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Carcinoma of the gall bladder (CAGB) has a poor prognosis.
Molecular analysis of bile could classify indicators of CAGB.
Bile samples (n = 87; training cohort) were screened for prote-
omics andmetabolomics signatures of cancer detection. In bile,
CAGB showed distinct proteomic (217 upregulated, 258 down-
regulated) and metabolomic phenotypes (111 upregulated, 505
downregulated, p < 0.05, fold change > 1.5, false discovery rate
<0.01) linked to significantly increased inflammation (coagula-
tion, arachidonic acid, bile acid) and alternate energy pathways
(pentose-phosphate pathway, amino acids, lipid metabolism);
and decreased glycolysis, cholesterol metabolism, PPAR,
RAS, and RAP1 signaling, oxidative phosphorylation, and
others compared to gallstone or healthy controls (p < 0.05).
Bile proteins/metabolites signatures showed significant corre-
lation (r2 > 0.5, p < 0.05) with clinical parameters. Metabo-
lite/protein signature-based probability of detection for
CAGB (cancer) was >90% (p < 0.05), with area under the
receiver operating characteristic curve >0.94. Validation of
the top four metabolites—toluene, 5,6-DHET, creatine, and
phenylacetaldehyde—in separate cohorts (n = 80; bile [T1]
and paired plasma [T2]) showed accuracy (99%) and sensi-
tivity/specificity (>98%) for CAGB detection. Tissue validation
showed bile 5,6-DHET positively correlated with tissue PCNA
(proliferation), and caspase-3 linked to cancer development (r2

>0.5, p < 0.05). In conclusion, the bile molecular landscape pro-
vides critical molecular understanding and outlines metabolo-
mic indicator panels for early CAGB detection.

INTRODUCTION
Carcinoma of the gallbladder (CAGB) has a poor prognosis, often due
to slow/vague symptoms, aggressive disease progression, and conse-
quently poor outcomes.1,2 Early detection and timely surgery can
lead to long-term survival.3 An increase in the incidence rate is closely
related to elevated prevalence of gallstones.4 Therefore, it is critical to
provide early diagnosis and to decipher the dysregulated proteins and
metabolites (bio-molecules) sub-network, which could provide
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insight into the pathobiology and help in the classification of putative
indicators used for the screening and stratification of CAGB.

Bile (concentrated in GB) helps in fat digestion, acts as excretory me-
dium for endogenous and exogenous compounds, and is known for
the assimilation of proteins and metabolites linked to the develop-
ment of GB cancer.5 Change in the biliary proteome or metabolome
is concordant with biliary pathology and contributes to the progres-
sion of biliary diseases.6 Many published series showed the utility of
bile as a choice of fluid for gallstone (GS) identification or GB-asso-
ciated disease indicators,7 although the study of biliary proteins and
metabolites in the carcinogenesis of the GB is obscure and there are
no defined indicators that could help in early stratification of CAGB.

Literature has demonstrated the Royal Marsden Hospital score as a
significant prognostic marker across various cancers, particularly in
predicting survival outcomes in patients undergoing immuno-
therapy.8 Additionally, DNA damage repair alterations have emerged
as predictive biomarkers, especially in biliary tract cancers (BTCs),
where they can inform response to therapies such as immune check-
point inhibitors (ICIs).9 However, the role of these biomarkers in
CAGB remains uncertain.

Over the past decade, immunotherapy has revolutionized the treat-
ment landscape for solid malignancies, offering new hope through
therapies targeting immune pathways. ICIs, in particular, have
become prominent for advanced biliary cancers, although the clinical
response remains modest.10,11 Research suggests that ICIs can also
alleviate symptoms like peripheral neuropathy and headaches in can-
cer patients but also lead to ICI-related adverse events such as hearing
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loss.12 Further research is crucial to fully establish the efficacy of ICIs
in CAGB or identify novel therapeutic targets. This study aims to
bridge that gap and may help in identifying new treatment strategies
for CAGB patients.

Bile collection is a challenging task due to the surgical procedure
involved. However, bile often spills from enterohepatic circulation
to systemic circulation, suggesting that plasma samples could also
be used as a substitute for CAGB detection and warrants validation.13

In the present study, we investigated the bile samples from CAGB and
non-cancer (GS or healthy control [HC]) groups. Proteomics andme-
tabolomics analyses outlined systemic change in the bile linked with
CAGB development. A panel of the top four potential protein and/or
metabolite indicators of CAGB was identified and subjected to valida-
tion in bile (test cohort: T1) and paired plasma (test cohort: T2) sam-
ples of CAGB (n = 40) and GS (n = 40) patients using five different
machine learning (ML) models. Our result demonstrates the efficacy
of the selected panel of metabolites, and the optimal ML model was
used for reliable and infallible detection of CAGB.
RESULTS
Demographic profile of the study cohort

The study consisted of 167 patients who were divided into the training
cohort (n = 87 patients) and the test cohort (T1 = bile, and T2 cohort =
plasma; n = 80 patients; Figure S1). Clinical profiles of the training
and test cohorts were similar and showed bilirubin, aspartate amino-
transferase, alanine aminotransferase, alkaline phosphatase, and
g-glutamyl transferase levels increased whereas total bile acids, tri-
glycerides, and high-density lipoprotein levels were decreased in
CAGB patients (Figure S2; Table S1).
Bile proteome profile could stratify patients with CAGB

Bile functionality relies on the lipids, metabolites, and proteins pre-
sent in it, and analysis of bile proteome could provide critical insight
into the development of CAGB. In the training cohort, bile proteomic
analysis identified 366 (178 upregulated and 188 downregulated) and
235 (119 upregulated and 116 downregulated) differentially expressed
proteins (DEPs) in CAGB compared to GS and HC (Figure 1A;
Table S2; fold change [FC] > 1.5, p < 0.05, false discovery rate
[FDR] < 0.01). Partial least-squares discriminant analysis (PLS-DA)
and hierarchical clustering analysis segregated CAGB from GS and
HC (Figures 1B and S3–S5). A total of 137 proteins (unique to
CAGB; Figure 1C) were linked to increase in pentose phosphate
Figure 1. Bile proteome profile among CAGB, GS, and HC

(A) Volcano plot showing differentially expressed proteins (DEPs) in the bile of CAGB pa

green dot represents downregulated proteins (FC > 1.5, p < 0.05 considered significant

clustering show clear segregation of CAGB patients compared to GS or HC. In PLS-DA

and 3.4%, respectively. (C) Venn diagram showing enrichment of upregulated pathwa

enrichment of downregulated pathways from CAGB patients when compared to GS or

(MDA) plot of 15 different proteins and their expression status (red = upregulated and blu

shown based on top four protein panel. AUC = 0.99. Estimation of probability of cance

cancer, while GS or HC is indicated as non-cancer).
pathway, amino acid metabolism, ferroptosis, and immunological
pathways (e.g., complement and neutrophil extracellular trap
[NET]), sphingolipid signaling, AMPK pathway, apoptosis and
others (Figure 1C; Tables S3 and S4; p < 0.05). Furthermore, 80 pro-
teins (common to CAGB vs. HC or GS) were associated with vitamin,
fat, lipid, arachidonic acid metabolism, and citrate cycle (Figure 1C;
Table S5; p < 0.05). Similarly, proteins significantly downregulated
in bile samples of CAGB (Figure 1D) showed a decrease in glycol-
ysis/gluconeogenesis, cholesterol metabolism, platelet activation and
ATP-binding cassette (ABC) transporters, glutathione metabolism,
pyruvate metabolism, oxidative phosphorylation, and others (Fig-
ure 1D; Tables S6–S8; p < 0.05). The protein panel (PRCC,
PRDM1, RUNDC3A, and CPB1) showed significantly low mean
decrease in accuracy (Figure 1E) and were the most important pro-
teins (FC, area under the receiver operating characteristic curve
[AUC], and p value) with a probability of cancer detection (POD)
>85% (AUC = 0.99, 95%-CI = 0.973–1) in CAGB patients (Figure 1F).
Overall, CAGB showed distinct protein profiles in which the majority
of proteins were downregulated and the identified protein panel could
be used for stratification of CAGB patients.
Bile proteome could stratify patients with GS among CAGB

patients

Next, we compared the proteome profiling of CAGB patients with GS
to those without GS (CAGB only). Results showed 24 upregulated and
38 downregulated proteins in CAGB with GS (Figure 2A; Table S2;
FC > 1.5, p < 0.05). PLS-DA, along with hierarchical clustering, segre-
gated the study groups (Figure 2B). Proteins significantly upregulated
in CAGB with GS were linked to regulation of actin cytoskeleton,
phenylalanine, and galactose metabolism (Figure 2C), and proteins
downregulated were linked to arginine, aspartate, and glutamate
metabolism and to leukocyte migration (Figure 2D). The protein
panel of PARK7, ST13, GSTM2, and PAICS showed the lowest
mean decrease in accuracy (Figure 2E) and were the most important
proteins (FC, AUC, and p value), with a POD of gallstone in CAGB
>70% (AUC = 0.80, confidence interval [95%-CI] = 0.73–1) in
CAGB patients (Figure 2F). Overall, our results suggest that CAGB
with GS is associated with an increase in phenylalanine and galactose
metabolism. Furthermore, the identified proteomic indicator panel
could be used for stratification of CAGB patients with GS.
Bile proteome profile identifies signatures associated with GS

Untargeted proteomic analysis identified 216 DEPs (87 upregulated
and 129 downregulated) in GS compared to HC (Figure S6;
tients when compared to GS or HC. The red dots represent upregulated, while the

). (B) Partial least-squares discriminant analysis (PLS-DA) score plot and hierarchical

, the percentage of explained variability for component 1 and component 2 is 10.3%

ys from CAGB patients when compared to GS or HC. (D) Venn diagram showing

HC. (E) Random forest (RF) score plot representing the mean decrease in accuracy

e = downregulated). (F) AUC value for prediction of CAGB on the training set cohort is
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Table S2; FC > 1.5, p < 0.05). PLS-DA and heatmap analysis showed
clear segregation of GS (Figures S7 and S8). The mean decrease in ac-
curacy analysis identified GS-specific protein signatures (Figure S9).
Among the signatures, the panel of four proteins showed a diagnostic
efficacy of 98% (AUC = 0.98, 95%-CI = 0.926–1) and POD >80% for
gallstone detection (Figure S10). We found that the GS proteomic
profile is distinct and that the identified proteomic signature panel
could be used for stratification of patients with GS, which warrants
further validation.

Blood transcription module space analysis of DEPs

Next, DEPs from cancer and GS were searched on the blood tran-
scription module (BTM) space. More than 20 BTMmodules were en-
riched in cancer and GS. The majority of modules was downregulated
in cancer and GS (Figures S11 and S12). Venn analysis showed that
platelet activation, blood coagulation, monocyte activation, and the
KLF12 targets network specifically increased and associated with can-
cer, whereas antigen presentation, cell movement, and adhesion path-
ways were specific to GS (Figure S13).

Bile proteomic profiling of patients with cholecystitis is distinct

In our study, seven patients had cholestasis in addition to CAGB. A
comparative analysis of patients with and without cholestasis revealed
83 DEPs (68 upregulated and 15 downregulated; FC > 1.5, p < 0.05;
Figure S14). The expression profile segregated CAGB patients with
cholestasis in PLS-DA and hierarchical clustering (Figures S15 and
S16). Proteins significantly upregulated in CAGB patients with chole-
stasis were linked to glycolysis, chemical carcinogenesis-like DNA ad-
ducts, and reactive oxygen species (ROS) pathways, and those signif-
icantly downregulated in CAGB with cholestasis were linked to
selenocompound metabolism, pantothenate biosynthesis, and
b-alanine metabolism pathways, respectively (Figures S17 and S18).
Furthermore, random forest (RF) analysis identified significant pro-
tein signatures associated with cholestasis (Figure S19). The identified
signature could be explored for their diagnostic capability for the pre-
diction of cholestasis in CAGB.

Bile metabolome profile could stratify patients with CAGB

Bile metabolomics analysis of CAGB patients, when compared to GS
or HC, showed 585 (102 upregulated and 483 downregulated) and
466 metabolites (45 upregulated and 421 downregulated) metabolites
differentially expressed (Figure 3A; Table S9; FC > 1.5, p < 0.05,
FDR < 0.01). PLS-DA and hierarchical clustering analysis segregated
CAGB from other groups (Figure 3B). Metabolites significantly
Figure 2. Comparative proteome of CAGB with GS and CAGB without GS

(A) Volcano plot of proteins in CAGB with GS when compared to CAGB without GS. Th

proteins (FC > 1.5, p < 0.05 considered significant). (B) PLS-DA score plot and hierar

(CAGB without GS) based on proteome profile. The percentage of explained variability

shows pathway enriched with upregulated DEPs in CAGBwith GS (p value is represented

(D) Bar plot showing pathway enriched with downregulated DEPs in CAGBwith GS (p va

bars show p value). (E) RF score plot representing the MDA plot of 15 different proteins

value for prediction of CAGBwith GS is shown based on top four protein panel. AUC = 0.

proteins.
increased in CAGB were associated with primary and secondary
bile acid, ABC transporters, pentose-phosphate pathway, arachidonic
acid aspartate and glutathione, and tryptophan metabolism (Fig-
ure 3C; Tables S10–S12; p < 0.05). Metabolites downregulated in
CAGB were associated with purine, folate biosynthesis, histidine,
tyrosine, nicotinate and nicotinamide, riboflavin metabolism, and
others (Figure 3D; Tables S13–S15; p < 0.05). The mean decrease in
accuracy was lowest for metabolite panels C00601, C00300,
C14772, and C01455 (Figure 3E) and were the most significant me-
tabolites (FC, AUC, and p value), with a POD of >70% (AUC =
0.94, 95%-CI = 0.88–0.98) (Figure 3F). Overall, these results suggest
that CAGB has a distinct profile, and the identified metabolite panel
could be used for the stratification of patients with CAGB.
Bile metabolome could stratify patients with GS among CAGB

patients

The bile metabolomic profile of CAGB with GS when compared to
CAGB without GS outlined that the metabolomic profile of CAGB
with GS was distinct and showed 12 metabolites upregulated and
20 metabolites downregulated (Figure 4A; Table S9; FC > 1.5,
p < 0.05). PLS-DA showed clear segregation of CAGB with GS and
CAGB only (Figure 4B). Metabolites significantly increased in
CAGB with GS were linked to mitochondrial fatty acid b-oxidation
and steroidogenesis (Figure 4C), and those downregulated were
linked to biotin, alanine, and glutamate metabolism (Figure 4D).
The mean decrease in accuracy was lowest (Figure 4E) for the metab-
olite panel C16565, C06188, C14874, and C04167 and was the most
significant metabolites (FC, AUC, malondialdehyde [MDA], and p
value) with a POD for GS in CAGB of >70% (AUC = 0.84, 95%-
CI = 0.81–0.95) (Figure 4F). Overall, these results suggest that metab-
olome profiling of CAGB with GS is distinct, and the identified
metabolite panel could be used for the stratification of patients with
GS in CAGB; this observation warrants further validation.
Bile metabolome profile identifies signatures linked with GS

Bile metabolomics analysis of GS identified 358 metabolites (95 upre-
gulated and 263 downregulated; Figure S20; Table S9; FC > 1.5,
p < 0.05). PLS-DA and a heatmap showed clear segregation of GS
and HC (Figures S21 and S22). MDA identified metabolite panels
C00315, C01746, G00154, and C00077 as the most significant (FC,
AUC, MDA, and p value) and showed a POD of GS of >85%
(Figures S23 and S24; AUC = 0.90, 95%-CI = 0.83–0.99). Altogether,
patients with GS represent a distinct metabolome profile, and the
e maroon dots represent upregulated, while the blue dots represent downregulated

chical clustering show segregation of CAGB_GS (CAGB with GS) and CAGB_only

for component 1 and component 2 is 14.9% and 12.8%, respectively. (C) Bar plot

as�log10 p value; red bars show enrichment ratio, while yellow bars show p value).

lue is represented as�log10 p value; green bars show enrichment ratio, while yellow

and their expression status (red = upregulated and blue = downregulated). (F) AUC

80. Estimation of probability of CAGBwith GS detection with >70% is also shown for
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identified metabolites panel represents putative indicators for the
stratification of patients with predisposition to GS.

Bile metabolomics profiling of patients with cholecystitis is

distinct

Analysis of patients with and without cholestasis revealed 57 differ-
entially expressed metabolites (DEMs) (24 upregulated and 33 down-
regulated; Figures S25, S6, and S27; FC > 1.5, p < 0.05). Upregulated
metabolites in CAGB patients with cholestasis were linked to arach-
idonic acid and folate metabolism pathways and those downregulated
were linked to steroidogenesis and bile acid biosynthesis pathways,
respectively (Figures S28 and S29). Random forest analysis identified
significant protein signatures associated with cholestasis (Figure S30).
These signatures could be explored for their ability to be putative in-
dicators of cholestasis in CAGB patients.

Integrome analysis of bile proteome and metabolome

functionality

Bile proteomic and metabolomic integration analysis identified four
unique positively co-related clusters (Figure 5A). The mean cluster
intensity was higher in clusters 1 and 2 and lower in clusters 3 and
4 for cancer development (Figure 5B). Cluster-wise pathway analysis
showed that in cluster 1, the increase in phenylacetaldehyde is asso-
ciated with membrane trafficking and carbohydrate metabolism (Fig-
ure 5C). Proteins of cluster 2 were mainly linked to metabolism of
lipids and lipoproteins that established positive correlation with me-
tabolites associated with ABC transporters, tryptophan, and gluta-
thione metabolism (Figure 5D). Next, cluster 3 (reduced in cancer)
revealed that deregulation of CD14 and TMSB-4 (Thymosin Beta 4
X-Linked) proteins correlate with several metabolites of steroid and
folate metabolism, others (Figure 5E). Furthermore, cluster 4
(reduced in cancer) is associated with a decrease in inosinic acid
and 1-amino-2-propanol and several proteins that belong to comple-
ment cascade, platelet activation and signaling, glycosylation, and
others (Figure 5F). As a result, the analysis of integration revealed a
remarkable correlation between the functionality of proteins and me-
tabolites in the development of CAGB.

Metabolomic and proteomic signatures as putative indicators

for CAGB stratification and validation of themetabolite panel for

CAGB detection using ML

The proteomic and metabolic analyses led to the identification of
putative signatures that were selected based on their AUC, FC, p
value, and POD (Figure 6A). Cross-correlation analysis (individual
metabolites/proteins, POD panels, clinical profile, bile acid profile)
Figure 3. Bile metabolome profile among CAGB, GS, and HC

(A) Volcano plot showing differentially expressed metabolites (DEMs) in bile of CAGB pat

dots represent downregulated proteins (FC > 1.5, p < 0.05 considered significant). (B) PL

when compared to GS or HC. In PLS-DA, the percentage of explained variability for comp

enrichment of upregulated pathways from CAGB patients when compared to GS or H

patients when compared to GS or HC. (E) RF score plot representing the MDA plot of

downregulated). (F) AUC value for prediction of CAGB on the training set cohort is shown

also shown for these metabolites (CAGB is indicated as cancer, while GS or HC is indi
showed significant and direct correlation of POD metabolites and
POD proteins with the clinical and bile acid profiles in CAGB pa-
tients (Figure S31). When compared, the POD of metabolites
showed higher diagnostic efficacy, with an AUC of 0.99, in com-
parison to the POD of proteins for determination of CAGB (Fig-
ure S32). Furthermore, the POD of metabolites correlated directly
with the American Joint Committee on Cancer (AJCC) grade of
differentiation in CAGB patients (8th edition; Figure 6B). The
metabolite panel selected for validation showed significant FC,
AUC, and relative abundance in the training cohort, test cohort
1 (bile; T1), and test cohort 2 (plasma; T2) (Figure 6C). The work-
flow using five different ML algorithms (linear discriminant anal-
ysis [LDA], K-nearest neighbor [KNN], support vector machine
[SVM], classification and regression trees [CART], and RF) re-
sulted in 20 trained and tested ML models. In the ML analysis,
both test cohorts (T1 and T2) showed significant accuracy and
kappa values for all four metabolites (Figure 6D). The metabolite
panel altogether showed the highest accuracy, sensitivity, speci-
ficity, and significant p value in both bile and plasma cohorts
when compared to individual metabolites. RF represented the
best ML model for CAGB detection in bile as well as plasma sam-
ples (Figures 6E and 6F). We also compared the results of metab-
olites panel with our previous study showing that the lipidomics
panel7 could segregate CAGB. A close similarity was observed in
results in terms of accuracy, sensitivity, specificity, and p value
(Figure S33). Overall, our results suggest that the panel of metab-
olites selected for POD can be used for early demarcation and
stratification of CAGB patients. Additionally, the four-metabolite
panel could be added to the previous lipid panel or could be indi-
vidually used for early detection of CAGB patients.

Tissue level validation of the identified indicator of CAGB

Next, probable mechanisms of CAGB development and their associ-
ation with the identified metabolite panel were highlighted (Fig-
ure 7A). To validate the link between 5,6-dihydroxyeicosatrienoic
acid (5,6-DHET) and cancer, all arachidonic acid metabolites were
identified, and it showed 5,6-DHET and leukotriene B4 significantly
upregulated in CAGB vs. GS (Figure 7B). The literature suggests that
epoxyeicosatrienoic acids (EETs) help in cancer development via
accumulation of caspase-3.14 Concordantly, the expression of prolif-
erating cell nuclear antigen (PCNA) and caspase-3 was significantly
increased in CAGB (Figures 7C and 7D). Moreover, PCNA and
caspase-3 showed a direct correlation with 5,6-DHET in CAGB patie-
nts (Figure 7E). Overall, our results suggest that the increase in bile
5,6-DHET level corroborates the increase in PCNA (proliferation)
ients compared to GS or HC. The orange dots represent upregulated, while the blue

S-DA score plot and hierarchical clustering show clear segregation of CAGBpatients

onent 1 and component 2 is 10.3% and 3.4%, respectively. (C) Venn diagram shows

C. (D) Venn diagram shows enrichment of downregulated pathways from CAGB

15 different metabolites and their expression status (red = upregulated and blue =

based on top four metabolome panel. AUC = 0.94. Estimation of PODwith >85% is

cated as non-cancer).
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and accumulation of caspase-3 (anti-apoptosis), which further sup-
ports cancer development.

DISCUSSION
Bile has multifaceted metabolic roles and is composed of proteins and
metabolites that are secreted or shed by the hepatobiliary system.15

Bile is a complex mixture, and variations in individual bile composi-
tion complicate biomarker identification. Researchers are tackling
this by refining analytical methods and improving cross-validation
approaches.16 Although many published studies outline proteome
and metabolome analysis in hepatobiliary diseases,17,18 detailed eval-
uation of the biliary proteome and metabolome and their association
with CAGB is obscure. Furthermore, putative indicators for early pre-
diction of gall bladder carcinoma should be delineated.

This study investigated bile protein andmetabolite profiles in patients
with CAGB, GS, and HC. The primary objective of the study was to
identify putative indicators (proteins and metabolites) that have diag-
nostic capability for CAGB detection. We further aimed to elucidate
the interplay between the bile proteome and the metabolic network to
understand how proteome-metabolome interactions contribute to
CAGB development. Finally, we validated the identified metabolites
using a ML approach in both bile and plasma samples from a paired
cohort. This validation aimed to confirm the potential of these metab-
olites as a panel of biomarkers for CAGB detection. Bile analysis offers
a promising way to identify the molecular changes associated with
developing GS or cancer.16 Patients recruited as training and test co-
horts were clinically similar. Patients recruited with CAGB (training
or test cohort) showed increased severity and liver function parame-
ters and had variable bile acid profiles.

The bile proteome of CAGB patients showed a significant increase in
proteins linked to inflammatory pathways, such as NET formation,
ferroptosis, sphingolipid signaling, coagulation cascade activation,
arachidonic acid metabolism, alternate energy metabolism, pentose
phosphate pathway, and fat and lipid metabolism. Notably, the in-
crease in NETosis-related proteins suggests enhanced neutrophil acti-
vation and infiltration19 and is also reported in BTC and extrahepatic
cholangiocarcinoma tissues.20 The increase in NETosis also promotes
cancer-linked thrombosis and tumor growth and is known to protect
cancer cells in breast and lung cancer.21 Our findings also revealed a
significant increase in complement protein C5 and proteins associ-
ated with arachidonic acid metabolism. An increase in C5 proteins
contributes to cancer growth and metastasis by increasing angiogen-
Figure 4. Comparative metabolome of CAGB with GS and CAGB without GS

(A) Volcano plot of metabolites in CAGBwith GSwhen compared to CAGBwithout GS. T

metabolites (FC > 1.5, p < 0.05 considered significant). (B) PLS-DA score plot and hiera

(CAGB without GS) based on metabolite profile. The percentage of explained variability

shows pathway enrichedwith upregulatedDEMs in CAGBwith GS (p value is represente

(D) Bar plot shows pathway enriched with downregulated DEMs in CAGB with GS (p val

bars show p value). (E) RF score plot representing the MDA plot of 15 different metabolite

value for prediction of CAGB with GS is shown based on top four metabolites panel. A

shown for metabolites.
esis specifically shown in biliary cancer.22,23 Increases in arachidonic
acid metabolism proteins (prostaglandin-E synthase, leukotriene-A4
hydrolase, and others) found in our study are responsible for
increasing downstream prostaglandins and leukotrienes, which play
a key role in cancer-associated immune mediators and enhance
angiogenesis.24 Further increases in sphingolipid metabolism,25 fer-
roptosis,26 alternate energy activation (e.g., pentose phosphate
pathway),27 and lipid and fat metabolism are classical features of can-
cer development.28 Concordantly, BTM analysis showed that platelet
activation, blood coagulation, monocyte activation, and KLF12 target
network were specifically increased in CAGB. The proteomic analysis
of the bile sample in CAGB patients provides us with an insight that
tumor development in CAGB is primarily linked to increases in in-
flammatory, angiogenesis, and tumor expansion-associated proteins
that may lead to highly aggressive cancers.

Differential regulations of metabolites are the readout of various
metabolic pathways that are altered during the process of cancer
development, and thus the identification of such metabolites could
prove advantageous in the early diagnosis of cancer. Interestingly,
the metabolome profile of CAGB patients was distinct. Bile samples
of CAGB patients showed persistent increases in primary and second-
ary bile acid synthesis and tryptophan metabolism known to be in-
flammatory.29,30 Elevated levels of chenodeoxycholic acid or glyco-
chenodeoxycholic acid are known to induce cancer cell invasion
and provide stemness to cells via the STAT3 pathway,31 while the in-
crease in tryptophanmetabolism supports cancer progression by sup-
pressing anti-tumor immunity.32 We also observed a unique increase
in arachidonic metabolism, pentose phosphate pathways, and others
in CAGB bile samples, suggestive of pertinent inflammation and shift
to alternate energy metabolism in CAGB patients.

Bile proteomic analysis of CAGB with and without GS showed signif-
icant increases in proteins associated with the regulation of actin cyto-
skeleton, histidine metabolism, phenylalanine metabolism, and galac-
tose metabolism in CAGB with GS. Increases in PARK7, ST13, and
GSTM2 relate to excessive increases in oxidative stress-linked cancer
progression due to the presence of GS.33–35

Again, bile analysis in CAGB patients with GS identified increased
fatty acid metabolism (generation, breakdown, and steroid product-
ion) compared to those without GS. Additionally, specific metaboli-
tes, including aminopropylcadaverine, salicin 6-phosphate, glutathione
episulfonium ion, and trans-acenaphthene-1,2-dioland, emerged as
hemaroon dots represent upregulated, while the blue dots represent downregulated

rchical clustering show segregation of CAGB_GS (CAGB with GS) and CAGB_only

for component 1 and component 2 is 14.9% and 12.8%, respectively. (C) Bar plot

d as�log10 p value; red bars show enrichment ratio, while yellow bars show p value).

ue is represented as�log10 p value; green bars show enrichment ratio, while yellow

s and their expression status (red = upregulated and blue = downregulated). (F) AUC

UC = 0.80. Estimation of probability of CAGB with GS detection with >70% is also
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potential markers to differentiate CAGB with and without GS. Our re-
sults suggest the involvement of dysregulated fat metabolism in the
development of GS in CAGB patients.

Interestingly, analysis of bile samples in GS patients showed signifi-
cant increases in protein RAP1A (Ras-related protein 1), known to
promote cancer via mitogen-activated protein kinase and Notch
signaling pathway.36 An increase in small nuclear ribonucleoprotein
polypeptide A is known to modulate the nerve growth factor expres-
sion in cancer.37 Glypican 1 is well known to promote the growth and
migration of cancer cells through regulating the transforming growth
factor-b1/SMAD2 signaling pathway, whereas an increase in Cystatin
6 promotes angiogenesis and cancer development.38,39 Therefore, the
association of signature proteins with cancer signaling pathways dic-
tates the predisposition of GS toward cancer development.

Similar to the proteomic analysis of bile samples of GS as compared to
HC the metabolite analysis showed like the proteomic analysis and
highlighted significant increases inmetabolites, which suggest the dys-
regulation of fat metabolism, change in b-oxidation status, and
inflammation.40,41 This dysregulation of lipid metabolism seen in
the bile sample of GS patients is concordant with the development
of GS in such patients.

Interestingly, CAGB patients with cholestasis showed significant in-
creases in the protein expression profile of bile. This may be because
of the retention of bile constituents in cholestasis. CAGB patients who
had cholestasis showed increases inUDP-glucose pyrophosphorylase
2, which is compensatory to maintain glycogen synthesis and glyco-
protein production; however, this increase also aids in cancer produc-
tion.42 Increases in Small Heat Shock Protein b-1 and DEAD-box
helicase 1 seen in CAGB patients with cholestasis is known to activate
intracellular pathways for inflammatory processes linked to the in-
duction of cholestasis.43,44

Metabolite analysis of CAGB patients with cholestasis showed signif-
icant increases in arachidonic acid and folate metabolism with de-
creases in steroidogenesis and polyamine levels. Decreased steroido-
genesis suggests the accumulation of cholesterol and thus decreases
in the metastability of the bile samples in CAGB patients.45 Our meta-
bolic results are concordant with the proteomic findings and state that
bile samples of CAGB with cholestasis are more inflammatory and
have dysregulated lipid metabolism, which could be one of the rea-
sons for the observed phenotype.

Next, for integrating both proteomic and metabolomic analyses of
CAGB bile, differentially expressed proteome and metabolome in
Figure 5. Integrome analysis of DEPs and DEMs in bile of CAGB

(A) Correlation plot showing correlation clusters between DEPs and DEMs in bile of CAG

cluster for cancer and non-cancer. (C) Expression correlation network of DEPs (in blu

pathways (r2 = 0.7; edge width represents the degree of correlation). (D) Expression c

(r2 = 0.7). (E) Expression correlation network of DEPs and DEMs in cluster 3 and their ass

cluster 4 and their associated pathways (r2 = 0.7).
CAGBwere subjected to cross-correlation network analysis.We iden-
tified four unique positively co-related clusters documenting clear as-
sociations among DEPs and metabolites in CAGB patients. Interest-
ingly, phenylacetaldehyde (PAA), found in cluster 1, showed
significant correlation with proteins linked withmembrane trafficking
and carbohydrate metabolism. PAA is known to increase ROS,
thereby altering carbohydrate metabolism in cancer cells.46,47 These
findings suggest that PAA and alterations in carbohydratemetabolism
may contribute to CAGB development and progression. Cluster 2 was
significantly associated with lipoproteins, ABC transporters, and tryp-
tophan metabolism. Increased tryptophan metabolites suggest its as-
sociation with other cancers, potentially indicating its contribution
to CAGB.48 Cluster 3, which was downregulated, was associated
with proteins of immune cells (CD14) or those involved in the organi-
zation of the cytoskeleton (TMSB-4), suggesting the dysregulated im-
mune defense and increased chances ofmetastasis and development of
CAGB.49 In cluster 4, we observed concordant results, with significant
downregulation of immune pathways like platelet activation and com-
plement activation, suggesting that dysregulation of immune activa-
tion contributes to the development of CAGB.50 The proteome and
metabolome integration highlighted key metabolic disturbances that
play a vital role in the development of CAGB.

Next, the clinical correlation showed that metabolites and proteins
signatures were directly associated with liver injury parameters and
the bile acid profile. Interestingly, serum albumin and cholesterol
showed an inverse correlation to these markers. Additionally, positive
correlation emerged between POD metabolites and CAGB grades of
differentiation, suggesting a potential link between POD and CAGB
progression.

The POD proteins, four key protein signatures selected for CAGB
detection, include PRCC, known to protect cancer cells from DNA
damage, leading to cell survival and cancer progression51; PRDM1,
a tumor suppressor gene, may have tumor regulatory properties52;
RUNDC3A, which regulates SNAP25 expression and is linked with
cancer progression53; and CPB1, which is found to be increased in
cancer, but the mechanistic role is uncertain.54 In addition, POD me-
tabolites, four signature metabolites selected for CAGB detection,
include phenylacetaldehyde, known to increase ROS and STAT3-
mediated decrease in antitumor activity46; 5,6-DHET, an EET that
promotes angiogenesis, cell proliferation, and anti-apoptosis activity
in the tumor55; creatine, which induces SMAD3 signaling for metas-
tasis56; and toluene, which is produced by themicrobiome, is a carcin-
ogen derived from phenylacetate.57 Moreover, POD of metabolites
exhibited higher AUCs than that of proteins, which was further em-
ployed for validation.
B patients (highlighted in yellow). (B) Violin plot shows mean cluster intensity in each

e background) and DEMs (in green background) in cluster 1 and their associated

orrelation network of DEPs and DEMs in cluster 2 and their associated pathways

ociated pathways (r2 = 0.7). (F) Expression correlation network of DEPs and DEMs in
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Our previous research demonstrated the potential of using plasma
samples as surrogates for bile in stratification CAGB. The present
study strengthens this finding by showing that bile metabolite varia-
tions are also validated in plasma samples. This is likely because bile
components can leak from the gut into the bloodstream, as reported
in other studies. Therefore, plasma analysis holds promise as a non-
invasive approach for CAGB detection.7

Finally, we identified a panel of four key metabolites using p value,
FC, area under the receiver operating characteristic curve, RF, and
POD calculation, thereby validating them in the bile cohort T1
and plasma cohort T2 using an ML approach. The combined panel
showed the highest accuracy for CAGB detection, and the LDA
model serves as the preferred ML algorithm for CAGB detection
in both bile and plasma samples. Furthermore, we propose litera-
ture-driven mechanisms linked to cancer development for each
metabolite, and GB tissue analysis supported our findings. The
elevated 5,6-DHET level in bile and its association with cancer
was validated by correlating it with caspase-3 accumulation, which
helps in the development of cancer by increasing PCNA (prolifera-
tion marker).14

Interestingly, the downregulation of four proposed CAGB bio-
markers (4,5-DHET, creatine, toluene, phenylacetaldehyde) in pa-
tients of CAGB with GS suggests that these markers not only provide
insights about cancer development but significant increases in such
markers could also be taken as a risk factor for the development of
cancer specifically in patients who do not have an evident GS. In addi-
tion, regardless of the presence or absence of GS, a significant increase
in the plasma level of these metabolites indicates the development
of CAGB.

Many US Food and Drug Administration-approved mass spectrom-
etry (MS)-based in vitro diagnostic methods for the identification of
microbes, newborn screening, and quantification of therapeutic drugs
are now part of routine diagnostics.58 Our method identified a panel
of metabolites within 30min, suggesting a rapid and potentially trans-
formative approach for patient screening. Further validation in a
larger CAGB cohort is warranted.

While bile collection limits large-scale studies due to its invasive na-
ture, it could not be considered for large population studies, which is
the major lacuna of the study. Furthermore, apart from cancer, the
bile components may also come from the hepatocytes, biliary tree,
or GB epithelium. This might limit the interpretation of results.
Figure 6. Metabolomic and proteomic signatures as putative indicators for CAG

machine learning

(A) Panel of proteins and metabolites selected based on their AUC, p value, and FC for P

showing positive correlation with CAGB grade of differentiation (AJCC 8th edition). (C) P

abundance in training and test cohorts (bile and their paired plasma). (D) Accuracy and ka

associated with CAGB as compared to HC or GS Patients in test cohort T1 (in bile) a

metabolites individually and combined in T1 for different MLmodels. (F) Accuracy, specifi

T2 for different ML models.
Also, this study did not thoroughly explore the specific biological
functions of these biomarkers in CAGB, leaving this aspect for future
investigations. However, our robust findings and validation using ML
demonstrate the potential of the identifiedmetabolite panel that accu-
rately segregates patients with CAGB.

In conclusion, we present a pilot study showcasing the bile prote-
ome and the bile metabolome in patients with CAGB. We em-
ployed a robust integrative analysis of proteomic and metabolomic
investigation of bile samples in patients with CAGB. Our valida-
tion of metabolites in the bile and paired plasma cohorts (ML
approach) documented the highest accuracy, sensitivity, and spec-
ificity for CAGB detection. Thus, the identified metabolite panel is
proposed as a putative candidate for CAGB detection. Moreover,
the present study holds significant potential for improving early
diagnosis and treatment. Validation of these biomarkers in plasma
offers an even more accessible and less invasive diagnostic
approach, potentially transforming clinical practice. In the coming
years, we can expect advancements in the development of plasma-
based biomarker panels for clinical use. Along with improvements
in analytical validation and AI-driven data analysis, this could
revolutionize the early detection and management of GB diseases.
All this could also aid in investigating the role of these biomarkers
in CAGB.

MATERIALS AND METHODS
Patient selection

A total of 167 participants were recruited at the Institute of Liver and
Biliary Sciences and Ganga Ram Institute for Postgraduate Medical
Education & Research, New Delhi, India, from 2018 to 2021 for
this cross-sectional study. Samples were divided into training and
test cohorts. In the training cohort (samples recruited between 2018
and 2020), bile and plasma samples were collected from patients un-
dergoing cholecystectomy for GS disease (GS, n = 40) and patients
undergoing surgery for CAGB were grouped as CAGB (n = 17); we
also collected HC samples (HC, n = 30). The patients enrolled as
healthy in our study were live liver donors for living-donor liver
transplant surgery. During the surgical intervention, �5 mL bile
was also collected intraoperatively by aspirating from the GB. In
the test cohort, baseline plasma and bile of 80 participants (samples
recruited between 2020 and 2021) were also collected (Figure S1).
Samples were stored at �80�C until analyzed. All procedures
involved in the study were conducted per the institutional ethical
committee, and written informed consent was obtained from all sub-
jects enrolled in this study.
B stratification and validation of metabolite panel for CAGB detection using

OD calculation in training cohort. (B) POD of metabolite panel (represented in mean)

anel of four metabolites selected from POD along with their AUC, FC, and relative

ppa value of the different MLmodels used for characterization of principal biomarker

nd T2 (in plasma). (E) Accuracy, specificity, sensitivity, and p value of four different

city, sensitivity, and p value of four different metabolites individually and combined in
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Bile and plasma metabolomics

We used the organic phase extraction method for metabolite extrac-
tion for bile and plasma. In brief, 400 mL cold methanol (100% v/v)
was added to 100 mL bile, and plasma samples were kept overnight
at�20⁰C for protein precipitation, followed by 10-min centrifugation
at 13,000 rpm. Then, the supernatant was transferred, vacuum dried,
and reconstituted in (5:95:5) 5% acetonitrile: 95% water: 5% internal
standards + external standards at known concentrations. The samples
were run onto reverse-phase chromatography using C18 column
(Thermo Fisher Scientific [Waltham, MA] 25003102130: 3 mm,
2.1 mm, 100 mm) using an ultra-high performance liquid chromato-
graphic system followed by high-resolution MS (Figure S1). Com-
pound Discoverer 3.0 was used for metabolite features identification
(Thermo Fisher Scientific). Feature annotation was performed using
mzVault, mzCloud (www.mzcloud.org), and mass list searches. Each
metabolite was annotated with its Kyoto Encyclopedia of Genes and
Genomes or Human Metabolome Database ID. After filtration, the
data were saved in .csv file format and subjected to statistical
analysis.59

Bile proteomics

A total of 100 mL bile was diluted with 400 mL 0.1% formic acid and
sonicated. These samples were centrifuged at 13,000 rpm for 10 min,
and the collected supernatant was albumin depleted in Akta Pure.
Equivalent proteins, 100 mg, were subjected to reduction with DTT,
alkylation with indole-3-acetic acid, and digestion for 24 h at 37�C us-
ing trypsin (sequencing-grade modified). Post-desalting, the samples
were dried and reconstituted in 0.1% formic acid. A total of 3 mL of
each sample was subjected to nano-electrospray ionization and MS/
MS using Q-Exactive Plus (Thermo Fisher Scientific) at the colli-
sion-induced dissociation mode, with the electrospray voltage at
2.3 kV. Further data were analyzed using Proteome Discoverer
(version 2.0, Thermo Fisher Scientific). Uniprot Homo sapiens (hu-
man) database (UP000005640) with Mascot algorithm (Mascot 2.4,
Matrix Science, London, UK) was used. Identified proteins were sub-
jected to conventional statistical analysis and network and pathway
analysis.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 6
and SPSS version 20; p < 0.05 using Benjamini-Hochberg correction
were considered significant. Results are shown as mean and SD unless
indicated otherwise. Unpaired (two-tailed) Student’s t test and the
Mann-Whitney U test were performed for two-groups comparison.
For comparison among more than two groups, one-way ANOVA
and the Kruskal-Wallis test were performed. All correlations were
performed using Spearman correlation analysis, and r2 > 0.5 and
p < 0.05 were considered significant. For proteomics and metabolo-
Figure 7. Tissue-level validation showing association of 5,6-DHET with CAGB

(A) The proposed mechanism of CAGB development and its association with putative in

green = downregulated, white = non-significant). (C) Immunohistochemistry (IHC) shows

Relative quantization of positively stained cells is expressed as mean number of positive

caspase-3, PCNA, and 5,6-DHET, and caspase-3 and 5,6-DHET in CAGB (n = 9, r2 >
mics, Perseus and Metaboanalyst 5.0 were used; data were log
normalized and subjected to Pareto scaling and further subjected to
multivariate projection analyses including principal-component anal-
ysis, PLS-DA, RFanalysis. Pathway enrichment patterns were identi-
fied for metabolites and proteins individually using Metabolanalyst
and EnrichR.60 Significant proteins were enriched on 346 BTMs to
identify the different pathway modules.61 Pathway integration anal-
ysis was done using both Impala and Cytoscape 3.9.1.62 R version
4.0.1 was used to make the correlation plot and validation using
ML algorithm.

The ML approach was employed using five different MLs (LDA, RF,
SVM, CART, and KNN) algorithms to validate the plausible
biomarker lipids species. In total, we implemented 25 ML models
comprising 5 ML algorithms along with 5 metabolites individually
and combined. Fourfold (outer) nested repeated (five times) 10-fold
(inner) cross-validation (with randomized stratified splitting) was
done on training and test cohorts in R with the Caret package. In
this way, repeated 10-fold cross-validation was performed 20 times,
and the models were obtained with the best results. In addition, the
accuracy, sensitivity, and specificity performance measures summa-
rized the overall cross-validation prediction performance. The equa-
tions used to quantify these performance measures are presented
below (in which TP represents true positives, TN represents true neg-
atives, FP represents false positives, and FN represents false
negatives):

Accuracy = TP+TNTP+TN+ FP+ FN;

Sensitivity = TPTP+ FN;

Specificity = TNTN+ FP:

In the present study, POD for cancer development, POD for presence
of GS in cancer patients, and POD for GS development were calcu-
lated using the top four proteins or metabolites identified based on
p value, AUC, and mean decrease in accuracy in each comparison
(cancer vs. no cancer, GS in cancer vs. no GS, and GS vs. healthy) us-
ing SPSS version 20.
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