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ABSTRACT: The traditional approach of computational biology consists of calculating molecule b o
properties by using approximate classical potentials. Interactions between atoms are described by an energy | ¢ Y- L B
function derived from physical principles or fitted to experimental data. Their functional form is usually < Homologysequences
limited to pairwise interactions between atoms and does not consider complex multibody effects. More \/ Top-down approach
recently, neural networks have emerged as an alternative way of describing the interactions between

biomolecules. In this approach, the energy function does not have an explicit functional form and is learned | .- v QK\\'\:Z'
bottom-up from simulations at the atomistic or quantum level. In this study, we attempt a top-down | * oeomposecintobuiding biocs
approach and use deep learning methods to obtain an energy function by exploiting the large amount of vV
experimental data acquired with years in the field of structural biology. The energy function is represented arctur,sequence
by a probability density model learned from a large repertoire of building blocks representing local clusters

neural network

of amino acids paired with their sequence signature. We demonstrated the feasibility of this approach by :
generating a neural network energy function and testing its validity on several applications such as | " -rermewo: s
discriminating decoys, assessing qualities of structural models, sampling structural conformations, and

designing new protein sequences. We foresee that, in the future, our methodology could exploit the

continuously increasing availability of experimental data and simulations and provide a new method for the parametrization of
protein energy functions.

B INTRODUCTION on classical potentials can be too computationally expensive
and cannot always reach time and size scales directly
comparable with experiments. Although QM calculations and
hybrid methods'*™'® can be used to improve the accuracy of

A realistic description of biological molecules should involve
Quantum Mechanics (QM); however, its computational cost
strongly limits feasible applications of such an approach.

Models based on approximate classical potential, on the other the calculations, and enhanced sampling methods'” or coarse-
hand, have been more successful in describing how proteins grained force fields'*~*' can be used to scale up in both time
and other biological molecules interact. Two main categories and size scales, the core problems still exist.

of simplified potentials have emerged: physics-based potentials Deep learning has entered the field of structural biology with
and knowledge-based potentials. Both methods rely on a number of different applications that steadily increased with
physical intuition to map interactions between atoms into the years.”””” In most cases, deep learning has been used to
simple functional forms that depend on a set of parameters. In complement standard bioinformatics techniques based on
the first case, the parameters are derived by comparison with sequence analysis, for example, protein structure prediction
high-precision QM calculations or experiments. These using primary sequences. This classic problem, the holy grail of
potentials often take the name of force fields and are mainly computational biology, has de facto been solved recently after
used to perform molecular dynamics (MD) simulations." ™ In the impressive results obtained by Alphafold2, Rosettafold, and
the second case, probability distributions of observables (e.g, others in the 14th Critical Assessment of Techniques for
distances, angles, native contacts, etc.) are directly obtained Protein Structure Prediction (CASP14) competition.”* >’
from experimental information and transformed into a Researchers have also applied unsupervised deep learning

statistical potential.’'® These potentials are mainly used for

applications that are too computationally expensive for MD

simulations. The two approaches are not antithetic, and many

hybrid potentials have been developed from combining the

two methodologies.l 1,12 Received: January 20, 2022 JCTC-
Despite their wide usage and success, approximate classical Published: August 8, 2022

potentials still present major limitations that go in opposite

directions. For some applications, their simple functional form

cannot take into account all the details required for an accurate

description of the system. At the same time, simulations based

methods to extract biological, biophysical, and evolutionary
information from protein sequences.zg_30 Despite these
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Figure 1. Overview of the NNEF model. (A) We use a sample of nonredundant protein structures and augment the training data with their
homologous sequences. (B) Local structure around each residue defines the building block and is used as the input of the energy model. Each
building block X includes the residue itself, its four nearest residues along the sequence, and the ten other nearest residues in the 3D space. Each
residue is represented as one bead. The number of building block used as samples to train the network is about 2.5 billion. (C) The energy model is
illustrated in (E), where we fit a probability density function and calculate the energy as E(X) = — log P(X). The total energy of the protein is the
sum of energies of all building blocks. In the auto-regressive model, we separate the structural and sequence features and calculate P(X) =
p(Structure(X)) - p(Sequence(X) | Structure(X)) using the transformer network architecture. We use the softmax function to calculate the
probabilities of discrete features and use Gaussian mixtures to calculate the probabilities of continuous features. The total number of parameters of
the network model is 2.1 million. (D) The learned energy function can be applied for various tasks, such as decoy scoring, conformation sampling,

and sequence design, without being explicitly trained for any of those.

successful examples, deep learning models are very data-hungry
and, as a consequence, their field of application is still limited.

In more recent years, novel approaches that combine deep
learning with physics-based methodologies emerged. For
example, in chemistry and material science, neural network
and quantum Monte Carlo methods have been applied to solve
the Schrodinger equation®*” or generate classical atomistic
force fields by fitting calculations based on density functional
theory®>** or ab initio molecular dynamics.”**° In protein
science, some groups have developed neural network energy
functions for multiscale modeling of proteins, following a
bottom-up approach, for example, fitting coarse-grained
potentials to atomic MD simulations.”” Even though these
energy functions are not transferable to different protein
systems, they could lead to a paradigm shift in how force fields
will be parametrized in the future.

In this study, we propose a top-down approach and use
unsupervised deep learning to construct a statistical potential
from experimental data (protein structure and sequences). The
statistical potential has not a simple functional form, but it is
instead represented by a deep neural network. We then treat
this statistical potential as a proper energy function (neural
network energy function or NNEF) that can be applied to
various tasks in pair with other standard methodology (for
example, running MD simulations or discriminating decoys
from native configurations).

In strict terms, the NNEF is a free energy function that takes
into account both enthalpic and entropic contributions.

5650

Because entropy is not explicitly considered, hereafter, we
use the term “energy function” for simplicity.

The energy function should depend only on the protein
configuration, be time-independent and differentiable, and be
invariant under rotations, translations, and permutations of the
components to reproduce protein physics correctly.

B RESULTS

Design of the Neural Network Energy Function
Based on Protein Building Blocks. In constructing the
data-driven energy function for proteins, the choice of the
training data sets is critical, and a naive training of the network
with all the known experimental protein structures and
sequences will likely fail to reproduce protein physics correctly.
In an ideal case, we would like to have a large sample of
unbiased sequence-structure pairs. In reality, when one looks at
their physical properties, the set of proteins with known
experimental structures is small and redundant. The ensemble
of known folding domains®®*” is likely incomplete as structures
that appear legitimate from an energetic point of view may
have not yet been selected or explored by evolution.”
However, we can hypothesize that evolution had enough
time to extensively explore the configuration space of smaller
three-dimensional (3D) local structures.”' ™ Such local
structural patterns have been chosen not only for their
biological meaning but also because they have lower energy
than a random configuration of the same group of amino acids.
Under this hypothesis, all the information necessary to build a

https://doi.org/10.1021/acs.jctc.2c00069
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working energy function is already contained in the available
protein databases.

Following these guidelines, we decided to represent a
protein as a collection of small-scale structures (building
blocks) paired with their sequence information. Each building
block describe the chemical environment around a single
amino acid. Building blocks can overlap as a certain amino acid
can belong to different building blocks. In the training phase,
the building blocks are selected from a nonredundant set of
protein structures and their homologous sequences (see Figure
1 and Methods). The neural network learns the probability
P(X) of a given building block X from its structural and
sequence features as P(X) = p(Structure(X)) - p(Sequence(X)
| Structure(X)), and we calculate the energy of the building
block as the opposite of the logarithm of the probability: E(X)
= — log P(X). We assume that the set is complete, that is,
building blocks absent in this set are improbable and thus have
higher energies.

Each building block is formally independent from the others,
so that, by construction, the probability of a given protein
configuration (Y) is the product of the probabilities of the
single building blocks (X): P(Y) = [[x < yP(X)), and its energy
is the sum of the energies of each building block: E(Y) =
> x e vE(X)). Interactions between different amino acids are

kept in a self-consistent way, as changing the coordinates or
the sequence of a single amino acid will affect all the building
blocks in which the amino acid is present.

The energy function obtained in this way will be local and
additive by construction. If properly trained, the neural
network will be able to recognize alternative local minima,
which corresponds to alternative configurations, active or
intermediate states.

Protein Building Blocks. Definition and representation of
building blocks rely on human intuitions. They can be pairs of
residues, peptide fragments, groups of residues, and so forth.
They can be represented by atoms or virtual beads paired with
various geometric and chemical features. Furthermore, the size
of the building blocks has to be small enough to minimize the
risk of learning from undersampled sets but large enough to be
able to represent complex tertiary structures.

In our current model, we define a building block as the local
structure of 15 amino acids, which includes a central residue,
its four nearest neighboring along the sequence, and the ten
other residues which are closest to the central one in the 3D
space (Figures 1B and S1). With this definition, building
blocks are typically composed of a few noncontiguous
segments of residues that can be far in the primary sequence.
As we will show, the energy function can be used to run MD
simulations, and in this particular case, the building blocks
change dynamically with time. To represent the structure of
building blocks, we use very simple low-resolution geometric
features, that is, the coordinates of beads at the Cj positions
(C, for Glycine) and the connectivity of these beads based on
the protein sequence. Other features, such as the positions of
backbone atoms, the side chain positions, partial charges,
hydrogen bonds, and so forth, could be added in future refined
versions of the energy function but have not been considered
in the current realization. The coordinates of all the beads
composing each building block are rotated to the same local
internal coordinate system (Figure S2) to guarantee rota-
tional—translational invariance of the energy function.
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Understanding the Neural Network Energy Function.
To understand whether the NNEF can correctly grasp the
physical properties of proteins, we test it in several tasks
described hereafter.

Scoring Decoys Generated by Modifications of the Native
Structures. A good energy function should be able to
discriminate native-like from non-native conformations. We
tested the energy function against the 3DRobot decoy set™
and a second set of decoys that we generated by sampling
normal modes of protein structures. The 3DRobot decoy set
includes 200 nonhomologous single-domain proteins (48 in
the alpha class, 40 in the beta class, and 112 in the alpha/beta
class) and 300 structural decoys for each of these proteins, with
root-mean-square deviation (RMSD) ranging from 0 to 12 A.
The second set was generated from 18 small (<120 residues)
proteins, comprising 4 alpha proteins, 7 beta proteins, and 7
alpha/beta proteins. We can observe that for all the proteins we
considered, the energy values tend to increase with the
distance from the native, with native-like decoys having low
energies and decoys with a large RMSD having higher energies
(a typical result for each set is shown in Figure 2).

3DRobot 1R8S_A Normal modes 1ZZK_A
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Figure 2. Scoring decoys generated by modifications of the native
structures. Left panel shows one typical example protein in the
3DRobot decoy set. Right panel shows one typical example protein in
the normal mode decoy set. Red square is the native structure, and
blue dots are decoys. In all proteins of both decoy sets, the energy
increases with the distance from the native.

Scoring Structure Predictions. Another way in which we
tested the quality of the NNEF is to score predictions
generated in the CASP14 contest. This is a more significant
challenge than scoring the decoy sets generated by
modifications of native structures because such predicted
structures cover more diverse conformations and are optimized
according to some other scoring functions. Each of the 97
protein domains in CASP14 has about 200—500 model
predictions submitted by different groups. We evaluated the
NNEF for each of these predictions and measured its
correlation with the CASP14 Global Distance Test Total
Score (GDTps, a2 measure of the overall quality of the
prediction). For about 70% of the sets, we obtain a Pearson
correlation coefficient Ipl > 0.75 (Figure 3A,B). In the
remaining cases (many of which are proteins that belong to
complexes and for which their tertiary native structures could
depend on the environment), the energy of the best CASP
prediction is always near the global minimum of the evaluated
NNEF for the whole set. In other words, the energy function
appears to be quite successful in detecting good configurations
but could be fooled by wrong but reasonable configurations
(Figure 3C,D).

https://doi.org/10.1021/acs.jctc.2c00069
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Figure 3. Scoring structure predictions in CASP14. Panel (A) shows the histogram of Pearson correlation coefficients p between the energy score
and CASP GDT _TS score for proteins in CASP14. About 70% of proteins have Pearson correlation coefficients Ip | > 0.75. Panels B, C, and D
show three particular cases. 3D structures of some decoys are shown with indicators of their positions in the plot of energy vs GDT_TS. Panel (B)
shows an example of good correlation between the NNEF energy and CASP GDT_TS score. Panel (C) shows an example of a protein with a
simple alpha-helices fold. In this case, some models with non-native helix organizations have comparable energies to native-like models. Panel (D)
shows an example of a protein involved in a complex context. Some models with wrong folds have energies lower than those of the native-like

models.

Evaluating the Energy of Configurations within a MD
Trajectory. The results above suggest that the learned energy
function can be generalized to non-native configurations,
despite being trained only with native structures. To further
explore this feature, we use the NNEF to score a conformation
ensemble of a small protein (Fip3S) sampled over a 100-
microsecond long MD trajectory.3 The simulation was
performed at 395 K using the Amber99SB force field,** and
the trajectory is publicly available for download. The
temperature of the simulation approximates the protein’s in
silico melting temperature; therefore, Fip3$ explores regions of
the phase space far from the native configuration and
undergoes multiple folding and unfolding events within the
simulated time window. We computed the RMSD along the
original MD trajectory and compared it with the energy
evaluated with the NNEF. As shown in Figure 4, our results
show that the folded states have low energy scores, while the
unfold states generally have higher energy scores. This
indicates that the NNEF is able to distinguish real
configurations of proteins out of equilibrium from config-
urations that are more native-like.
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Figure 4. Evaluating the energy of configurations within a MD
trajectory for a small protein Fip3S. The protein undergoes multiple
folding and unfolding events. The RMSD and the energy along the
MD trajectory correlate well, suggesting that the energy function can
generalize to non-native conformations.

Performing MD Simulations. The energy function can be
interpreted as a Hamiltonian function and can be used to study
protein dynamics with an implicit solvent (Langevin
dynamics). In the dynamics, the Cartesian coordinates (g;)

https://doi.org/10.1021/acs.jctc.2c00069
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of the residue beads are updated at each step: g;(t + 1) = g,(t)
— a - V E; + pI(t), where §; is the position vector of the i-th
residue, E; is the NNEF for the protein at time ¢, and ['() is
Gaussian noise with null average and unitary variance. The
coeflicients a and fB are related to the physical friction
coeflicients, the integration time step, the temperature of the
system, and the physical units of energy values. With a proper
choice of their values (see Methods), we can observe that the
dynamics generated using this method produce fluctuations
consistent with those obtained with classical MD based on
force fields. We generated a 30,000 steps Langevin dynamics
for each protein in a test set comprising 18 small proteins
(using for all simulations the same pair of values a and f§) and
compared such trajectories to simulations obtained with
amber14SB force field® using OpenMM.*® We can observe
that for most proteins in the sample, the two dynamics
produce RMSFs in good correlation across the whole sequence
(see Figures S and S4), and their difference remains below 0.5

3KXT_A

- 6] —&- our energy function
% —e— MD reference
g 4
c
<
L
» 24
=
o

O T T T T T T

0 10 20 30 40 50
5CYB_A

5 -
5 4
@
2 34
<
w2+
2
xr 14

0 T T T T T

0 20 40 60 80

Residue number

Figure 5. RMSFs resulted from Langevin dynamics simulations using
the NNEF. We compare the RMSFs of the trajectories from the
NNEF (blue squares) with the RMSFs of the trajectories from
classical MD simulations obtained with amber14SB force field (green
dots). Two examples with high correlation are shown here. For most
proteins in the sample, the two dynamics produce RMSFs in good
correlation across the whole sequence (see also Figure SS).

A. A complete assessment of the validity of the NNEF as a
force field requires and deserves a much more exhaustive
analysis, which is out of the scope of this article. However,
these preliminary results indicate that the NNEF correctly
describe a protein behavior when it is excited by thermal
fluctuation.

Importance of the Sequence in the Energy Function. The
next question we want to address is whether the neural
network has learned the chemical differences between amino
acids and not only to evaluate local structural patterns
common to any generic protein chain. This is not a given
because it is possible to construct protein models that correctly
describe secondary structures without any sequence informa-
tion.”” To investigate this point, we evaluated the energy of
various "decoy” sequences assigned to the same 3D structure
(100 different protein structures were used as a test). The
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decoy sequences were generated in four different ways: (A)
substituting residues with chemically similar residues, (B)
shuffling the residues in the sequence, (C) mutating residues
to random ones, and (D) mutating all residues to the same
residue type. In most cases, the mutated sequences’ energies
are higher than the correct one, and random mutations are
worse than mutations to amino acids with similar chemical
properties (Figure 6). However, the network appears to prefer

[ random
shuffle

3000 -
1 typed

2500 A

2000 -

Num

1500 -

1000 A

500 A

200 300 400 500

E(decoy) - E(native)

0 100

Figure 6. Distributions of energy differences E(decoy)-E(native) for
three sequence decoy dataset. The decoy sequences were generated in
three different ways: (1) substituting residues with chemically similar
residues (green histogram), (2) shufling the residues in the sequence
(yellow histogram), and (3) mutating residues to random ones (blue
histogram). The energies of the mutated sequences are higher than
those of the native ones, and random mutations produce higher
energies than mutations to similar amino acids.

sequences rich in alanine as almost all poly-alanine decoys have
better energy than the natural sequence (Figure S3). To a
lesser extent, this happens to poly-leucine and poly-histidine
decoys, but not for the other amino acid.

Protein Sequence Design. To further explore the interplay
between the sequence and structure in the NNEF, we
redesigned the sequences of the 18 proteins in the test sample
starting from the 3D conformation of their backbone. Given a
random sequence, we run simulated annealing in the sequence
space and attempt to minimize the energy while keeping fixed
the reference structure. In this way, we expect to obtain a
sequence that will eventually fold to the desired 3D
configuration. At each step of the annealing process, we
propose a random point mutation for the protein sequence.
The mutation is accepted or rejected according to a Metropolis
algorithm. In most cases, the simulations converge to
sequences having energies lower than the native after a few
thousand steps. We designed 100 sequences for each target
protein within the mentioned test sample. Amino acid
frequencies for these 1800 designed sequences are shown in
Figure 7A. As we can observe, the annealing process converges
to sequences that favor ten amino acids (Ala, Val, Leu, Gly,
Pro, Ser, Thr, Arg, Glu, and Asp). It is worth noticing that
these amino acids have relatively high frequencies in natural
protein sequences and could be the first that joined biological
proteins early in evolution, according to the theory on the
temporal order of amino acids in evolution.** Overall, the
average sequence recovery fraction is about 25% for the total
sample of 1800 designed sequences. We also analyzed the

https://doi.org/10.1021/acs.jctc.2c00069
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Figure 7. Results of the protein sequence design given the backbone structure. (A) Amino acid frequencies of the 1800 designed sequences and the
native sequences for the test sample of 18 proteins (100 sequences for each protein). Designed sequences show a preference for ten amino acids
(Ala, Val, Leu, Gly, Pro, Ser, Thr, Arg, Glu, and Asp). (B) Amino acid frequencies of the residues in the core and surface of the designed proteins.
Core residues are mostly hydrophobic (Ala, Val, and Leu), while the polar residues are mainly on the surface. (C) A few examples of the target
structures and predicted structures using TrRosetta. For about two-thirds of the designed sequences, the predicted structures can match the target

structures.

differences between the core and surface residues of the
designed sequences (Figure 7B). Core residues are mostly
hydrophobic (Ala, Val, and Leu), while the polar residues are
more likely to be exposed to the solvent. Moreover, an analysis
of the 100 sequences designed for each structure reveals that
core residues are more conserved than surface residues. Finally,
to measure the reliability of the protein design method, we
randomly selected two of the low energy designed sequences
for each protein and predicted their structures using
TrRosetta.”> As Figures 7C and S5 show, the predicted
structures match the target structures well in two-third of the
cases.

B DISCUSSIONS AND CONCLUSIONS

In this study, we used unsupervised deep learning methods to
derive a statistical potential that describes amino acid
interactions within proteins. We represented the protein as a
collection of building blocks comprising nearby residues in the
3D space. The underlining ansatz is that evolution extensively
explored the configuration space of such building blocks, and,
for this reason, known experimental structures contain a
complete and nonredundant set of building blocks that can be
used to train the neural network correctly. In this way, we can
get a potential that well approximates protein physics, starting
from a small number of PDB structures, even though the
network is defined by a large set of parameters. The strength of
our methodology largely depends on the validity of our starting
hypothesis. The fact that we can obtain reasonable results
confirms our intuition a posteriori.
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By substituting the energy function with a neural network,
we are not explicitly fixing its functional form. Therefore, we
can keep track of nonobvious correlations and complex
multibody interactions and hopefully overcome some of the
limitations of classical potentials, which are usually defined by a
few pairwise interaction parameters. Indeed, the protein is not
represented only by the Cartesian position of its component
(in our cases the C4 atoms), but more exactly by a series of
vectors that encode all the information on how that particular
atom (in our case, the whole amino acid) behaves in the
environment created by the other components.

For this reason, we are not restrained to a single resolution
in the choice of the degree of freedoms. The protein
description could be fully atomistic, coarse-grained, or mixed
without any loss of generality. The network will likely be able
to learn how different resolutions should merge. It is
foreseeable, in the future, to use a neural network energy
function to build models in which some parts have the desired
level of details while other, less interesting, parts are
represented at a lower resolution.

Most importantly, the NNEF is general, and it can
discriminate decoys, assess qualities of structural models,
sample structural conformations, and design new protein
sequences, without being trained for any of these tasks
specifically, indicating that it is possible to learn general
properties of protein physical and chemical properties from
structural data alone.

The methodology we adopted is very flexible, and our
current implementation is far from realizing its full potential.
We can improve the method by extensively testing different
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ways to combine structures and sequences, testing other
representations of the proteins and building blocks and
improving training methods and loss functions. It is also
possible to refine the energy function parameters after the
unsupervised training by applying supervised fitting to the
various tasks we are interested in. Furthermore, the constantly
increasing availability of experimental data could be sufficient
to improve the new version of the NNEF in the future.

B METHODS

Structure and Sequence Dataset. In order to success-
fully train the network, we want to curate a nonredundant
sample of structures and associate each structure to a family of
homologous sequences. To reduce the redundancy in the
structures, we use a sample of PDB chains in a version of the
PISCES CulledPDB," in which the percentage identity cutoff is
50%, the resolution cutoff is 3.0 A, the R-factor cutoff is 1.0,
and the total number of chains is about 29,000. In our work,
only structures solved by X-ray crystallography are included;
however, it is possible to augment the structural part of the
data by including also high-accuracy structure predictions.””
Then, all the chains are matched to the HH-suite PDB70
database™® to get the aligned sequence data. The number of
matched chains is about 19,000. We filter the aligned
sequences using hhfilter, requiring <50% sequence identity to
the PDB sequence and >50% sequence coverage. After filtering,
we generate homologous structures by simply mapping the
aligned sequences to the coordinates of the structure. Given a
sequence A in a PDB chain and an aligned homologous
sequence B, we ignore insertions in sequence B and substitute
gaps in sequence B with the aligned sites in sequence A. In this
way, the resulting chimeric sequence has the same length as
sequence A and can be mapped to the coordinates of A.

To test the transferability of the energy function, we use a
radical partition of the dataset. All chains are matched to the
structural classifications in the CATH 4.2 database.”® Each
chain can include more than one CATH domain. A chain is
classified as one class (e.g, alpha/beta) if all the CATH
domains in the chain are classified as that class (alpha/beta).
The training data include only the alpha/beta chains. We
obtain about 7500 alpha/beta chains and use 7000 chains as
the training dataset and 500 as the validation dataset. The
trained energy function is tested on all protein classes,
including alpha/beta, mainly alpha and beta proteins.

Neural Network Model. After decomposing the proteins
of the training set into building blocks, we characterize the
likelihood of a building block by fitting a probability density
function and setting for each building block X: E(X) = — log
P(X). The total energy of a protein Y is the sum of all building
blocks composing Y: E(Y) = Y x < yE(X;). The probability
function P(X) is obtained with an autoregressive model and
maximum-likelihood training from a set of N building blocks
{X}. Each building block X can be viewed as a list of k variables
%1, %y..., X} ordered in a given scheme, and its probability P(X)
can be expanded according to the Bayesian rule as P(X) =
H}-p(x/- | x<j). In the ordering scheme, we separate the
structural and sequence features so that P(X) = p(Structure-
(X)) - p(Sequence(X) | Structure(X)). With P(X) expanded as
a chain of conditional probability functions, each conditional
probability p(x; | x;) is represented as a neural network that
shares parameters with other conditional probability functions.
Because proteins can be represented as molecular graphs, we
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use transformer graph neural networks as the autoregressive
model. The neural network architecture of the autoregressive
model is shown in Figure 1E.

Ordering Scheme in the Autoregressive Model. In the
autoregressive model, the structural and sequence feature
variables are ordered according to the following rule,
schematically shown in Figure S1. Each building block X can
be viewed as a graph with the central bead a as the root node.
The central segment is visited first with the order (a, a-1, a+1,
a-2, a+2). Then, the other segments are visited in the order of
increasing distance to the central bead. Within each
surrounding segment, the beads are visited in the order of
increasing primary sequence numbers.

Input Features. In our model, the features of a building
block include the residue types, Cartesian coordinates, and
bond connections of 15 amino acids belonging to a building
block. To make the energies rotational—translational invariant,
the coordinates of the C; atoms are rotated to the same local
internal coordinate system of the central residue (Figure S2).
The coordinate system is defined so that the residue a-1 is on
the X-axis, and the residues a-1 and a+1 are on the X-Y plane.
The Cartesian coordinates of all beads are then converted to
Polar coordinates. The bond connections, residue types, and
positional labels 1—15 are converted to high dimensional
vectors through look-up tables. The components of each vector
are learned by the neural network and encode information
about sequence and structural features of the building block.
After this step, the coordinates, bond connections, and
positional labels are concatenated as structural features, while
residue types and positional labels are concatenated as
sequence features.

Transformer Encoder and Decoder. The encoder for
structural features has four standard transformer encoder
layers. The outputs after two encoder layers are used as the
latent codes of the structural features and passed to the
decoder. The decoder for sequence features has four standard
transformer decoder layers. Both the encoder and decoder
layers use the standard transformer layer.”' In the decoder,
structure—sequence attention is used because we decompose
the probability as P(X) = p(Structure(X)) - p(Sequence(X) |
Structure(X)). The attention in both the encoder and decoder
is masked by position-based causal masks, that is, each position
can only pay attention to positions before it, so that the
network cannot know the answers by looking at the whole
input data.

Neural Network Training. We use the softmax function to
get the probabilities for the predictions of the discrete labels,
such as the bond connections and the residue types. For the
predictions of the continuous variables, such as the radius and
angles in the coordinates, we calculate the probabilities using
sums of Gaussian functions: p(x) = zjch(x, Hp Gj), where G(x,
Hp aj) is a Gaussian function of the variable x with average y;
and variance 6, and c;, y1;, 0; are outputs of the neural network.
Thus, the network calculates the conditional probabilities of
the next residue coordinate, given the coordinates of previous
residues. It also calculates the conditional probabilities of the
next residue type, given previous residue types and the
coordinates of all residues. After getting the conditional
probabilities, we calculate the energy terms as the negative log
of the probabilities. The energy of the building block is the
weighted sum of all the energy terms. We train the network to
minimize the energies, that is, the loss function is simply the
energy values. We use minibatch training, Adam optimizer>”

https://doi.org/10.1021/acs.jctc.2c00069
J. Chem. Theory Comput. 2022, 18, 5649—-5658


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00069/suppl_file/ct2c00069_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00069/suppl_file/ct2c00069_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00069?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

with starting learning rate S X 107> and betas = (0.9,0.99), and
L2 regularization with weight 107°.

Langevin Dynamics. In the Results section, we will show
that we can use the NNEF to run Langevin dynamics
according to the following equation: g,(t + 1) = g,(t) —a - V E,
+ PU(t), where g,— is the position vector of the i-th residue, E;
is the NNEF for the i-th residue at time t, ['(t) is a Gaussian
noise with null average and unitary variance, and o and j are
physical parameters of the simulation. To decide proper values
for these two parameters, we run a grid search using short
simulations (a = [1e-3, 3e-3, Se-3, 7e-3, 0.01, 0.01S, 0.02, 0.04
= [0.01, 0.03, 0.06, 0.1, 0.15]). When « and /3 are small, the
dynamics are very slow, and the protein’s residues are almost
locked in the initial position. When f is large, the protein
unfolds after a small number of time steps quickly. We decide
to use fixed values in the middle (a = 0.01 and 8 = 0.05) to run
simulations.

Small Protein Test Set. For testing sequence reconstruc-
tion and Langevin dynamics, we used a test set of 18 small
proteins corresponding to the following PDB IDs (the
underscore identifies the protein chain): 1ZZK_A,
2MCM_A, 2VIM_A, 3FBL_A, 3IPZ_A, 3KXT_A, 3NGP_A,
3POC_A, 3SNY A, 3SOL A, 3VI6_A, 4MIX_A, 407Q_A,
4QRL _A, 5CYB_A, SJOE_A, SZGM_A, 6H80_A.
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