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LETTER TO EDITOR

Noninvasive prediction of response to cancer therapy using
promoter profiling of circulating cell-free DNA

Dear Editor,
Neoadjuvant radiotherapy and concomitant

fluorouracil-based chemoradiotherapy (CRT) followed by
total mesorectal excision is the conventional treatment
for locally advanced rectal cancer (LARC).1 However,
there are individual differences in the sensitivity of cancer
patients to cancer therapies.2 The effectiveness prediction
before treatment would assist clinical decisions, effec-
tively avoid indiscriminately using drugs, reduce side
effects, and improve the curative effect and quality of life.3
Therefore, it is important to develop a novel noninvasive
methodology to predict the effectiveness of cancer therapy
before cancer treatment, which would enable timely
interventions and provide a more individualized approach
for better treatment outcomes.
Cell-free DNA (cfDNA) is mainly derived from tumor

andhematopoietic cells in cancer patients and it can reflect
the characteristics of its tissue of origin.4,5 For instance,
the promoter coverage of cfDNA could be used to infer
the expression status of tumor tissue.5 As tumor expres-
sion status is closely related to patient’s responses to can-
cer therapy,6 we hypothesized that the promoter profiling
of cfDNA could be used for pathologic complete response
(pCR) prediction after neoadjuvant CRT. In this study,
we first compared the local chromatin changes of cfDNA
between the pCR and non-pCR groups of LARC patients.
We further evaluated the potentials of promoter profiling
of cfDNA for predicting the effectiveness of cancer therapy
by developing classifiers for distinguishing pCR and non-
pCR patients (Figure 1A).
By comparing the local cfDNA signal between 10 pCR

and 10 non-pCR patients, we observed a related loss of
cfDNA signals in the mean coverage of transcriptional
start site (TSS) in LARC patients with non-pCR (Fig-
ure 1B, P-value = 3.4 × 10−21, Wilcoxon rank-sum test).
But the cfDNA signals around transcriptional terminal site
(TTS) did not show significant difference (Figure 1C, P-
value = 1, Wilcoxon rank-sum test). Therefore, we further
compared their promoter profiling for each TSS, we iden-
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tified 1371 genes with differential promoter coverage (Fig-
ure 1D and Table S1, fold change ≥ 1.5 and false discovery
rate [FDR] ≤ 0.05, Wilcoxon rank-sum test). The results
of unsupervised clustering analysis revealed that the pro-
moter profiling between the pCR and non-pCR patients
showed distinctive coverage patterns (Figure 2D).
Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis
was implemented and visualized using Metascape7 and
OmicShare tools (www.omicshare.com/tools). The results
showed that the genes with differential coverage were
associated with the patient’s response to cancer therapy
(Figure 1F-I). For example, the genes with differential
promoter coverage were enriched in multiple pathways,
such as Toll-like receptor (TLR), NOD-like receptor (NLR),
PI3K-Akt, and AMPK signaling pathway (Figure 1H). Pre-
vious studies have shown these pathways were closely
related to the patient’s response to cancer therapy.8,9 For
instance, TLR pathway can increase the sensitivity to
chemotherapy.8 NLR pathway can affect the sensitivity to
radiotherapy or chemotherapy.9 These resultsmay indicate
that promoter profiling may be useful for predicting the
effectiveness of cancer therapy before treatment.
To further validate the potential of promoter profiling

for pCR prediction after neoadjuvant CRT, we detected
the whole-genome sequencing (WGS) of cfDNA derived
from 194 LARC patients with pCR (n = 47) and non-pCR
patients (n = 147) collected before therapy (Figure S1 and
Table S2). According to the collection time of plasma
samples, the participants were split into training and vali-
dation cohorts. Using the genes with differential promoter
coverage identified in the discovery stage, we implemented
a SVM machine learning model to predict the response
to cancer therapy, and estimated the performance charac-
teristics of this approach by leave one out cross-validation
(LOOCV) cross-validation (Supporting Information
Materials). We used ROC analysis to evaluate the area
under curve (AUC), sensitivity, specificity, and accuracy
of the promoter profiling classifiers (Figure 2). Among
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F IGURE 1 Promoter profiling shows potentials for assessing the effectiveness of cancer therapy. A, Schematic overview of PPCET. In
cancer, the plasma cell-free DNA (cfDNA) is primarily derived from tumor and hematopoietic cells. ExposedDNAnot bound to a nucleosome is
digested, whereas nucleosome-bound DNA escapes digestion and enters into circulation. Therefore, cfDNA comprises a nucleosome footprint
that carries information of its tissue of origin and could reflect its gene expression pattern. As the effectiveness of cancer therapy is closely
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all combinations, a nine-gene combination achieved
high performance (AUC = 0.90 [95% confidence interval
0.83-0.96] and accuracy = 0.91) in the training cohort after
LOOCV, displaying the largest AUC (Figure 2A and B).
Then, this classifier, named PPCET, was subsequently
studied and validated in the validation cohort with an
AUC of 0.87 (0.75-0.98, Figure 2C and D). The genes in
PPCETwereMRGPRX2,OR10A2,GOLT1A,DLEU7,KLH1,
MED25, NDUFA7, SUMF2, and HDHD3 (Table S3).
In all cohorts, the PPCET had an AUC of 0.89 (0.83-

0.94) to discriminate individuals with pCR from non-pCR
patients with a sensitivity of 0.85 and specificity of 0.93

(Figure 2E and F). Previous studies have shown that the
global chromatin between different types of cancer was
significantly different,10 which indicated that it could be
used for predicting patients’ response to cancer therapy.
Comparedwith other global chromatin variables (Support-
ing Information Materials), the AUC for PPCET was sig-
nificantly greater than those for the classifiers based on
fragment profiles of 5 Mb windows (0.78 [0.71-0.85], P-
value= 2.4 × 10−02), subcompartments (0.78 [0.71-0.85], P-
value= 2.0× 10−02), andmitochondrial DNAcopy number
(0.58 [0.50-0.66], P-value = 1.9 × 10−08, Figure 2E and F).
These results may suggest that the classifier based on pro-

related to expression status of tumor and hematopoietic cells, which highly expressed genes in original tissue may show lower DNA coverage
than lowly expressed genes in cfDNA,wehypothesized that the read coverage of cfDNAat gene promoters could be used to develop classifiers for
predicting the patient responses to cancer therapy. To show greater differences, all nucleosome in the promoter regions (−1 kB to+1 kB around
the transcription start site [TSS]) of highly expressed genes are depleted; however, the nucleosome-depleted region is usually found within the
nucleosome upstream of the TSS. B, Average cell-free DNA signals at TSS. C, Average cell-free DNA signals at transcriptional terminal sites
(TTS).D,Volcano plots of gene transcripts with differential read coverages at promoter (fold change≥ 1.5 and false discovery rate [FDR]≤ 0.05)
between pCR and non-pCR patients. E, Heat map of the z-scores of promoters with differential read coverages. TSS, transcriptional start sites.
F,Gene ontology (GO) annotation of genes with differential promoter coverage.G, Top 10 enriched GO biological processes.H, Top 10 enriched
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. I,Network of biological processes of genes with differential promoter coverage.
pCR, partial clinical response; non-pCR, nonpartial clinical response

F IGURE 2 Prediction of pCR patients using PPCET. Receiver operating characteristic (ROC) curves for the training cohort (A), validation
cohort (C), and all cohorts (E). Performance of classifiers for the training cohort (B), validation cohort (D), and all cohorts (F). In total, 194
LARC patients with neoadjuvant therapy were used to develop classifiers to predict pCR patients. The classifier PPCET with the largest area
under curve (AUC) was identified (AUC = 0.89 [0.83-0.94]). Machine learning analysis of the variables of the global nucleosome, including
fragment profiles of 5 Mb windows (5Mb), subcompartments of genome (Sub), and mitochondrial DNA copy number (mtDNA), was imple-
mented
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moter profiling could effectively predict the effectiveness
of cancer therapy.
PPCET based on circulating cfDNA is a noninvasive

method and could avoid heterogeneity of tumor detection.
In addition, PPCET requires the plasma samples collected
before treatment to predict patient response after ther-
apy, which may enable timely interventions and provide
a more individualized method for better treatment out-
comes. There are also some limitations to our study: The
patients may show a different degree of sensitivity to can-
cer therapy in the clinic, but we only separated the patients
into pCR and non-pCR groups because of a limitation of
sample size.
In summary, our data suggest that PPCET is a non-

invasive promising method based on low-coverage DNA
sequencing for predicting the response of cancer patients
to cancer therapy before treatment. PPCET may help to
prevent indiscriminate use of drugs, reduce toxicity and
side effects, and improve the curative effect and quality of
life.
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