baumannii and Klebsiella 
pneumoniae. These pathogens account for a high incidence of hospital-acquired infections, resulting in increased 
morbidity in hospitalized patients, especially those who are immunocompromised. Furthermore, both are fre-
quently observed with multi-drug resistance phenotypes, thereby increasing reliance on the cationic antimicro-
bial peptide, colistin, as a last-line therapeutic. However, the prevalence of colistin resistance in these pathogens 
and others has grown over recent years, indicating a need to rapidly discriminate between colistin-susceptible 
and -resistant strains19,20. Using the glycolipid mass spectral dataset presented in Leung et al., we trained machine 
learning classifiers to identify A. baumannii and K. pneumoniae mass spectra from the library and detect profiles 
corresponding to colistin resistance with high confidence7. With these classifiers, we were then able to identify 
A. baumannii and K. pneumoniae from simulated polymicrobial glycolipid mass spectra and a small set of in 
vitro models representing polymicrobial urinary tract infections (UTIs). These results present a viable machine 
learning approach to microbial identification from glycolipid mass spectra and suggest that these will be useful 
for identification directly from polymicrobial samples.

Results
The dataset of isolate glycolipid mass spectra.  The intact glycolipid mass spectral dataset presented 
in Leung et al. served as the dataset for training machine learning classifiers to identify A. baumannii and K. 
pneumoniae mass spectra from the other microbial species and further discriminate colistin-resistant from colis-
tin-susceptible strains7. The mass spectra in the dataset were generated by MALDI-TOF MS analysis of glycolipid 
extracts from isolates grown in liquid culture, resulting in mass spectra of intact molecular ions. In total, this data-
set contains 2068 mass spectra from 50 unique microbial species (Fig. 1a). Included in this dataset were technical 

Figure 1.  The glycolipid library is used to train classifiers for A. baumannii and K. pneumoniae. (a) The number 
of mass spectra for top species contained in the isolate glycolipid mass spectral dataset. The colistin-resistant 
(blue) and colistin-susceptible (red) for A. baumannii and K. pneumoniae mass spectra were selected as targets 
for machine learning due to the considerable number of mass spectra for each. (b) The workflow for classifier 
training and evaluation from the isolate glycolipid dataset is outlined.
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and biological replicates from one or more strain of each microbial species. Importantly for our classifiers, a large 
proportion of these mass spectra were generated from low passage clinical isolates from A. baumannii (647 mass 
spectra from 213 isolates) and K. pneumoniae (317 mass spectra from 60 isolates). This dataset encompasses 
various levels of biological and technical variability for the library species and provided a suitable training set for 
classifiers targeting these A. baumannii and K. pneumoniae.

Development of a machine learning paradigm for bacterial identification from glycolipid mass 
spectra.  Using the Leung et al. glycolipid mass spectral dataset, we sought to develop methods for training 
classifiers that could be extended for new species and would be generalizable to the task of identifying organisms 
from polymicrobial mixtures in a single mass spectrum (Fig. 1b)7. Initially, the library was partitioned into a ran-
domized training set (60% of the mass spectra) and a test set (40% of the mass spectra), independently for the A. 
baumannii and K. pneumoniae classifiers. The training set underwent automated feature selection for each target 
organism, which is detailed below. The extracted features were then used to train a gradient boosted tree model, 
utilizing the XGBoost algorithm for each target organism25. For A. baumannii and K. pneumoniae, classifiers were 
trained to identify mass spectra containing colistin-resistant isolates, colistin-susceptible isolates, or no isolate 
of the target species. In addition to these XGBoost classifiers, baseline classifiers were created using the intensity 
from single features corresponding to the most prominent species-specific and resistance-associated ions for A. 
baumannii (m/z 1910 for species and m/z 2033 for resistance) and K. pneumoniae (m/z 1840 for species and m/z 
1971 for resistance)7,15–17. These Single Feature baseline classifiers provided a baseline to define the performance 
of the machine learning strategy. The performances of all resulting models were then evaluated using the test set; 
investigating metrics such as accuracy, sensitivity, and specificity, in addition to the receiver operating character-
istic (ROC) and precision-recall (PR) curves.

Feature engineering and automated feature extraction.  For feature engineering, we chose an 
approach that would be extendable from the isolate mass spectra in the dataset to mass spectra containing mul-
tiple species, representing a polymicrobial infection. To this end, the top 50 average most intense ions from the 
target organisms were identified from mass spectra in the training set and selected as feature ions for extraction 
(Fig. 2a). Smoothing is required due to the variable mass accuracy and resolution of these mass spectra, result-
ing in feature ions correlated to the average m/z of each molecular ion. To extract these features from each mass 
spectrum in the dataset, the local maximum intensity within a 3 m/z window centered on each feature ion was 
extracted (Fig. 2a, inset). As a result, these features are centered at m/z values greater than the monoisotopic mass 
of the molecular ion and may be further skewed by additional ions in the region. The extracted features were 
then normalized relative to the intensity of the most intense feature. This simple extraction method resulted in 

Figure 2.  Feature engineering extracts known ions associated with colistin resistance. (a) Example mass spectra 
for colistin-susceptible (top) and colistin-resistant A. baumannii (bottom) are shown. The blue lines beneath 
each spectrum indicate the median m/z of the features chosen for the A. baumannii classifier. The inset panels 
show the ±1.5 m/z feature extraction window for a resistance-associated ion with a median m/z 2036.4575 
(blue dashed line). The local maximum intensity is indicated with an asterisk. (b) Specific lipid A structures are 
associated with colistin resistance in A. baumannii (m/z 2033) and K. pneumoniae (m/z 1955 and m/z 1971). 
(c) To verify feature extraction performed as expected, the distributions of features indicative of resistance-
associated ions were compared between colistin-resistant and -susceptible mass spectra for each species. The 
median is shown as a blue line. The higher intensities of resistance-associated ions in colistin-resistant mass 
spectra indicated that the feature extraction method performed well.
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features that were selected based on their presence in the mass spectra of the target organism and independent of 
noise from irrelevant regions of the mass spectra, such as ions contributed from other organisms. Though more 
features could have been selected, we found 50 features to be more than adequate for identification, which is 
supported by the relative scarcity of ions in the glycolipid mass spectra as compared to those obtained by protein 
fingerprinting. However, for mass spectra collected with higher resolution, more features likely would be useful. 
The features were named by the m/z center of the extraction window, reported to beyond analytical significance. 
This ensured unambiguous feature names in the event that automatically selected features occupy directly adja-
cent m/z windows.

To verify that feature extraction functioned as expected, we investigated the extracted features corresponding 
to known monoisotopic ions associated with a colistin resistance phenotype. These ions were m/z 2033 (feature 
m/z 2036.4575) for A. baumannii and m/z 1955 and m/z 1971 for K. pneumoniae (features m/z 1957.1469 and 
m/z 1973.2972, respectively)17,19,20. Previous studies have identified these ions as lipid A structures with terminal 
phosphates that have been modified with phosphoethanolamine (+m/z 123 shift from ion at m/z 1910) and 
aminoarabinose (+m/z 131 shift from ions at m/z 1824 and m/z 1840) additions for A. baumannii and K. pneu-
moniae, respectively (Fig. 2b)7,15–17. As predicted, extracted features corresponding to these resistance-associated 
structures are elevated in the glycolipid mass spectra originating from the colistin-resistant strains (Fig. 2c).

Classifier performance on glycolipid dataset mass spectra.  The trained XGBoost classifiers and 
Single Feature baseline classifiers were evaluated using the test set, which contained 40% of the glycolipid library 
and was held out from classifier training (Supplementary Data S1). Analysis of the ROC curves suggested that 
the trained XGBoost classifiers reliably identified both A. baumannii and K. pneumoniae with species level 
areas under the curve (AUCs) of 0.999 (0.998 to 1.000) and 0.999 (0.996 to 1.000), respectively (Fig. 3a,d and e).  

Figure 3.  The classifiers distinguish species and colistin resistance for A. baumannii and K. pneumoniae. (a) 
Receiver operating characteristic (ROC) curves were created from the trained 3-class models to evaluate species 
and colistin resistance identification for the XGBoost classifiers and the baseline Single Feature classifiers using 
one-vs-all methods. These revealed consistently high sensitivity and specificity for both XGBoost classifiers. (b) 
Similarly, precision-recall (PR) curves were created to evaluate the overall precision of the classifiers for each 
target class. (c) Gain, a measure of feature importance in the classifier, was investigated for the features in the 
A. baumannii and K. pneumoniae classifiers. Features representing previously published species-specific lipid 
A ions appeared to be the most important features for classification19,20. (d,e) The area under the curve (AUC) 
for ROC and PR curves demonstrated superior performance of the XGBoost classifiers over the baseline Single 
Feature classifiers. Additionally, the consistently high AUC for both species and colistin resistance indicate 
overall high performance of these classifiers. Error bars indicate 95% confidence intervals.
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Additionally, the ROC curves indicated that the XGBoost classifiers can distinguish colistin-resistant and 
-susceptible isolates of both target species from each other and from the other species in the library. We also 
investigated the PR curves of the classifiers, which indicated high performance at species-level identifications 
and detection of colistin resistance with all AUCs above 0.80 for the XGBoost classifiers (Fig. 3b,d and e). The 
XGBoost classifiers markedly outperformed the Single Feature baseline classifiers in all of these metrics.

To determine if the models agree with prior knowledge of species- and resistance-specific lipid A structures, 
the classifiers were investigated for the importance of each feature in classification. The feature importance met-
ric, gain, is a measure of the relative improvement in classification accuracy when the feature is considered. 
As expected, many of the most important features for successful classification corresponded to known lipid A 
structures (Fig. 3c). For A. baumannii, the most important feature is centered at m/z 1913 and corresponds to the 
commonly observed hepta-acylated lipid A structure for the species with monoisotopic m/z 1910. Additionally, 
the second most important feature corresponds to the known phosphoethanolamine-modified lipid A struc-
ture at monoisotopic m/z 2033, which is associated with colistin resistance. This trend holds for the K. pneumo-
niae classifier as well, with both the base and colistin resistance-associated structures appearing among the most 
important features.

A failure to detect colistin resistance in a clinical diagnosis results in the loss of time for efficacious patient 
treatment and the potential for spreading of resistant strains. Due to these consequences, we chose to evalu-
ate the classifiers at a high threshold requiring 97% sensitivity, which allows for one missed sample in the least 
prevalent class. When this threshold was imposed, the XGBoost classifiers maintained low false positive rates 
(Supplementary Fig. S1), in comparison to the large number of false positives obtained by the Single Feature 
baseline classifiers. Further evaluation of the XGBoost classifiers at this high sensitivity demonstrated accu-
racy and specificity for both species and determining colistin-resistance (Supplementary Fig. S1). However, 
the colistin-resistant classifiers do suffer from an increased false discovery rate at the rigorous 97% sensitivity 
threshold, as indicated by the decreased precision. In particular, the detection of A. baumannii colistin resistance 
appeared to suffer most, which we partially attribute to the reliance on a single resistance ion for identification.

Simulation of polymicrobial glycolipid mass spectra.  In order to rapidly identify infections directly 
from biological samples, future classifiers may need to make inferences from mass spectra containing mixtures 
of organisms, like those found in polymicrobial infections. With the current performance of the classifiers on 
the isolate species mass spectra in our glycolipid dataset, we next sought to determine how our current classifiers 
would perform in a polymicrobial infection model. To this aim, we combined glycolipid mass spectra from the 
isolate dataset to simulate mixtures of species in single mass spectra.

Polymicrobial mass spectra were simulated by selecting combinations of collected mass spectra from indi-
vidual species and combined as a weighted average. Between two and five species were randomly selected for 
a mass spectrum, with an increased probability of containing mass spectral features from A. baumannii or K. 
pneumoniae. Additionally, half of the mass spectra containing either A. baumannii or K. pneumoniae were from a 
colistin-resistant isolate. Coefficient weights were randomly drawn from 1, 0.5, 0.25, and 0.1, such that the simu-
lated mass spectra contained a variety of organisms and weights. In total, we simulated 4,000 polymicrobial mass 
spectra (Supplementary Data S2). Additionally, 1,000 mass spectra of individual species were generated using the 
same simulation procedure to provide a baseline for comparison and ensure the fidelity of the simulation process.

To verify that our simulated polymicrobial mass spectra were an accurate representation of what would be 
obtained experimentally, we reproduced the experimental mixture extracted from K. pneumoniae, P. aeruginosa, 
and S. aureus presented in Leung et al.7. These represent species that have been commonly co-isolated in effluent 
from polymicrobial infections26. Figure 4a displays the experimentally obtained glycolipid mass spectra from 
individual species, with m/z regions containing species-specific ions colored for visibility. The simulated mixture 
mass spectrum shown in Fig. 4b represents a 1:1:1 simulated mixture of extracts from these three species. A 
qualitative comparison of the simulated mass spectrum to the experimentally obtained mixture mass spectrum 
(Fig. 4c) reveals that the simulated mass spectrum accurately reflects the mass spectrum of the experimental 
mixture. Additionally, we compared the 20 most important features from the K. pneumoniae classifier between 
the isolate mass spectrum and the simulated polymicrobial mass spectrum to verify that feature extraction would 
perform similarly on polymicrobial mass spectra as on the isolate mass spectra (Fig. 4d). When feature intensi-
ties are compared between the simulated polymicrobial spectrum and the isolate K. pneumoniae spectrum, we 
observed that, though some features show variation due to interference (defined as a relative intensity deviation 
greater than 0.05), many of the most important features remained unchanged (Fig. 4e).

Finally, we proceeded to test our XGBoost classifiers on the 4,000 simulated polymicrobial mass spectra. 
Investigation of the ROC curves revealed sustained classifier performance, even with up to 5 species in the mass 
spectrum (Fig. 5a and c). However, the PR curves were more revealing for the colistin resistance classifiers, indi-
cating decreased precision as the mass spectrum becomes more complex (Fig. 5b and c). When subjected to 
the same score threshold that maintained 97% sensitivity for the overall classification of the simulated mass 
spectra, we observed that the classifiers perform well, especially for species-level identification (Supplementary 
Fig. S2). However, increased numbers of false discoveries were detected at this rigorous threshold, particularly 
when attempting to detect colistin resistance, as indicated by the lower precision.

Classifier performance on in vitro polymicrobial UTI models.  With the current classifier perfor-
mance on the simulated polymicrobial mass spectra, we created a set of controlled, experimental polymicrobial 
samples on which to test the A. baumannii and K. pneumoniae classifiers. In UTIs, Escherichia coli is the most 
commonly identified pathogen, followed distantly by K. pneumoniae27. However, polymicrobial UTIs containing 
E. coli and K. pneumoniae have been previously observed28. To create potential polymicrobial UTI samples, we 
spiked E. coli and K. pneumoniae at known volumetric ratios into sterile urine (Fig. 6a). Additionally, we created 
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similar mixtures of E. coli with A. baumannii in sterile urine, although A. baumannii is not as common in UTIs. 
Glycolipids from each sample were then extracted and analyzed by MALDI-TOF MS in triplicate, which revealed 
ratio-dependent changes in the relative intensities of E. coli and target species ions (Supplementary Fig. S3). This 
presented a challenging test for the A. baumannii and K. pneumoniae classifiers, with E. coli lipid A ions sharing a 
similar m/z range as many of the target species ions.

The presence of A. baumannii and K. pneumoniae, as well as colistin resistance for each species was then 
predicted for each of the UTI spike-in samples using the XGBoost classifiers (Supplementary Data S3). In these 
two-species mixtures, the classifiers were able to reliably identify the target species and resistance in samples with 
1:1 or greater ratio of the target organism to E. coli (Fig. 6b and c). Many of the scores obtained from 1:1 or greater 
mixtures are similar to those obtained for classification of the isolate mass spectra. In the case of either target spe-
cies, the species-level and resistance-level scores at all ratios were decidedly greater than scores for mass spectra 
containing only E. coli. Interestingly, colistin-susceptible K. pneumoniae scores rise with increasing ratios in the 
colistin-resistance classifier. However, we attribute this to the trace abundance of ions in the resistance ion fea-
tures that are consistently observed even in susceptible strains. These results provide insight into the sensitivity of 
such classifiers from polymicrobial infections and suggest that they may be useful for species-level identification 
and antimicrobial resistance screening over the course of diagnosis and treatment.

Discussion
Infectious diseases pose considerable health and financial burdens worldwide. However, traditional biochemical 
diagnostics for these pathogens typically require days to perform2. This delay can have serious consequences for 
the treatment of an infection, highlighting the need for methods of rapid and accurate microbial identification. 
Recently, the suitability of MALDI-TOF MS of bacterial membrane glycolipids, as a novel method for bacte-
rial identification, has been explored as a complementary approach to the popular peptide mass fingerprinting 

Figure 4.  Simulated polymicrobial mixture glycolipid mass spectra are representative of experimentally 
derived glycolipid mass spectra from mixtures of organisms. (a) Representative glycolipid mass spectra 
from K. pneumoniae, P. aeruginosa and S. aureus isolates, which are microbial species commonly found in 
wound effluent together. (b) A simulated 1:1:1 mixture of the isolate mass spectra was created as the average 
of the three isolate mass spectra shown in (a). (c) An experimentally-derived mixture spectrum from Leung 
et al. was created by performing glycolipid extractions on isolates of the three species and mixing prior to 
acquisition of the mass spectrum7. The simulated polymicrobial mass spectrum appears qualitatively similar 
to the experimental mass spectrum. (d) Feature extraction was performed on the isolate K. pneumoniae mass 
spectrum and the simulated mixture mass spectrum. The extracted intensities are shown for the top 20 features, 
in order of feature importance. (e) To assess how mixtures might affect the extracted features, the extracted 
intensities for features from the isolate and simulated polymicrobial mass spectra were plotted against each 
other. The size of the points indicates the importance of each feature in the classifier. Interference was detected 
for some features (deviance >0.05 from isolate mass spectrum), however the most important features for 
classification appeared unimpaired.
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methods7. These glycolipid barcodes are composites of relatively high molecular weight molecules that exhibit 
species-specific ions dependent on the unique glycolipid structures present in the membrane of the organism. 
Modified structures of these glycolipids result in ions that have been associated with resistance to the cationic 

Figure 5.  The classifiers detect A. baumannii and K. pneumoniae species and colistin resistance in simulated 
polymicrobial mass spectra. (a) ROC curves were calculated for the classifiers to evaluate species and colistin 
resistance detection from the simulated polymicrobial mass spectra using one-vs-all methods and were 
stratified by the number of species in each mixture. (b) Similarly, PR curves were calculated to evaluate overall 
classifier precision on the simulated polymicrobial mass spectra. (c) Investigation of the AUC of the ROC and 
PR curves stratified by the number of species in each mixture reveals that, while high sensitivity and specificity 
can be maintained, precision decreases with increasing numbers of species represented in a mass spectrum. 
Error bars indicate 95% confidence intervals.

Figure 6.  The classifiers detected A. baumannii and K. pneumoniae species and colistin resistance in UTI 
spike-in models. (a) To assess the performance of the classifiers in polymicrobial specimens and their 
dependence on species relative abundance, colistin-resistant or -susceptible A. baumannii or K. pneumoniae 
were grown as isolates in liquid culture, then mixed with E. coli at known volumetric ratios in sterile urine. 
This yielded mixtures that span a wide spectrum of possible relative species abundances. Glycolipids were then 
extracted from each sample and analyzed by MALDI-TOF MS. The spectra were then tested with the trained 
classifiers to detect A. baumannii, K. pneumoniae and colistin-resistant strains of each. (b) High species-level 
scores were obtained for both target species at ratios greater than or equal to 1:1 (50%) target species to E. coli. 
(c) High scores for colistin resistance were obtained for both target species at the same higher ratios as species-
level detection, though scores show increased dependence on the proportion of the target organism. Error bars 
indicate 95% confidence intervals calculated using a t-distribution.
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antimicrobial peptide, colistin and are readily detectable by MALDI-TOF MS7,15–20. However, tools must be devel-
oped to rapidly translate these glycolipid barcodes into identifications.

In this study, we presented the development of prototype classifiers for the identification of A. baumannii and 
K. pneumoniae from glycolipid MALDI-TOF MS and described a flexible paradigm that is readily extendable to 
additional bacterial species. The feature engineering and machine learning methods that were employed resulted in 
classifiers capable of identifying A. baumannii and K. pneumoniae isolates and detecting colistin resistance in these 
species with high accuracy and specificity while maintaining high sensitivity from a glycolipid mass spectral dataset 
containing 48 other organisms. Though these classifiers do not identify individual strains, their ability to detect a tar-
get species and its colistin-resistant strains demonstrate the complementarity of this approach with current protein 
fingerprinting methods, which struggle to identify this form of antimicrobial resistance. Additionally, these types of 
classifiers are theoretically able to identify other antibiotic resistances, so long as the resistance mechanism is directly 
linked to lipid structures and resistant specimens are adequately represented in the training set.

Future methods to rapidly identify and characterize infections without culture, which is viable with our lipid-based 
approach, will need to demonstrate high performance on monomicrobial infections and polymicrobial infections alike. 
To test the suitability of our A. baumannii and K. pneumoniae classifiers on polymicrobial infections, we simulated 4,000 
polymicrobial mixture mass spectra through the weighted averaging of real mass spectra from isolates in our previously 
reported glycolipid dataset. The species-level performance of the classifiers on the simulated polymicrobial mixtures 
was found to be consistently high, even when 5 species were represented in a mass spectrum. However, a noticeable 
hit to precision was observed for the detection of colistin resistance. Most notably, this is due to the false-positives that 
occur from the misclassification of mixtures containing colistin-susceptible isolates of the target species. We postulate 
that these misclassifications are the consequences of reliance on the few resistance-associated ions for each species. 
With increasing numbers of species represented in a mass spectrum, there is an increasing chance that one or more of 
these features is susceptible to interference from ions produced by a non-target organism.

As evidence for this theory, we investigated the most common component in false positive results when 
detecting colistin-resistant A. baumannii in the simulated mass spectra, Salmonella minnesota. Comparison 
between S. minnesota and colistin-resistant A. baumannii mass spectra revealed ions in the S. minnesota mass 
spectrum that confound the critical resistance-associated ion at feature m/z 2036.4575 (Supplementary Fig. S4). 
While a wide extraction window is currently necessary, as indicated by the variation of the extracted m/z for A. 
baumannii (Supplementary Fig. S4), enhancing the mass measurement accuracy and mass measurement preci-
sion of future libraries will likely aid in alleviating these interferences by allowing for narrower extraction win-
dows. Along with enhanced mass accuracy, increased resolving power would also become valuable and decrease 
the smoothing needed for consistent feature extraction. Such increases in resolving power would also enable the 
use of isotopic information as features, as opposed to features that generally represent the average mass of ions. 
As a first practical improvement, future iterations of glycolipid datasets will employ internal mass calibrants, 
which will allow for the unbiased alignment of mass spectra, thereby improving mass measurement precision and 
accuracy and allowing for narrower feature extraction windows. While the current dataset consists of only intact 
lipid ions, the inclusion of fragmentation data, such as is already commonly collected in clinics on LC-MS/MS 
instruments, holds the potential to greatly increase the performance of these identifications.

As a final test of our A. baumannii and K. pneumoniae classifiers, we generated controlled, in vitro polymi-
crobial samples to represent mixtures containing the most common causative pathogen of UTIs, E. coli. These 
spike-in samples revealed that the classifiers were capable of reliably detecting their target species and colistin 
resistance in real mixture mass spectra. While these two-species mixtures represent a small set of many pos-
sibilities, they provide a promising glimpse into future classifiers specifically built for the purpose of pathogen 
identification from polymicrobial samples. However, to reliably create such classifiers for clinical applications, 
large datasets containing real polymicrobial infections will need to be collected to train classifiers specifically for 
this purpose. Additionally, classifiers trained on datasets that characterize specific polymicrobial mixtures may be 
useful for identifying secondary pathogens in an infection where the primary pathogen is known.

In conclusion, this study presents an extendable machine learning strategy for the identification of A. bau-
mannii and K. pneumoniae and detection of colistin resistance in these species. Furthermore, we demonstrated 
the potential to identify these organisms from polymicrobial mixtures using simulated mass spectra and in vitro 
models of UTIs. With the success of these two prototypical pathogens and as the glycolipid mass spectral library 
continues to grow, we aim to rapidly expand these methods to other organisms in the future—even those with 
uncharacterized lipid A structures. As we continue to streamline the glycolipid extraction protocol and improve 
the limit of detection, the application of machine learning to the characterization of pathogens from glycolipid 
mass spectra will offer a complementary approach to the tool belt of clinical labs.

Methods
The isolate glycolipid mass spectra dataset.  The isolate glycolipid mass spectra dataset used in this 
study was originally described in Leung et al., where full details can be found for strain selection, glycolipid 
extraction, and MALDI-TOF MS acquisition7. Briefly, colistin-susceptible strains of A. baumannii and K. pneu-
moniae were defined as having a minimum inhibitory concentration (MIC) ≤2 µg/mL colistin, whereas colis-
tin-resistant strains were defined by an MIC ≥4 µg/mL colistin as recommended by the Clinical and Laboratory 
Standards Institute29. Lipid A and other membrane glycolipids were harvested from 1–5 mL overnight liquid cul-
tures using a small-scale hot ammonium isobutyrate extraction protocol originally described by El Hamidi et al.30.  
Membrane lipid extracts were washed twice with methanol and resuspended in 2:1:0.25 chloroform/methanol/
water (Fisher Scientific, Waltham MA; Quality Biological, Gaithersburg MD). Aliquots of 1 µL were manually spot-
ted on stainless steel target plates with norharmane matrix (10 mg/mL in 2:1 v/v chloroform/methanol) (Sigma-
Aldrich, St. Louis MO). Mass spectra were acquired as the sum of 900–1,000 laser shots on a Bruker Microflex 
LRF MALDI-TOF MS operated in negative ion and reflectron modes (Bruker Daltonics Inc., Billerica MA).  
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The analyses were acquired using the equipped 337 nm nitrogen laser at 39.5% global intensity. The resolution and 
mass accuracy of the mass spectra in the dataset were estimated using the M + 1 molecular ion of the m/z 1910 
structure in the 657 A. baumannii mass spectra. By this method, the resolution was estimated to be 2,300 ± 200 m/
Δm at FWHM and the average mass error was found to be 0.73 ± 0.05 Da. The indicated uncertainties are 95% 
confidence intervals.

Spectral processing and feature engineering.  Mass spectra were converted to mzXML file format 
using msconvert (v3.0.9393, ProteoWizard). All analyses for this publication were performed in the R statisti-
cal programming language (v3.4.0)31. Spectral processing was performed using the MALDIquant (v1.16.2) and 
MALDIquantForeign (v0.10) R packages32,33. The mass spectra were square root-transformed and smoothed 
using a 161-point Savitzky-Golay filter34. The large smoothing window avoided inconsistencies in peak pick-
ing and extraction caused by variations in isotopic resolution between mass spectra. The mass spectra were 
baseline-corrected using the SNIP method over 60 iterations35.

Prior to import, the isolate mass spectra dataset was divided into training (60%) and test sets (40%). For 
feature selection and model training, only the training set was used. Features for the A. baumannii and K. pneu-
moniae classifiers were defined as the maximum intensity within ±1.5 m/z windows centered on the top 50 most 
intense molecular ions for the respective species. This window was selected after manual inspection of feature 
extraction windows for known lipid A structures. The intensities for each feature were normalized to the most 
intense extracted feature, resulting in features with values inclusively between 0 and 1. This normalization process 
accounted for differences in intensity due to factors such as differences in total analyte abundance. After feature 
selection with the training set, all further data were subjected to the same preprocessing and feature extraction, 
resulting in 50 features for use in classifier training and prediction.

Machine Learning.  Gradient boosted tree models, using the XGBoost algorithm, were chosen due to their 
ability to perform highly accurate classification and efficient training25. The xgboost (v0.6-4) R package was used 
for implementation of the XGBoost algorithm. Classifier training was performed using the isolate mass spectra 
training set. For A. baumannii and K. pneumoniae, 3-class models were trained to recognize the presence of 
the colistin-resistant or -susceptible target organism, or neither, by minimizing the multiclass logarithmic loss 
(metrics = “mlogloss”). Rough parameter tuning was performed by grid search, optimizing the max_tree_depth, 
min_child_weight, and gamma at eta = 0.3 using 10-fold cross-validation. Final model parameters and the optimal 
number of iterations were selected by reducing eta to 0.01 and using 10-fold cross-validation.

Performance assessment of the final classifiers was performed using the PRROC (v1.3) R package for PR and 
ROC curve analysis and the caret (v6.0-76) R package for other statistics36,37. To translate the 3-class model scores 
to the metrics investigated, one-vs-all analysis of the scores was performed. To investigate a species-level iden-
tification, the species score is the sum of the colistin-resistant and colistin-susceptible scores, which is compared 
against the other species score for the classifier. Alternatively, the colistin-resistant score is compared against the 
sum of the colistin-susceptible and other species scores for a classifier. Unless otherwise noted, the error bars for all 
performance metrics indicate the 95% confidence intervals as calculated empirically using 2,000 bootstrapped 
replicates.

Simulation of polymicrobial mass spectra.  For the simulation of polymicrobial mass spectra, the entire 
isolate mass spectra dataset was used. Species to be included in a spectrum were chosen at random with a fixed 
probability of 0.3/n of the spectrum containing an A. baumannii or K. pneumoniae spectrum, where n is the num-
ber of species in the spectrum. Other species in a spectrum each had an equal chance of being observed, without 
replacement. A mass spectrum for each selected species was then chosen at random to represent the species in the 
final polymicrobial mass spectrum. With the mass spectra chosen, the intensities of each spectrum were multi-
plied by a weight randomly drawn from the set of 1, 0.5, 0.25, and 0.1, with replacement, under the restraint that 
at least one spectrum had a weight of 1. The weighted mass spectra were then averaged to yield a simulated pol-
ymicrobial spectrum. This simulation strategy is similar to the approach presented by Mahé et al., and results in 
a linear combination of isolate-species mass spectra to build a polymicrobial mass spectrum38. This was repeated 
1,000 times each for 1–5 species per mass spectrum, resulting in 4,000 simulated polymicrobial mass spectra and 
1,000 simulated isolate mass spectra.

Generation of UTI spike-in models and mass spectra dataset.  Bacterial species were selected based 
on their prevalence in UTIs. E. coli (ATCC 25922), the most common causative agent, followed by K. pneumo-
niae (A2, colistin-susceptible and A5 colistin-resistant strains) and A. baumannii (SM1646 colistin-susceptible 
and PM3757 colistin-resistant strains) were selected for UTI model generation27. Colonies of E. coli and 
colistin-susceptible strains were picked from agar plates and then inoculated in Luria-Bertani (LB) medium for 
overnight culture. Colistin-resistant strains were cultured overnight in LB medium with 2 μg/mL colistin sulfate 
to prevent contamination from other unwanted species. Overnight liquid cultures were enumerated and ali-
quoted for lipid A isolation.

Prior to lipid A extraction, these 5 strains pellets were resuspended in 1 mL sterile urine individually. E. coli 
was mixed with antibiotic-susceptible or -resistant A. baumannii or K. pneumoniae strains at various volumetric 
ratios. The total mixture (1 mL) was spiked into sterile urine that had been pre-warmed to 37 °C to mimic infec-
tion conditions. Bacterial spiked urine samples were well vortexed and incubated in a warm-room for 5 minutes. 
The same lipid A micro-extraction method that is briefly described in the isolate glycolipid mass spectra dataset 
section was used for extraction. Aliquots of 0.75 μL lipid A extracts were manually spotted on a MALDI target 
plate with the same volume of norharmane matrix solution.
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Mass spectra were acquired in negative ion mode using a Bruker Microflex LRF MALDI-TOF MS (Bruker 
Daltonics Inc., Billerica MA) operated in reflectron mode. The instrument was calibrated with Agilent Tuning 
Mix (Agilent Technologies, Santa Clara, CA). Each sample was acquired at 68% laser power with 900 laser shots 
summed and performed in triplicate.

Data and Code Availability
All data used for this publication is freely available through the University of Maryland, Baltimore Office of Tech-
nology Transfer. All R code needed to fully reproduce this analysis and a link to the data are available at https://
github.com/wfondrie/DetectingColistinResistance.
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