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ABSTRACT Rapid advances in short-read DNA sequencing technologies have revolutionized population
genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly
arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and
high repeat content, which are typical characteristics for loci under strong long-term balancing selection.
Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility
and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this
purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a re-
gion under strong negative frequency-dependent selection which has previously proven difficult to assem-
ble in its entirety using short reads. We sequence S-locus BACs with single-molecule long-read sequencing
technology and conduct de novo assembly of these S-locus haplotypes. By comparing repeated assemblies
resulting from independent long-read sequencing runs on the same BAC clone we do not detect any
structural errors, suggesting that reliable assemblies are generated, but we estimate an indel error rate
of 5.7·1025. A similar error rate was estimated based on comparison of Illumina short-read sequences and
BAC assemblies. Our results show that, until de novo assembly of multiple individuals using long-read
sequencing becomes feasible, targeted long-read sequencing of loci under balancing selection is a viable
option with low error rates for single nucleotide polymorphisms or structural variation. We further find that
short-read sequencing is a valuable complement, allowing correction of the relatively high rate of indel
errors that result from this approach.
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DNA sequencing has come a long way since Sanger’s “chain termina-
tion” technique first improved our ability to sequence DNA (Sanger
and Nicklen 1977). In the last decade, major breakthroughs in mas-
sively parallel sequencing have unfolded whole new generations of

technologies, currently allowing us to reliably uncover vast amounts
of genomic information (Heather and Chain 2016). However, despite
recent advances in high-throughput (short-read) sequencing technol-
ogies (Reuter et al. 2015), some genetic regions remain difficult to study
using short read data due to their size and complex architecture
(Mardis 2017). Notably, loci under long-term balancing selection, such
as the Major-Histocompatibility (MHC) locus (Hedrick 1999) or plant
self-incompatibility (S) loci as in the Brassicaceae S-locus, have a large
number of highly divergent alleles maintained by negative frequency-
dependent selection over long periods of time (Wright 1939; Vekemans
and Slatkin 1994; Charlesworth et al. 2000; Castric and Vekemans
2007). Their genetic architecture is affected by long-term balancing
selection that promotes the emergence and co-existence of numerous
differentiated alleles (Llaurens et al. 2017). In such regions, high repeat
content, diversity, and rearrangements makes assembly and especially
re-sequencing approaches based on mapping short reads to a reference
genome, difficult (Mardis 2017).

Previously, studies on genetic diversity at the S-locus would rely on
polymerase chain-reaction (PCR) amplification of specific regions of
interest (often the S-locus receptor kinase gene SRK) in combination
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with either Sanger sequencing (Shiba 2001; Kusaba et al. 2001; Miege
et al. 2001; Schierup et al. 2001; Charlesworth, et al. 2003a; 2003b;
Nasrallah et al. 2004; Bechsgaard et al. 2006; Kamau et al. 2007;
Castric et al. 2010; Tsuchimatsu et al. 2012; Leducq et al. 2014) or
short-read sequencing (Guo et al. 2009; Jørgensen et al. 2012). The
two major caveats of this approach are; it is not always applicable to
use (general) PCR primers for very divergent alleles, and regulatory
regions in intergenic regions of high complexity are not resolved. For
this reason, researchers have resorted to targeted sequencing of the
entire S-locus region using massively parallel sequencing of bacterial
artificial chromosomes (BACs) containing the S-locus (Guo et al. 2011;
Goubet et al. 2012; Durand et al. 2014; Novikova et al. 2017;
Tsuchimatsu et al. 2017). However, due to the high repeat content of
the S-locus, next-generation sequencing of and assembly of S-locus
BACs with short- or medium-length reads resulted in several contigs,
thus requiring additional PCR-based testing to elucidate gene order and
orientation (Goubet et al. 2012).

Incontrast toshort-read sequencingtechnologies, SMRTsequencing
should provide a better basis for reliably assembling repetitive regions,
due tomean read lengths.20 kb andmaximum reads.60 kb (Rhoads
and Au 2015). Eventually, de novo assembly of whole genomes for each
individual would be the goal for the study of evolution of loci under
long-term balancing selection. However, the high costs per base of
SMRT sequencing currently limit the feasibility of this approach, espe-
cially for studying population genetic variation at loci under balancing
selection. Here, we therefore investigate the utility of targeted sequenc-
ing of two different Brassicaceae S-locus sequences in two BACs using
SMRT sequencing, with a focus on quantifying assembly errors, single
nucleotide polymorphism (SNP) errors and indel errors. By compari-
son of two assemblies of independent SMRT sequencing one of the two
S-locus BACs, we find that this approach is efficient and highly accurate
with regard to structural errors and single nucleotide polymorphisms.
Mapping short-read data to the an SMRT assembly of the second S-
locus BAC for error correction, we find that correction for indel errors
is necessary, especially for studies aiming to identify functional poly-
morphisms. This method can thus be valuable for a wide range of
genomic studies of complex genomic regions, where reference-based
approaches for studying genetic variation are not feasible.

MATERIALS AND METHODS

Plant material
We surface-sterilized seeds of four accessions of the self-incompatible
crucifer Capsella grandiflora (from Epiros, Zagori, Greece) with 10%
bleach and 70% ethanol. Seeds were stratified at 2-4� in the dark on
plates with 0.8% agar and half-strength MS medium (Murashige and
Skoog basal salt mixture, Sigma-Aldrich Co. MI, USA). After two
weeks, we moved the plates to climate controlled growth chambers
(16 h light at 20� / 8 h dark at 18�, 70% max. humidity, 122 uE light
intensity) to allow the seeds to germinate. After approximately 1 week,
we transplanted seedlings to pots with soil in the climate-controlled
chambers.We kept the plants under dark conditions for 4 days prior to
sampling young leaves for BAC library construction.

BAC library construction and screening
To sequence full-length S-locus haplotypes, we followed a strategy
similar to Goubet et al. (2012) based on BAC libraries. High molecular
weight DNA was extracted from 10 g of young leaves per library, and
we pooled leaves from two individuals per library. The DNA was
digested with HindIII and ligated to pCC1BAC cloning vector (Epi-
centre, an Illumina company, WI, USA), after several size selection

steps. BAC libraries were screened for flanking regions of the S-locus
by hybridization withDNA probes and PCR amplification with specific
primers and further selected based on mean insert size. Clones of
colonies that tested positive for U-box and ARK3 flanking genes of
the S-locus were selected for sequencing. All BAC library production
and screening was performed by the French Plant Genomic Resource
Centre (CNRGV) at INRA.

Sequencing
Weconducted SMRT sequencing (Pacific Biosciences ofCalifornia, CA,
USA) of two different Brassicaceae S-locus sequences in twoBACclones
at the Uppsala Genome Center, National Genomics Infrastructure
Sweden. DNA fragments over 10 kbp were selected using BluePippin
Size selection (Sage Science, MA, USA) and the SMRTbell Template
Prep Kit 1.0 (Pacific Biosciences of California, CA, USA) was used for
library preparation, with an insert size of 500 bp to 20 kb. SMRT
sequencing was done on the RSII system, using P5-C3 chemistry.

To assess sequencing and assembly errors, we generated two in-
dependent libraries of one BAC clone (CgrS-BAC1), which was then
subjected to independent SMRT sequencing and assembly, whereas
the second BAC, (CgrS-BAC2), was sequenced once with SMRT
sequencing. To assess indel errors, we also generated short-read
sequencing (MiSeq, Illumina, Inc., SanDiego,USA)data for the second
S-locus BAC (CgrS-BAC2). The sequencing library (TruSeq PCRfree
DNA sample preparation kit, Illumina, Inc., CA, USA) was prepared
from 1 mg of DNA, following the manufacturers’ guidelines. We
generated 1.1 million paired-end 250 bp reads on the MiSeq using
v2 sequencing chemistry (Illumina, Inc., CA, USA).

Bioinformatic data processing and assembly
We assembled raw SMRT reads from each BAC clone using the
Hierarchical Genome Assembly Process (HGAP.3) (Chin et al. 2013)
with default settings. The pipeline generates a de novo assembly with
Celera Assembler 8.3rc2 (Myers et al. 2000) and includes a consensus
polishing step using the Quiver algorithm (Pacific Biosciences of Cal-
ifornia, Inc., CA, USA). Per sequenced BAC clone, this process yielded
a large assembled fragment (contig) containing the region of interest
(S-locus), as well as several contigs containing E. coli sequences. As
HGAP.3 does not split reads, assembling a circular molecule results in
overlapping ends of reduced coverage, and we therefore conducted
circularisation and removed overlapping ends using minimus2 v3.1.0
of the AMOS suite (Treangen et al. 2011) This was followed by another
Quiver polishing step (Chin et al. 2013) to improve the quality in the
region that was formerly split between the two ends of the sequence,
and finally trimming of the vector sequence.

We quality filtered and trimmed raw reads from Illumina MiSeq se-
quencing to remove adapters using cutadapt v1.3 (Martin 2011) which
identified themost likely used adapters. Subsequently, we trimmed all adapt-
ers as well as low-quality reads with Trimmomatic v0.36 (Bolger et al. 2014).

Error estimation and correction
To estimate assembly and sequencing error rates, we compared the
S-locus contigs from independent sequencing and assembly of CgrS-
BAC1. We generated a pairwise alignment of the two S-locus assem-
blies using Mafft v7.310 (Katoh et al. 2002) and assessed the total
number of assembly errors (i.e., structural differences between the
assemblies), and the numbers and base-pair locations of indels and
SNPs, that represent sequencing errors.

To generate an additional estimateof sequencing error rates, weused
Illumina MiSeq data for CgrS-BAC2. We mapped short reads to the
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polished assembly of the BAC clone using bwa-mem v 0.7.8 (Li and
Durbin 2009). Finally, we estimated indel error rates and corrected
these indel errors using pacbio-util, based on the consensus of the
mapped Illumina reads (https://github.com/douglasgscofield/PacBio-
utilities). Indel error rate was calculated as number of insertions and
deletions, divided by assembly length to get a per base-pair error rate.

Annotation and comparison of SRK sequences
To assess the utility of using SMRT sequencing of BAC clones to
reconstruct complex loci, we extracted SRK exon 1 sequences
from the S-haplotype assemblies by searching for BLAST hits to
general SRK exon 1 forward (SLGF) and reverse (SLGR) primers
(Charlesworth et al. 2000), extracting either the sequence between the
two primer sites, or, if only one primer site was found, each 1kb
sequence up- and downstream of the primer site. We then selected
candidate sequences based on strong sequence similarity to known
SRK exon 1 sequences or conversely rejected them based on stronger
sequence homology to known ARK3 (Aly8) sequences using BLAST
(v2.5.0+). Exact parameters for sequence homology varied between
candidate sequences due to high divergence in SRK alleles, but were
always above 90%.

Inorder tocharacterize the relationshipbetweenourCapsellaSRK-like
sequences, and known SRK and ARK3 alleles, we bulk downloaded 722
publicly available Brassicaceae SRK and ARK3 sequences of .500 bp
length from GenBank (Table S1) and retained only those under 2000 bp
of length. Duplicates were removed using dedupe.sh from BBMAP
v34.56 (Joint Genome Institute), and we made an initial alignment be-
tween our SRK sequences and the publically available SRK and ARK3
using MAFFT v7.245 with the E-INS-I algorithm (Katoh et al. 2002),
which is suitable for sequences containing large unalignable gaps. Due to
the sequence diversity present in SRK exon 1, it was necessary for us to
manually edit the alignment in Seaview v4.6 (Gouy et al. 2010) to correct
alignment errors. To visualize the phylogenetic relationship between our
SRK sequences and those previously sequenced, we constructed a phy-
logenetic tree using RaXMl v8.2.3 (Stamatakis 2014), generating a neigh-
bor-joining tree with the GTRGAMMA model, and 1000 bootstrap
replicates. The tree was visualized using FigTree v1.4.2 (http://tree.bio.
ed.ac.uk/software/figtree/).

To assess whether we had successfully sequenced the entire S-locus,
we annotated our S-locus assemblies with Augustus v3.2.3 (Stanke et al.
2004) and RepeatMasker v4.0.7 (http://www.repeatmasker.org) via
Maker v2.31.9 (Holt and Yandell 2011), with Arabidopsis thaliana as
a model prediction species and protein homology data for B120, ARK3,
SRK,U-box, B70,DYT1, SBT3 andAT4G21323 fromArabidopsis lyrata
and A. halleri. Annotation of the highly variable S-locus gene SCR was
unsuccessful with a homology search to existing SCR alleles. Using a
sliding window approach in open reading frames, we searched for
conserved patterns of 8 cysteine residues to find SCR exon 2. The re-
sultant gff files were concatenated, and the annotation visualized using
R v3.3.1 (R Development Core Team 2008).

Sequence conservation
To assess patterns of sequence conservation across the entire S-locus
region between ARK3 and U-box, we first extracted a larger region
between B120 and AT4G21323 as described above. S-locus sequences
were then aligned using LASTZ v1.03.54 (Harris 2007) and the resul-
tant “axt” files were converted to fasta format using axt2maf and maf2-
fasta, respectively. Pairwise sequence conservation, as the proportion of
conserved bases per 250 bp sliding-window, was then calculated with a
python script, and visualized using R v3.3.1 (R Development Core
Team 2008) (https://gitlab.com/slottelab/Sequence_conservation).

Data availability
The sequences of CgrS-BAC1 and CgrS-BAC2 we generated in this
study have been uploaded to ENA at EBI with project id: PRJEB24927.
Table S1 contains Genbank accession numbers of SRK sequences used
in this study.

RESULTS AND DISCUSSION

Sequencing and Assembly
SMRT sequencing of two BAC clones corresponding to two different
S-haplotypes resulted in an N50 read length of 19,187 to 28,120 bp
(Table 1). For additional short-read data for one of the BACs that was
assembled based on long-read data, CgrS-BAC2, we obtained a total
of 482.1 Mbp of Illumina MiSeq paired-end data (250 bp, .Q30)
corresponding to a coverage of 2938X.

We obtained one large contig containing the S-locus sequence for
each of our three S-locus assemblies, with a length between 164 kbp and
178 kbp, as well as several smaller contigs containing parts of the E. coli
genome or only cloning vector. Circularisation and vector trimming
resulted in polished and trimmed assemblies of sequences containing
complete S-locus sequences plus flanking regions of a total length of
156636, 156640 (for the two assemblies of CgrS-BAC1), and 153563 bp
(for CgrS-BAC2), see Table 1.

Using SMRT sequencing allowed us to assemble the entire S-locus
into one contig, in contrast to assemblies of the S-locus based on short-
read data, which resulted in several contigs (Guo et al. 2011; Goubet
et al. 2012; Durand et al. 2014). For short-read assemblies, even addi-
tional PCR-basedmeasures to bridge the gaps between separate contigs
often do not resolve the physical distances and relative orientations of
genes for all haplotypes (Guo et al. 2011; Goubet et al. 2012). Quanti-
fying variation in length, gene orientation and repeat content can be
important in answering the question on reduced recombination at the
S-locus (Goubet et al. 2012; Charlesworth 2016), but the diversity can
only be fully revealed, if the S-haplotypes are assembled as continuous
sequences.

Assembly and sequencing errors
There were no structural rearrangements present between the two S-
locus contigs resulting from independent sequencing and assembly of

n Table 1 Capsella S-locus sequencing summary

BAC
Clone ID

SMRT
Sequencing ID

Length of
S-locus

contig (bp)

Coverage
SMRT raw
assembly (x)

Number of
SMRT reads

SMRT N50
read length (bp)

SMRT mean
read length (bp)

Length of S-locus contig
after trimming &
circularisation (bp)

CgrS-BAC1 pb_126-1 178,980 2690 56,575 19,187 11,836 156,636
CgrS-BAC1 pb_192-4 180,680 136 1,787 25,340 17,241 156,640
CgrS-BAC2 pb_274-14 164,087 160 1,421 28,120 20,433 153,560
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Figure 1 A S-locus sequence assemblies with two measures of indel errors indicated in black bars. Inference of indel errors are based on
comparison of two independent SMRT-sequencing runs and assemblies of CgrS-BAC1 (upper) and alignment of Illumina short reads to assembly
of CgrS-BAC2 (lower). Annotation of exons are shown as colored arrows, simple repeat sequences in red, and blue-boxes indicate positions of
transposable elements. The genes flanking the S-locus are ARK3 (light blue) and U-box (light green). SCR was only annotated in CgrS-BAC2.
B S-locus sequence conservation between the two Capsella S-locus BACs, created by aligning the S-locus regions with LASTZ and comparing
sequence homology (in % between 0 and 100) using a fixed window size of 250 bp. Sequence similarity between CgrS-BAC1 and CgrS-BAC2
drops steeply at the borders of the S-locus, corresponding to the genes ARK3 and U-box, respectively, although some sequence similarity is also
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two separate assemblies of CgrS-BAC1 (Figure 1A), suggesting that the
rate of structural errors is low and these assemblies are accurate.

We report two measures for indel error rate. For CgrS-BAC1, indel
errorswere inferredbycountingdifferencesbetweentwoseparateSMRT
assemblies of the sameBAC (Table 1., sequencing IDpb126_1&pb192-
4). For CgrS-BAC2, containing a different S-haplotype of C. grandi-
flora, indel errors were inferred by comparingMiSeq data to the SMRT
assembly of the same BAC.

There were no SNP differences and 9 indel differences over an
alignment length of 156,644 bp of the two assemblies of CgrS-BAC1
(Figure 1A). Thus, based on our technical replicates of library prepa-
ration and assembly, we estimate an indel error rate of 5.7·1025 indels
per bp with a ratio of single to double bp indels of 2:1. Notably, these
indels were not specifically found in homopolymer regions.

Mapping of short-read Illumina MiSeq data to S-locus sequence
CgrS-BAC2 resulted in an indel error rate estimate of 2.0·1025 indels
per bp over a sequence length of 153,563 bp (Figure 1A). Similarly,
indels were the only errors and in this case all were single bp indels.
Both methods for identifying indel error rates thus result in error rates
on the order of 1025 indels per bp, whereas no SNP errors were de-
tected using either approach.

Current high throughput sequencing technologies show between 0.1
and �12% error rate of raw reads, with Illumina short read technolo-
gies generally below 1% and SMRT sequencing .10%, reviewed in
(Reuter et al. 2015; Goodwin et al. 2016; Mardis 2017). The high error
rate of SMRT sequencing raw reads is mitigated by a random distri-
bution of these errors across individual reads and the ability to sequence
circular fragments repeatedly, thus the consensus sequence is improved
by multiple sequencing passes over the same continuous DNA mole-
cule (Rhoads and Au 2015). With 15-fold coverage of single-molecule
reads, the accuracy is raised to over 99% (Eid et al. 2009), but using the
so called circular consensus reduces the average read length, weakening
the keystone of long read sequencing (Travers et al. 2010; Hackl et al.
2014).

SMRT sequencing is useful for complete assembly of difficult loci
(Bellec et al. 2016) or even genomes, microbial or chloroplast genomes
have been assembled into fewer contigs than short read technologies, or
even single continuous sequences were produced by SMRT sequencing
alone, reviewed in (Rhoads and Au 2015). If one aims to study genetic
variation at large divergent loci, SMRT-assemblies reveal complete
genic and intergenic regions, but for higher resolution at the base-pair
level, additional validation is necessary, as in a direct comparison of
short and long read sequencing technology, SMRT-sequencing per-
forms worse at the single-nucleotide variant calling (Quail et al.
2012). Also, indel errors in SMRT assemblies can cause frame-shifts
and create difficulties for annotation via homology search (Du and
Sun 2016) or could lead to false-positives in detection of frame-shift
mutations.

At the order of 5.7 · 1025 indels per bp our SMRT assembly already
shows a lower error rate than error rates previously recorded for HGAP
assemblies of SMRT sequences at: 99.9995% concordance with Sanger
Sequences of microorganism genomes at �80-100 · coverage (Chin
et al. 2013), though this study uses a higher coverage of 136 – 2690 x.
Also, the assemblies performed better than error rates estimated for an
S-locus study which found an average of 0.009 indel errors per bp
(range 0–0.05), and an average of 0.02 substitutions errors per bp

(range 0-0.1) based on 454 sequencing of SRK amplicons (Jørgensen
et al. 2012).

The high accuracy even before error correction with short reads is
likely owed to the fact that several Quiver polishing steps (see Materials
andMethods) alreadyworkwell at removingassembly errors if, as in our
case, the coverage of long reads is high enough (Chin et al. 2013).

Annotation of the S-locus
Annotation of our S-locus assemblies showed that this strategy
resulted in full-length S-locus sequences (Figure 1A) containing
both the U-box and ARK3 flanking genes, as well as the key S-locus
genes SRK and SCR. In CgrS-BAC1, SCR was not successfully
annotated. The gene is known to be difficult to annotate due to
its short nature and hyper variability. A phylogenetic tree of our
SRK sequences and a set of publicly available SRK sequences con-
firms that our data falls within the range of sequence diversity
observed at this locus in the Brassicaceae (Figure 1C). The se-
quence similarity drops steeply at the genes bordering the S-locus,
ARK3 and U-box (Figure 1B), and the only large region showing
sequence conservation within the S-locus correspond to the gene
SRK, a genetic determinant of self-incompatibility, as has also been
found previously (Guo et al. 2011; Goubet et al. 2012).

Cost and feasibility
Aligning short-read data to SMRT-assemblies for error correction
eliminates the necessity of additional (PCR-based) validation, which
enables a faster and simpler workflow, once the assembly and error
correction is complete. SMRT sequencing is still relatively costly, adding
to the costs of BAC library production (�1700 € at time of publishing),
but for certain studies long reads are indispensable, for instance to
assemble regions of high repeat content and to accurately assemble
intergenic regions (Rhoads and Au 2015). Using a double platform
approach takes more financial resources, time and data processing,
but can generate assemblies of higher accuracy than SMRT sequencing
alone (Rhoads and Au 2015).

High quality assemblies are necessary for many genetic studies, by
the alignment of short read data directly to SMRT long reads, hybrid
software are able to improve the accuracy of SMRT sequencing long
reads (Au et al. 2012; Koren et al. 2012; Hackl et al. 2014; Salmela and
Rivals 2014), e.g., PBcR from �85% up to 99.9% (Koren et al. 2012),
which can then be de novo assembled with higher confidence. Hybrid
assemblies however are computationally intensive, especially early pro-
grams (Au et al. 2012; Koren et al. 2012; Salmela and Rivals 2014), as
they must allow for more mismatches between short and long reads
than other assembly methods. The approach of using short reads to
error correct SMRT assemblies is a computationally simpler and effi-
cient way to generate highly accurate assemblies.

Conclusions
We show that SMRT sequencing of BACs is an efficient way to obtain high-
quality assemblies of the Brassicaceae S-locus, a locus that has been difficult
to studydue to its high content of repeats andhighdivergence among alleles.
Independent SMRT sequencing runs of the same BAC clone allow us to
estimate an error rate of 5.7· 1025 indels per bp.These errors can efficiently
be corrected using short reads, and such correction is important especially in
the context of highly accurate studies of functional gene variants.

found at SRK. C ML phylogeny of all alignable SRK alleles (exon 1) above 500 bp from GenBank. Bootstrap support over 70% is represented with
an asterisk (�). Our newly identified sequences, indicated with arrows, are found broadly distributed across the phylogeny.
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This approach can be useful for studies of other genomic regions
characterized by high divergence and repetitive content, such as other
loci under long-term balancing selection (Fijarczyk and Babik 2015),
where reference based short-read sequencing technologies are not
feasible.
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