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ABSTRACT

A number of different models have been proposed as descriptions of the species-
abundance distribution (SAD). Most evaluations of these models use only one or
two models, focus on only a single ecosystem or taxonomic group, or fail to use
appropriate statistical methods. We use likelihood and AIC to compare the fit of four
of the most widely used models to data on over 16,000 communities from a diverse
array of taxonomic groups and ecosystems. Across all datasets combined the log-
series, Poisson lognormal, and negative binomial all yield similar overall fits to the
data. Therefore, when correcting for differences in the number of parameters the log-
series generally provides the best fit to data. Within individual datasets some other
distributions performed nearly as well as the log-series even after correcting for the
number of parameters. The Zipf distribution is generally a poor characterization of the
SAD.

Subjects Computational Biology, Ecology, Statistics

Keywords Species-abundance distribution, Informatics, Commonness, Rarity, Citizen science,
Animals, Plants, Community structure

INTRODUCTION

The species abundance distribution (SAD) describes the full distribution of commonness
and rarity in ecological systems. It is one of the most fundamental and ubiquitous patterns
in ecology, and exhibits a consistent general form with many rare species and few abundant
species occurring within a community. The SAD is one of the most widely studied patterns
in ecology, leading to a proliferation of models that attempt to characterize the shape of the
distribution and identify potential mechanisms for the pattern (see McGill et al., 2007 for
a recent review of SADs). These models range from arbitrary distributions that are chosen
based on providing a good fit to the data (Fisher, Corbet ¢ Williams, 1943), to distributions
chosen based on the most likely states of generic random systems (Frank, 2011; Harte, 2011;
Locey & White, 2013), to models based more directly on ecological processes (Tokeshi, 1993;
Hubbell, 2001; Volkov et al., 2003; Alroy, 2015).

Which model or models provide the best fit to the data, and the resulting implications for
the processes structuring ecological systems, is an active area of research (e.g., McGill, 2003;
Volkov et al., 2003; Ulrich, Ollik & Ugland, 2010; White, Thibault & Xiao, 2012; Connolly
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et al., 2014). However, most comparisons of the different models: (1) use only a small
subset of available models (typically two; e.g., McGill, 2003; Volkov et al., 2003; White,
Thibault & Xiao, 20125 Connolly et al., 2014); (2) focus on a single ecosystem or taxonomic
group (e.g., McGill, 2003; Volkov et al., 2003); or (3) fail to use the most appropriate
statistical methods (e.g., Ulrich, Ollik ¢ Ugland, 2010, see Matthews ¢ Whittaker, 2014 for
discussion of best statistical methods for fitting SADs). This makes it difficult to draw
general conclusions about which, if any, models provide the best empirical fit to species
abundance distributions.

Here, we evaluate the performance of four of the most widely used models for the
species abundance distribution using likelihood-based model selection on data from
16,209 communities and nine major taxonomic groups. This includes data from terrestrial,
aquatic, and marine ecosystems representing roughly 50 million individual organisms in
total.

METHODS
Data

We compiled data from citizen science projects, government surveys, and literature mining
to produce a dataset with 16,209 communities, from nine taxonomic groups, representing
nearly 50 million individual terrestrial, aquatic, and marine organisms. Data for trees,
birds, butterflies and mammals was compiled by White, Thibault ¢~ Xiao (2012) from six
data sources: the US Forest Service Forest Inventory and Analysis (FIA; USDA Forest
Service, 2010), the North American Butterfly Association’s North American Butterfly
Count (NABC; North American Butterfly Assoc, 2009), the Mammal Community Database
(MCDB; Thibault et al., 2011), Alwyn Gentry’s Forest Transect Data Set (Gentry; Phillips
& Miller, 2002), the Audubon Society Christmas Bird Count (CBC; National Audubon
Society, 2002), and the US Geological Survey’s North American Breeding Bird Survey (BBS;
Pardieck, Ziolkowski Jr ¢ Hudson, 2014) (see Table 1 for details). The publicly available
datasets (FIA, MCDB, Gentry, and BBS) were acquired using the EcoData Retriever
(http://data-retriever.org; Morris ¢ White, 2013). Details of the treatment of these datasets
can be found in Appendix A of White, Thibault ¢ Xiao (2012), but in general data were
analyzed at the level of the site defined in the dataset and a single year of data was selected
for each site. We modified the data slightly by removing sites 102 and 179 from the Gentry
data due to issues with decimal abundances appearing in raw data due to either data entry
or data structure errors. Data on Actinopterygii, Reptilia, Coleoptera, Arachnida, and
Amphibia, were mined from literature by Baldridge and are publicly available (Baldridge,
2013) (see Table 1 for details). These data were collected at the level of the site defined
in the publication if raw data were available at that scale, and at the scale of the entire
study otherwise. The time scale of collection for this data depended on the study but was
typically one or a few years. All data sources used in the analysis were samples (or censuses)
of a taxonomic assemblage, where all individuals of any species observed are recorded.
Abundances in the compiled datasets were counts of individuals.
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Table 1 Details of datasets used to evaluate the form of the species abundance distribution. Datasets marked as private were obtained through

data requests to the providers.

Dataset Dataset code Availability Total sites Citation
Breeding bird survey BBS Public 2,769 Pardieck, Ziolkowski Jr ¢ Hudson (2014)
Christmas bird count CBC Private 1,999 National Audubon Society (2002)
Gentry’s forest transects Gentry Public 220 Phillips & Miller (2002)
Forest inventory and analysis FIA Public 10,355 USDA Forest Service (2010)
Mammal community database MCDB Public 103 Thibault et al. (2011)
NA butterfly count NABA Private 400 North American Butterfly Assoc (2009)
Actinopterygii Actinopterygii Public 161 Baldridge (2013)
Reptilia Reptilia Public 129 Baldridge (2013)
Amphibia Amphibia Public 43 Baldridge (2013)
Coleoptera Coleoptera Public 5 Baldridge (2013)
Arachnida Arachnida Public 25 Baldridge (2013)
Models

We selected models for analysis based on four criteria. First, since the majority of species
abundance distributions (SADs) are constructed using counts of individuals (for discussion
of alternative approaches see McGill et al., 2007 and Morlon et al., 2009) we selected models
with discrete distributions (i.e., those that only have non-zero probabilities for positive
integer values of abundance). Second, in order to use best practices for comparing species
abundance distributions we selected models with analytically defined probability mass
functions that allow the calculation of likelihoods (see details in Analysis). Third, McGill
et al. (2007) classified species abundance distribution models into five different families:
purely statistical, branching process, population dynamics, niche partitioning, and spatial
distribution of individuals. We evaluated models from each of these families, with some
models having been derived from more than one family of processes. Finally, we selected
models that have been widely used in the ecological literature. Based on these criteria
we evaluated the log-series, the Poisson lognormal, the negative binomial, and the Zipf
distributions. All distributions were defined to be capable of having non-zero probability
at integer values from 1 to infinity.

The log-series is one of the first distributions used to describe the SAD, being derived
as a purely statistical distribution by Fisher, Corbet & Williams (1943). It has since been
derived as the result of ecological processes, the metacommunity SAD for ecological neutral
theory (Hubbell, 2001; Volkov et al., 2003), and several different maximum entropy models
(Pueyo, He & Zillio, 2007; Harte et al., 2008).

The lognormal is one of the most commonly used distributions for describing the SAD
(McGill, 2003) and has been derived as a null form of the distribution resulting from the
central limit theorem (May, 1975), population dynamics (Engen ¢ Lande, 1996), and niche
partitioning (Sugihara, 1980). We use the Poisson lognormal because it is a discrete form
of the distribution appropriate for fitting discrete abundance data (Bulmer, 1974).

The negative binomial (which can be derived as a Gamma-distributed mixture of Poisson
distributions) provides a good characterization of the SAD predictions for several different
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Figure 1 Example species-abundance distributions including the empirical distributions (grey bars)
and the best fitting log-series: maroon, negative binomial: brown, poisson lognormal: green, and Zipf:
purple. Distributions are for (A) Breeding Bird Survey—Route 36 in New York, (B) Forest Inventory and
Analysis—Unit 4, County 57, Plot 12 in Alabama, and (C) Gentry—Araracuara High Campina site in
Colombia. Log-likelihoods of the models are included after the colon in the legend.

ecological neutral models for the purposes of model selection (Connolly et al., 2014). We
use it to represent neutral models as a class.

The Zipt (or power law) distribution was derived based on both branching processes
and as the outcome of the McGill ¢ Collin’s (2003) spatial model. It was one of the best
fitting distributions in a recent meta-analysis of SADs (Ulrich, Ollik ¢ Ugland, 2010). We
use the discrete form of the distribution which is appropriate for fitting discrete abundance
data (White, Enquist & Green, 2008).

Figure 1 shows three example sites with the empirical distribution and associated
models fit to the data. Zipf distributions tend to predict the most rare species followed by
the log-series, the negative binomial, and Poisson lognormal.

Analysis

Following current best practices for fitting distributions to data and evaluating their fit,
we used maximum likelihood estimation to fit models to the data (Clark, Cox ¢~ Laslett,
1999; Newman, 2005; White, Enquist ¢» Green, 2008) and likelihood-based model selection
to compare the fits of the different models (Burnham ¢ Anderson, 2002; Edwards et al.,
2007). This approach has recently been affirmed as best practice for species abundance
distributions (Connolly et al., 2014; Matthews & Whittaker, 2014). This requires that
likelihoods for the models can be solved for and therefore we excluded models that lack
probability mass functions and associated likelihoods. While methods have been proposed
for comparing models without probability mass functions in this context (Alroy, 2015),
these methods have not been evaluated to determine how well they perform compared to
the widely accepted likelihood-based approaches.

For model comparison we used corrected Akaike Information Criterion (AICc) weights
to compare the fits of models while correcting for differences in the number of parameters
and appropriately handling the small sample sizes (i.e., numbers of species) in some
communities (Burnham ¢ Anderson, 2002). The Poisson lognormal and the negative
binomial each have two fitted parameters, while the log-series and the Zipf distributions
have one fitted parameter each. The model with the greatest AICc weight in each community
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was considered to be the best fitting model for that community. We also assessed the full
distribution of AICc weights to evaluate the similarity of the fits of the different models.

In addition to evaluating AICc of each model, we also examined the log-likelihood
values of the models directly. We did this to assess the fit of the model while ignoring
corrections for the number of parameters and the influence of similarities to other models
in the set of candidate models. This also allows us to make more direct comparisons to
previous analyses that have not corrected for the number of parameters (i.e.,Ulrich, Ollik
& Ugland, 2010; Alroy, 2015)

Model fitting, log-likelihood, and AICc calculations were performed using Python (Van
Rossum ¢ Drake, 2011) and R (R Core Team, 2016). Python packages used for analysis
include numpy (Oliphant, 2007; Van der Walt, Colbert ¢ Varoquaux, 2011), matplotlib
(Hunter, 2007), sqlalchemy (Bayer, 2014), pandas (McKinney, 2010), macroecotools (Xiao
et al., 2016), and retriever (Morris & White, 2013). R packages used for analysis include
ggplot2 (Wickham, 2009), magrittr(Bache & Wickham, 2014), tidyr (Wickham, 2016), and
dplyr (Wickham & Francois, 2016). All of the code and all of the publicly available data
necessary to replicate these analyses is available at https://github.com/weecology/sad-
comparison and archived on Zenodo (Baldridge et al., 2016). The CBC datasets and NABA

datasets are not publicly available and therefore are not included.

RESULTS

Across all datasets, the negative binomial and Poisson lognormal distributions had very
similar average log-likelihoods (within 0.01 of one another; Fig. 2). The log-likelihoods for
each of these distributions averaged 0.8 units higher than for the log-series distribution
and 5 units higher than for the Zipf distribution (corresponding to likelihoods that were
twice as high and 140 times as high, respectively).

Although the negative binomial and Poisson lognormal distributions matched the data
most closely, the likelihood provides a biased estimate of these distributions’ ability to
generalize to unobserved species. AICc approximately removes this bias by penalizing
models with more degrees of freedom (e.g., the negative binomial and Poisson lognormal
distributions, which have two free parameters instead of one like the log-series and
Zipt distributions). After applying this penalty, the log-series distribution would be
expected to make the best predictions for 69.2% of the sites. The Poisson lognormal and
negative binomial distributions were each preferred in about 12% of the sites, and the Zipf
distribution was preferred least often (6.0% of sites; Fig. 3).

Across all datasets and taxonomic groups, the log-series distribution had the highest
AICc weights more often than any other model. The negative binomial performed well for
BBS, but was almost never the best fitting model for plants (FIA and Gentry), butterflies
(NABA), Acintopterygii, or Coleoptera. The Poisson lognormal performed well for the
bird datasets (BBS and CBC) and the Gentry tree data, but was almost never best in the FIA
and Coleoptera datasets (Fig. 4). The Zipf distribution only performed consistently well
for Arachnida. Because datasets differ in both taxonomic groups and sampling methods
care should be taken in interpreting these differences.
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Figure 2 Violin plots of the deviation from the mean log-likelihood for each site for all datasets com-
bined. Positive values indicate that the model fits better than the average fit across the four models.
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Figure 3 Number of cases in which each model provided the best fit to the data based on AICc for all
datasets combined.

The full distribution of AICc weights shows separation among models (Fig. 5). Although
the log-series distribution had the best AICc score much more often than the other models,
its lead was never decisive: across all 16,209 sites, it never had more than about 75% of the
AICc weight (Fig. 5). Most of the remaining weight was assigned to the negative binomial
and Poisson lognormal distributions (each of which usually had at least 12-15% of the
weight but was occasionally favored very strongly). The Zipf distribution showed a strong
mode near zero, and usually had less than 7% of the weight.
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DISCUSSION

Our extensive comparison of different models for the species abundance distribution
(SAD) using rigorous statistical methods demonstrates that several of the most popular
existing models provide equivalently good absolute fits to empirical data. Log-series,
negative binomial, and Poisson lognormal all had model relative likelihoods between 0.25
and 0.5 suggesting that the three distributions provide roughly equivalent fits in most
cases, but with the two-parameter model performing slightly better on average. Because the
log-series has only a single parameter but fits the data almost as well as the two-parameter
models, the log-series performed better in AICc-based model selection, which penalizes
model complexity. These results differ from two other recent analyses of large numbers of
species abundance distributions (Ulrich, Ollik ¢ Ugland, 2010; Connolly et al., 2014) and
are generally consistent with a third recent analysis (Alroy, 2015).

Ulrich, Ollik ¢ Ugland (2010) analyzed ~500 SADs and found support for three major
forms of the SAD that changed depending on whether the community had been fully
censused or not. They found that “fully censused” communities were best fit by the
lognormal, and “incompletely sampled” communities were best fit by the Zipf and
log-series (Ulrich, Ollik ¢ Ugland, 2010). In contrast we find effectively no support for the
Zipf across ecosystems and taxonomic groups, including a number of datasets that are
incompletely sampled. Our AICc value results also do not support the conclusion that
the lognormal outperforms the log-series in fully censused communities. The Gentry and
FIA forest inventories both involve large stationary organisms and were collected with the
goal of including all trees above a certain stem diameter. Therefore, above the minimum
stem diameter, they are as close to fully censused communities as is typically possible. In
these communities the log-series provides the best fit to the data most frequently. The
discrepancy between our results and those found in (Ulrich, Ollik ¢ Ugland, 2010) may be
due to: (1) their use of binning and fitting curves to rank abundance plots, which deviates
from the likelihood-based best practices (Matthews ¢ Whittaker, 2014) used in this paper;
(2) the statistical methods they use to identify communities as “fully censused”, which
tend to exclude communities with large numbers of singletons that would be better fit
by distributions like the log-series; (3) the use of the continuous lognormal instead of
the Poisson lognormal; (4) the fact that our censused communities are also a different
taxonomic group from our sampled communities, making it difficult to distinguish
between taxonomic and sampling differences.

Connolly et al. (2014) use likelihood-based methods to compare the negative binomial
distribution (which they call the Poisson gamma) to the Poisson lognormal for a large
number of marine communities. They found that the Poisson lognormal provides a
substantially better fit than the negative binomial to empirical data and that the negative-
binomial provides a better fit to communities simulated using neutral models. They
conclude that these analyses of the SAD demonstrate that marine communities are
structured by non-neutral processes. Our analysis differs from that in Connolly et al. (2014)
in that they aggregate communities at larger spatial scales than those sampled and find the
strongest results at large spatial scales. This may explain the difference between the two
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analyses or there may be differences between the terrestrial systems analyzed here and the
marine systems analyzed by Connolly et al. (2014). The explanation for these differences is
being explored elsewhere (SR Connolly et al., 2016, unpublished data).

Alroy (2015) compared the fits of the lognormal, log-series, Zipf, geometric series,
broken stick, and a new model dubbed the “double geometric”, to over 1,000 terrestrial
community datasets assembled from the literature. To incorporate the geometric series,
broken stick, and the double geometric, this research used non-standard methods for
evaluating the fits of the models to the data, however the results were generally consistent
with those presented here. The central Kullback—Leibler divergence statistics results showed
that: (1) the Zipf, geometric series, and broken stick all perform consistently worse than the
other distributions; (2) the double geometric, log-series, and lognormal all provide the best
overall fit for at least one taxonomic group; and (3) the lognormal and double geometric
fit the data equivalently well and slightly better than the log-series when not controlling
for differences in the number of parameters (Alroy’s Table S1, S2, and S3). Penalizing
the two-parameter models (lognormal and double geometric) for their complexity, as
we do here with AICc, would likewise improve the relative performance of the log-series
distribution.

In combination, the results of these three papers suggest that in general the Zipf is
a poor characterization of species-abundance distributions and that both the log-series
and lognormal distributions provide reasonable fits in many cases. Differences in the
performance of the log-series, lognormal, double geometric, and negative binomial, appear
to be more minor. How these differences relate to differences in intensity of sampling,
spatial scale, taxonomy, and ecosystem type (marine vs. terrestrial) remain open questions.
Our analyses suggest that controlling for the number of parameters makes the log-series
a slightly better fitting model, at least in the terrestrial systems we studied. Neither of the
other papers that include the log-series (Ulrich, Ollik ¢~ Ugland, 2010; Alroy, 2015) make
this correction and both show that it is still a reasonably competitive model even against
those with more parameters.

The relatively similar fit of several commonly used distributions emphasizes the challenge
of inferring the processes operating in ecological systems from the form of the abundance
distribution. It is already well established that models based on different processes can
yield equivalent models of the SAD, i.e., they predict distributions of exactly the same
form (Cohen, 1968; Boswell ¢ Patil, 1971; Pielou, 1975; McGill et al., 2007). To the extent
that SADs are determined by random statistical processes, one might expect the observed
distributions to be compatible with a wide variety of different process-based and process-
free models (Frank, 2009; Frank, 2011; Locey ¢» White, 2013). Regardless of the underlying
reason that the models performed similarly, our results indicate that the SAD usually
does not contain sufficient information to distinguish among the possible statistical
processes—Ilet alone biological processes—with any degree of certainty (Volkov et al.,
2005), though it is possible that this result differs in marine systems (see Connolly et al.,
2014). A more promising way to draw inferences about ecological processes is to evaluate
each model’s ability to simultaneously explain multiple macroecological patterns, rather
than relying on a single pattern like the SAD (McGill, 2003; McGill, Maurer ¢» Weiser,
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2006; Newman et al., 20145 Xiao, McGlinn ¢» White, 2015). It has also been suggested that
examining second-order effects, such as the scale-dependence of macroecological patterns
(Blonder et al., 2014) or how the parameters of the distribution change across gradients
(Mac Nally et al., 2014), can provide better inference about process from these kinds of
pattern.
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