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Continuous time Markov models have been widely used to describe ion channel kinetics, providing explicit
representation of channel states and transitions. Fitting models to experimental data remains a computationally
demanding task largely due to the high cost of model evaluation. Here, we propose a method to efficiently
optimize model parameters and structure. Voltage clamp channel protocols can be decomposed into a series of
fixed steps of constant voltage resulting in a set of linear systems of differential equations. Given the linear
systems, ODE integration can be swapped for the faster matrix exponential routine. With our parallelized
implementation, optimized models are able to reproduce a wide range of experimentally collected data within
one minute, a 50 times speedup over ODE integration.
� The cost of the objective function is reduced by employing the matrix exponential
� The likelihood of convergence is improved by applying synchronous start simulated annealing
� The approach was tested by optimizing parameters for a model of the cardiac voltage-gated Na+ channel,
NaV1.5, and the KCNQ1 K+ channel.
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ethod

Following the seminal work of Hodgkin and Huxley in 1952 [1], mechanistic ordinary differential
quation (ODE) models have been used to simulate dynamics of excitable systems including neurons,
yocytes and pancreatic beta cells [2,3]. A persistent challenge in creating these models is the

dentification of optimal parameters. This difficulty arises from the multi-dimensionality of the
earch, the exponential form of the rate equations, and the existence of many local minima. Global
earch methods such as simulated annealing and genetic algorithms have been applied to identify
ptimal sets of parameters [4–6]. However, these approaches require significant computational
esources.

The primary bottleneck for optimization is the numerical solution of ODEs needed to simulate
xperimentally observed dynamics. When evaluating a large set of models with global searches, this
tep becomes rate-limiting, and is particularly difficult when the equations become stiff, requiring
ery small time-steps or complicated implicit schemes [7].
We propose to overcome the ODE barrier by solving these differential equations with the matrix

xponential, an approach that has been used to analyze channel kinetics and improve the efficiency of
ction potential simulations [8,9]. We tested this approach on experimental voltage pulse protocols,
ptimizing a two discrete-state Markov models of the cardiac Na+ channel and the KCNQ1 K+ channel.
ptimization was performed using multiple chain simulated annealing [10]. Code has been made
ublically available at, where demos and https://github.com/silvalab/MMOptimizer instructions on
odel fitting can be found. Example model graphs and fits to Na+ experimental data are shown in
ig. 1; K+

fits are shown in Fig. 2.
We used the following voltage pulse protocols for Na+ model fitting:
Voltage Dependent Activation (Fig. 1B): A series of depolarizing pulses were applied from �120 mV

o 20 mV in 10 mV increments from a resting potential of �100 mV. The voltage-dependence of
hannel conductance was found from this protocol by finding the peak current during the pulse and
ividing by the driving force (Vm � ENa), where Vm is the membrane potential and ENa is the reversal
otential for Na+.
Steady State Inactivation (Fig. 1B): Cells were held at �120 mV before being exposed to conditioning

ulses ranging from �120 mV to 20 mV in 10 mV increments for 200 ms. Voltage was then stepped to
20 mV and peak current was recorded and normalized by dividing by the maximum current.
Recovery from Inactivation (Fig. 1C): Cells were held at �120 mV before being exposed to a �20 mV

epolarizing pulse for 200 ms. Cells were then allowed to recover at �120 mV for durations ranging
rom 1 ms to 1000 ms before a final depolarizing pulse at �20 mV where peak current was recorded
nd normalized across samples.
Rise/Fall Time (Fig. 1D): This protocol replicated Voltage Dependent Activation. Rise (10%-90%)

easured the amount of time it took for current to rise from 10% to 90% of the maximum recorded
urrent. Fall (90%-20%) characterized fast inactivation kinetics by measuring the time it took for
urrent to fall from 90% to 20% peak current.
Conductance Trace (Fig. 1E): In the final protocol we exposed the cell to a single depolarizing pulse

nd recorded normalized conductance over 5 ms.
Similarly, we used the following voltage pulse protocols for K+ model fitting:
Voltage dependent activation (Fig. 2B): A series of depolarizing pulses were applied from �100 mV

o 60 mV in 20 mV increments from a resting potential of �100 mV. The voltage-dependent channel
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conductance was calculated by dividing the peak current by the driving force (Vm � EK), where Vm is
the membrane potential and EK is the reversal potential for K+.

Deactivation (Fig. 2C): Cells were held at �80 mV before exposure to a depolarizing pulse at 60 mV
for 2 ms. Voltage was then stepped to conditioning pulses ranging from �120 mV to 0 mV for 4 ms.

Fig. 1. Overview of Na+ model fitting results. (A) Architecture of the fitted model, open state is shown in green. (B) Voltage
dependent activation (G-V) and steady state inactivation (SSI) model simulations compared with experiment using protocols as
described in reference [27]. (C) Recovery from single depolarizing pulse model simulation compared with experiment. (D) Rise
time (10–90%) and fall time (90–20%) of normalized conductance from model and experiment. (E) Normalized conductance
trace �10 mV depolarizing pulse. (F) Simulated state occupancy from a �10 mV pulse. According to the model, a depolarizing
voltage pulse causes the channel to transition from the closed state (S2) through S4 to the conducting state (S1). The channel
inactivates by transitioning from the conducting through S5 to the inactive state (S3).

Z.R. Teed, J.R. Silva / MethodsX 3 (2016) 577–588 579



V
b

t

F
d
R
d
d
r

5

oltage dependent-channel conductance was calculated by dividing the minimum absolute current
y the driving force.
Rise Time (Fig. 2D): This protocol replicated Voltage Dependent Activation. Rise (10%-90%) measured

he amount of time it took for the current to rise from 10% to 90% of the peak.

ig. 2. Overview of K+ model fitting results. (A) Architecture of the fitted model, open state is shown in green. (B) Voltage
ependent activation model simulations compared with experiment. (C) Deactivation simulation compared to experiment (D)
ise time (10–90%) of conductance from model and experiment. (E) Normalized conductance trace of �20 mV, 0 mV, and 40 mV
epolarizing pulses from a resting potential of �80 mV. (F) Simulated state occupancy from a �10 mV pulse. When exposed to a
epolarizing pulse, the model transitions from the closed state (S3) through S4 to the open state (S1). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
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Conductance Traces (Fig. 2E): Cells were exposed to �20 mV, 0 mV, and 40 mV depolarizing pulses
and normalized conductance was recorded over a 4 ms interval.

Model structure

Models are implemented as a connected graph, a sequence of rate parameters, and a boolean
conductivity vector. Each node in the graph represents a discrete model state, with transitions
between model states denoted by graph edges. The conductivity vector gives the relative conductance
for each state. Models are initialized from the space of random connected graphs using an approach
described by Wilson et al. [11]. We begin by constructing a minimum spanning tree by performing a
random walk over the graph until all nodes have been visited. Every time an unvisited node is
encountered, the edge connecting this node to the previous node is added to the graph. Afterwards,
new edges are added with constant probability. Initial rate parameters are drawn from independent
normal distributions.

If we let e 2 E denote the set of edges and r 2 R the set of rates, the transition matrix Q can be
generated as follows:

Qij ¼ rij; i; jð ÞeE
0; otherwise

f ori 6¼ j
�

ð1Þ

Qii ¼ �
X
i;kð ÞeE

rik ð2Þ

Note that each edge is bidirectional, so i; jð ÞeE, j; ið ÞeE. With the transition matrix, the model
kinetics can be defined by a single differential equation

dx
dt

¼ Qx ð3Þ

where ~x is the vector of state occupancies. The solution to this ODE can be approximated by using
standard solvers such as Runge-Kutta methods [12].

If we limit ourselves to the unconstrained case, we can optimize over all r 2 R rate parameters.
However, most ion channels are observed to obey microscopic reversibility, or the reversibility of flow
in closed loops [13,14], so we instead limit the search space to the set of models that satisfy this
principle. Rather than attempting to solve the constrained optimization problem, we follow the
approach outlined by Menon et al. [4], where we optimize over a set of independent rate parameters
which can be used to generate models that observe microscopic reversibility.

Microscopic reversibility requires that in equilibrium, the transition rates between any two
connected states must balance each other [15]. Thus, if i; jð Þ 2 E, the following must hold:

rijsi ¼ rjisj ð4Þ
where si and sj are the steady state occupancies for states i and j respectively. Taking the log of both
sides, Eq. (4) can be written in matrix form

ln rij
� �� ln rji

� � ¼ ln sj
� �� ln sið Þ ð5Þ

Dln rð Þ ¼ ITe ln sð Þ ð6Þ

where ITe is the transpose of the even columns of the graph’s incidence and D is a E � 2E difference
matrix with

Dij ¼
1; j ¼ 2i

�1; j ¼ 2i þ 1
0; otherwise

8<
: ð7Þ
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This forms a system of equations with 2E unknowns and E equations. To solve for R, we need an
dditional E independent equations. A simple choice is to define a new variable k to be the product of
orward and backward rates

kij ¼ rijrji ð8Þ

ln kij
� � ¼ ln rij

� �þ ln rji
� � ð9Þ

or again written in matrix form

abs Dð Þln rð Þ ¼ ln kð Þ ð10Þ
Combining Eq. (9) with Eq. (6) gives an independent linear systems of equations with 2E variables

nd 2E equations.

D
abs Dð Þ

� �
ln rð Þ ¼ ITe ln sð Þ

ln kð Þ
� �

ð11Þ

ln rð Þ ¼ D
abs Dð Þ

� ��1
ITe ln sð Þ
ln kð Þ

� �
ð12Þ

Of course, we expect the elements of the rate vector to be voltage-dependent, but microscopic
eversibility must also hold for all values of voltage. Eq. (12) shows that ln rð Þ is linear in terms of ln sð Þ
nd lnðkÞ. Thus, we can define s vð Þ and k vð Þ to the exponent of a linear operation

si vð Þ ¼ exp f vð Þ � aið Þ ð13Þ

kij vð Þ ¼ exp f vð Þ � bij

� �
ð14Þ

here f vð Þ is a vector valued function of voltage, and a; b are vectors of rate parameters which are
ubject to optimization. Substituting Eqs. (13) and (14) into Eq. (12)

lnðrÞ ¼ D
absðDÞ

� ��1
I Teaf ðvÞT
bf ðvÞr

� �
¼ D

absðDÞ
� ��1

I Tea
b

� ��1

f ðvÞT ð15Þ

Substituting the voltage constant part of Eq. (15) for u

u ¼ D
abs Dð Þ

� ��1
ITea
b

� �
ð16Þ

r vð Þ ¼ exp u � f vð ÞT
� �

ð17Þ

The results obtained in Eq. (17) can be used to generate the transition matrix as shown in Eq. (2).
ecause the rate vector is the result of linear operations on s and k it is of the same form as s and k.

oltage dependence

In the model, transition rates are given as the exponent of the inner product of a vector valued
oltage function and the model parameters.

r vð Þ ¼ ef vð Þ�u ð18Þ
Any rate function that can be written in this form can be made to satisfy microscopic reversibility

y the method previously described. The simplest voltage function is a linear model motivated by the
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constant temperature Eyring rate theory [16], with f vð Þ ¼ 1 v½ �. The transition rate then becomes

r vð Þ ¼ eu1þvu2 ð19Þ
In practice, the linear model worked well. We were able to obtain good fits for all provided voltage

clamp protocols. Nonetheless, the linear model is prone to stiff differential equations. As membrane
voltage becomes increasingly large (for u2 > 0) or increasingly small (for u1 < 0), the r vð Þ becomes
exponentially larger, often resulting in physically implausible transition rate. A simple solution would
be to bound r vð Þ; however, in models where the rates are not linearly independent microscopic
reversibility could be violated.

Another proposed voltage function extends the linear model by adding higher order polynomial

terms [17], with f i vð Þ ¼ vi�1 and r vð Þ ¼ eu1þu2vþ...þunvn�1
. We test both second order expansions of this

form. The higher order terms gave the model more expressive power and resulted in significantly
reduced fitting error. Regardless, the polynomial model showed signs of severe overfitting. Even slight
modifications of the protocol parameters resulted in very different behavior, making models ill-suited
for larger scale simulations.

Finally, we attempted a third voltage dependence function in attempt to circumvent some of the
limitations of the linear model by bounding transitions rates while not violating microscopic
reversibility. The proposed function is in the form

f vð Þ ¼ 1 sigðv � a
b

Þ
� �

ð20Þ

where sig is the sigmoid function and a and b are fixed parameters shared across all rates. In regions
where v � a, the sigmoid model closely approximates the linear model; however, at large or small
voltages, the sigmoid function becomes bounded limiting the maximum rate and reducing ODE
stiffness. Additionally, this function provided better fits than the linear model.

Cost function evaluation

Each of the fitted voltage clamp protocols consist of a sequence of discrete voltage steps. The cost
function is computed by simulating each of the protocols, recording the results, and using squared
error as a metric to evaluate model performance. In this paper, we look at two different ways to
simulate the model: traditional ODE solvers and the matrix exponential. A flow chart illustrating the
cost function evaluation for both approaches is show in Fig. 3.

As the execution time profiling results in Fig. 4A show, ODE integration is the clear bottleneck,
accounting for as much as 99% of execution time. ODE solvers were designed to solve a broad class of
problems

_x ¼ f x; tð Þ; x 0ð Þ ¼ x0 ð21Þ
Yet, voltage clamp protocols commonly consist of a series of discrete voltage steps, reducing the

system from _x ¼ Q v tð Þð Þx to _x ¼ Q vð Þx where Q vð Þ is constant over the time t0 k½ � to t1 k½ �. We expect that
standard ODE solvers are not able to take full advantage of the linear nature of the constant voltage
steps. In contrast, using the matrix exponential, the solution is given as x tð Þ ¼ etQx0 [23]. The matrix
exponential can further be used to sample state occupancy over a series of fixed time steps

x t þ nDt
� � ¼ Qnx tð Þ ¼ Qx t þ n � 1ð ÞDt

� � ð22Þ
showing that it can effectively replace ODE solvers in our cost function evaluation routine. In our
implementation we used ExpoKit’s Padé approximation routine [19,23]

The resulting speedup is substantial—using a single thread on an Intel Xeon E5-2630 processor, the
matrix exponential (EXPM) implementation converges in significantly less time than ode integration
(ODE) as shown in Fig. 4B. With a single thread, the EXPM implementation was able fit models in the
order of five minutes compared to five hours, a speed-up of more than 50�. Synchronous chain
simulated annealing can easily be modified to use more than a single thread. Using 12 threads, model
fitting shown in Fig. 1 can be performed in under a minute.

Z.R. Teed, J.R. Silva / MethodsX 3 (2016) 577–588 583



Fig. 3. Cost function evaluation using matrix exponential/ODE solver. The cost function takes the model and protocol definition
as input and outputs the squared error between the model and experimental outputs. Detailed information and instructions
regarding protocol encoding can be found https://github.com/silvalab/MMOptimizer. The main procedure is repeated for each
voltage trace in each protocol. The error for each trace is computed by comparing the simulation outputs to experimentally
collected values; whether or not a step produces any output is encoded in the protocol design. First, the steady state occupancy
is computed for the resting membrane potential. Next, we iterate through each step in the voltage clamp protocol, beginning at
t0 k½ � and ending with t1 k½ � with step voltage denoted by v k½ �. Q v k½ �ð Þ is calculated using Eq (2). If the current step does not
produce output, we simply compute the state occupancy x k½ � at t1 k½ �. Using ODE integrators we can approximate x k½ � by solving
_x ¼ Q v k½ �ð Þx with initial state x 0ð Þ ¼ x k � 1½ �. Using the matrix exponential we simply compute x k½ � ¼ eQ t1 k½ ��t0 k½ �ð Þx k � 1½ �. On the
other hand, if the step does produce output, we are forced to use a small step size Dt to sample state occupancy over the range
t0 k½ � to t1 k½ �. Using the ODE solver, intermediate state occupancy is recorded for each time step for all is:t:iDt < t1 � t0. When
using the matrix exponential, H is precomputed as H ¼ eQ�Dt . Each step is then computed by ‘powering up’ the matrix
exponential y i½ � ¼ H � y i � 1½ �. Both methods then share the next step in which normalized conductivity is computed by
performing the dot product of the state occupancy matrix y with the conductivity vector G. This giving the normalized channel
conductivity over the timespan t0 k½ � to t1 k½ �, providing the raw data necessary to output derived features such as peak
conductance, rate constants, and normalized traces.

584 Z.R. Teed, J.R. Silva / MethodsX 3 (2016) 577–588

https://github.com/silvalab/MMOptimizer


Finally, we evaluated a stiffness penalty on the models proportional to the model’s largest
eigenvalue over a range of voltages (–120 mV to +20 mV). This penalty constrains the search space and
resulting models have slightly higher cost (Fig. 5A). Nonetheless, adding a small penalty proved to be
important. Following optimization, we reran the fitted models over the protocols, using ODE solvers
rather than the matrix exponential (Fig. 5B). Models with no added penalty took over 50 x longer due
to their stiff differential equations. In whole cell simulations, membrane voltage is no longer a series of
discrete steps, but rather a continuous variable requiring ODE integration. This penalty ensures that
fitted models can be efficiently used in larger scale simulations, while constraining transition rates to
physically plausible values.

Optimization

Similar to Menon et al., we optimize over model architecture as well rate parameters, maintaining
microscopic reversibility by encoding rates as a set of independent parameters. Instead of a genetic
algorithm, we use simulated annealing to explore the combinatorial search space. Genetic algorithms
involve a recombination step, where individuals are selected to form offspring for the next generation
[22]. With like structured models, new model rates can simply be drawn from a random distribution
parametrized by the parents’ rates. When models have different structures (i.e. different numbers of
nodes and connectivity), recombination is less obvious. One option is to only perform recombination
over models with the same structure. However, we observed this leads to a collapsed structural search

Fig. 4. (A) Execution time profile of model fitting. When using ode solvers, channel simulation accounts for 99% of execution
time, compared with 46% in the EXPM implementation. (B) Average model error as a function of execution time for both EXPM
and ODE implementations using a single process. Error converges in approximately 300 min when using ode integration; this
time is reduced to five minutes with matrix exponentiation. These results agree with [23] where ODE methods were shown to
take significantly longer and obtain lower overall accuracy.

Fig. 5. (A) Impact of stiffness penalty on fitting error. The stiffness penalty imposes an additional cost on models proportional to
the largest eigenvalue of the rate matrix for a range of voltages. (B) Impact of stiffness penalty on ODE integration time.
Following the experiment shown in C, the fitted models were again run over the protocols except using an ODE solver. The
values show the average per model execution time.

Z.R. Teed, J.R. Silva / MethodsX 3 (2016) 577–588 585
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pace, and leads to unsatisfactory local optima. We obtained better convergence results in much less
ime using simulated annealing.

Specifically, we used synchronous chain simulated annealing for model optimization, considering
he tradeoff between execution time and model error. Simulated annealing is an iterative stochastic
earch algorithm which combines local Monte Carlo search with an annealing schedule [10]. It
robabilistically guarantees a globally optimal solution provided an infinitely long cooling schedule
20]; however, in practice, we wish to fit good suboptimal models quickly.

At each iteration we generate a new model proposal by perturbing the current model m0 	 m.
Perturbations are reversible and can alter both model structure and rate parameters taking one or

ore of the following forms:

1. State Addition: A new state is added to the model. A random edge is formed connecting the new
state to a random state drawn from the existing model. The new rate parameters governing the edge
and state are drawn from a normal distribution.

. State Removal: A state is randomly chosen from the existing model and removed; all edges
connecting this state are also removed. If removal results in a disconnected graph, the graph is
reconnected by forming a random minimum spanning tree over the disconnected components.

. Edge Addition: Two model states are randomly selected, if these states are not already connected a
new edge is formed. Rate parameters are drawn from a normal distribution.

. Edge Removal: A random model edge is selected and removed. If removal results in a disconnected
graph, the graph is reconnected similar to (2).

. Rate Perturbation: Each rate parameter has probability p of being updated. Updates are performed
by adding a random variable drawn from a zero mean normal distribution to the current parameter.
Thus, for rate parameter ui

ui ¼ ui þ xiyi where xi 	 Ber pð Þ; yi 	 N 0; sð Þ ð23Þ

The locality of the perturbation can be modified by adjusting hyper-parameters p and s. Every
erturbation performs a rate update—other structural modifications are performed with a predefined
robability.
Following perturbation, the cost function for the new model is computed. The new model is

ccepted with probability

P e; e0; Tð Þ ¼ max exp �e0 � e
T

	 

; 1

	 

ð24Þ

here e is the previous model error, e0 is the perturbed model error, and T the annealing temperature
21]. As the temperature decreases, T ! 0, the probability of making an uphill transition, e0 > e,
ecomes increasingly small. In our implementation, we adopt the simple exponential annealing
chedule [21] with T tð Þ ¼ T0g t or equivalently T tð Þ ¼ T t � 1ð Þg, where g governs the rate of annealing
nd initial temperature T0.
To avoid getting trapped in local optima and increase the probability of convergence, we run

ultiple synchronous chains [10]. Rather than a single model, we maintain a set of models, each with
heir own search path. Model perturbation and acceptance are both performed individually for each
hain.
The optimization procedure attempts to fit all the voltage clamp protocols while minimizing model

omplexity. We found that in many cases, several models of similar complexity were able to achieve
pproximately the same fitting error. Hence, different runs often converged to different model
tructures. Since model structure is an optimization variable, we make no attempt to distinguish the
ypes of channel states, rather such states naturally emerge as a product of the optimization. Open
tates can easily be identified by examine the conductivity vector. Similarly, closed and inactivated

86 Z.R. Teed, J.R. Silva / MethodsX 3 (2016) 577–588



states can be identified by exposing models to a depolarizing test pulse (Fig. 1F), and looking at the
transition of state occupancy.

Conclusions

Identification of continuous Markov model parameters is a challenging problem due to a large
search space and a high cost of function evaluation, often requiring significant computational
resources. We propose to overcome these limitations by efficiently encoding the cost function as a
sequence of discrete voltage steps, solvable using the matrix exponential. Our implementation
successfully captures channel kinetics without requiring excess resources or time.

Overall, we observed a 50� speedup when using the matrix exponential implementation of the
cost function. One a single processor, optimization could be performed in only 10 min—extended to
12 cores, convergence time dropped to under a 2 min. The encoding of the cost function can be
generalized to other voltage clamp protocols, allowing our implementation to be easily adapted to fit
other channels types and data.

Modern biophysics methods are beginning to reveal molecular details of channel function [24–27],
the nanoscale consequences of inherited mutations [27,28], and the precise mechanisms of small-
molecule drug regulation [29]. To rigorously describe these molecular details, the complexity of
models and the burden of optimization will increase substantially, necessitating advanced
optimization methods and computer hardware. As such we expect that much future work will be
needed to develop the methods required to create these models.

The matrix exponential method for ion channel parameterization
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