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Serum free light chain (sFLC) is a recently proposed biomarker for CVID diagnosis. Most
CVID patients present low or undetectable sFLC up to 10-fold lower compared to other
primary antibody deficiencies. Given that κ and λ light chains are normally secreted
in excess with respect to immunoglobulins, this finding points to an intrinsic defect
of B cell differentiation in CVID. sFLC levels were prospectively evaluated in a cohort
of 100 primary immunodeficiency (PID) patients and in 49 patients with secondary
immunodeficiency to haematological malignancy (SID). CVID patients had significantly
lower κ and/or λ values (mean: κ: 1.39 ± 1.7 mg/L and λ: 1.97 ± 2.24 mg/L) compared
to “other PIDs” (κ: 13.97 ± 5.88 mg/L and λ: 12.92 ± 7.4 mg/L, respectively, p < 0.001
both), and SID (κ 20.9 ± 22.8 mg/L and λ 12.8 ± 8.7 mg/L, respectively, p < 0.001
both). The sum of kappa and lambda (sum κ + λ) in CVID patients (7.25 ± 7.90 mg/L)
was significantly lower respect to other PIDs (26.44 ± 13.25 mg/L, p < 0.0001), and
to SID patients (28.25 ± 26.24 mg/L, p = 0.0002). ROC analysis of the sum κ + λ

disclosed an area under the curve (AUC) of 0.894 for CVID diagnosis (SD 0.031;
95% CI: 0.83–0.95, p < 0.0001), with optimal cut-off of 16.7 mg/L, giving the highest
combination of sensitivity (92%), specificity (75%) and NPV (98%). The Relative Risk (RR)
for patients presenting a sum κ + λ below 16.7 mg/L was 20.35-fold higher (95%, CI:
5.630–75.93) for CVID than below this threshold. A similar behavior of the sFLC in our
CVID cohort with respect to previously published studies was observed. We propose
a cut-off of sum κ + λ 16.7 with diagnostic application in CVID patients, and discuss
potential specific defects converging in low or undetectable sFLC.
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BACKGROUND: IMMUNOGLOBULIN,
THE MASTER KEY OF MANY LOCKS

Given the high clinical variability and immunological
heterogeneity in clinical manifestations of common variable
immunodeficiency (CVID), several researchers have proposed
combinations of clinical and immunological biomarkers in order
to refine the diagnosis and to provide more personalized follow-
up and treatment strategies that may improve the prognosis of
the individual patient (1–4). A recently proposed biomarker for
CVID diagnosis is the quantification of serum free light chain
(sFLC) (5–8).

The key-shaped structure of immunoglobulins (Ig) as
originally described by Ehrlich (9), consists of four polypeptide
chains, two pairwise identical copies of both heavy (H) and light
(L) chains, the latter being named kappa (κ) or lambda (λ) chains
(10). This “key” opens up a wide range of processes associated
with innate and adaptive immunity. Among these processes stand
out the direct neutralization of an almost unlimited number
of antigens and toxins, autoantibodies, modulation of fas death
receptor, binding to lectins, modulation of the complement
cascade, regulation of monocytes/macrophages, activation of
NK cells, regulatory T cell expansion, suppression of T and
B cell activation, suppression of cytokines, neuroregulatory
effects and increased sensitivity of steroids (10, 11). However,
functions related to this “master key” are not completely known.
L chains are incorporated into Ig molecules during B-cell
development. Initially, large pre-B cells express a pre-BCR
that is assembled from antibody µ H chains and surrogate L
chain (VPREB1 and IGLL1). At the next stage, in small pre-
B cells, bona fide L chains (κ and λ) undergo recombination
and when this results in a productively recombined L chain,
it is expressed together with µHC forming a BCR on the
surface of pre B-cells (Figure 1) (12). Production in excess
of L chains occurs throughout B-cell development till plasma
cells, where they bind to H chains, excess L chains enter the
bloodstream as FLCs. Secretion of L chains would reflect B cell
activation (13, 14).

In healthy individuals, small amounts of both free L κ and λ

chains can be found (κ = 3.3–19.4 mg/l, λ = 5.7–26.3 mg/l), with a
normal κ/λ ratio ranging between 0.26 and 1.65 depending on the
technical assay (5). These ranges were suggested using reference
serum samples from 282 healthy donors between the ages of 21
and 90 years (15), based on the polyclonal Freelite assay.

sFLC quantification may indicate the presence of B cell
clonality and is widely used in clinical practice for the diagnosis
of B-cell lymphoproliferative disorders (B-CLPD), in particular
the progression of monoclonal gammopathy of undetermined
significance (MGUS) to multiple myeloma (MM), as well as a
marker of neuroinflammation, for instance, in multiple sclerosis
(16–23). Moreover, dysbalance in sFLC is used as a prognostic
marker of various B-CLPD, such as chronic lymphocytic
leukemia (CLL), B cell non-Hodgkin lymphomas (NHL), as well
as for real-time monitoring of response to treatment and disease
progression (5, 17, 24–27). Due to the inherent immunological
alterations in a relevant proportion of PID patients, such as
polyclonal B cell proliferation, it is particularly challenging to

make an early diagnosis of B malignancy in these patients.
Interestingly, alterations of sFLC in PID patients (κ/λ ratio),
especially in CVID, correlate with clonal processes (6, 7, 13).

Here we sought to validate previous studies on the diagnostic
and prognostic value of sFLC. Secondly, we suggest the sum
κ + λ as a practical combined biomarker of CVID diagnosis and
other potential applications for follow-up and prognosis. Finally,
we present a hypothesis on the possible scenarios underlying
very low sFLC in CVID and discuss potential experimental and
clinical approximations.

MATERIALS AND METHODS

sFLC levels were prospectively evaluated in a cohort of 100
primary immunodeficiency (PID) patients and in 49 patients
diagnosed with a hematological malignancy referred to study of
secondary immunodeficiency (SID) at the Clinical Immunology
Dept., Hospital Clínico San Carlos of Madrid, Spain. All PID
patients fulfilled the ESID registry diagnostic criteria (28).

sFLC κ and λ chains were quantified by nephelometry
(FREELITE, The Binding Site Group Ltd., Birmingham,
United Kingdom), according to the manufacturer’s instructions,
using a BNII nephelometer (Siemens Healthcare Diagnostics,
Camberley, Surrey, United Kingdom).

SPSS statistics software (Chicago, IL, United States) was used
for descriptive and statistical data analysis. Pearson’s correlation
coefficient was used to assess the correlation between variables.
p < 0.05 was considered statistically significant. Receiver
operating characteristic curve (ROC curve) and contingency
analysis were performed using GraphPad Prism version 8.3.0 for
Windows, GraphPad Software, La Jolla, CA, United States1.

Approval for the study was obtained from the hospital
institutional Ethics Committee for PID and SID projects (19-
284-E and 19/219-E), respectively. Written informed consent was
obtained from all patients for inclusion in the study protocol.

RESULTS

sFLC Discriminates CVID From Other
Primary Immunodeficiencies
We studied sFLC in 100 patients with different PIDs (selective
IgA deficiency n = 38, unclassified antibody deficiency n = 27,
CVID n = 26, Good syndrome n = 2, 22q11.2 deletion
syndrome n = 2, complement system deficiency n = 2, X-linked
hypogammaglobulinemia n = 1, hyper IgM syndrome n = 1,
and Kabuki syndrome n = 1) as part as routine immunological
work-up. CVID patients showed significantly lower κ and/or λ

values in comparison to other PIDs (mean: κ: 1.39 ± 1.7 mg/L
and λ: 1.97 ± 2.24 mg/L versus κ: 13.97 ± 5.88 mg/L and λ:
12.92 ± 7.4 mg/L, respectively, p < 0.001 both) (Figure 2). The
sum of kappa and lambda (sum κ + λ) in CVID patients was
7.25± 7.90 mg/L versus 26.44± 13.25 mg/L respect to other PIDs
(p < 0.0001).

1www.graphpad.com
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FIGURE 1 | Potential hot-points in the development of sFLC synthesis, assembly and secretion. Scheme of the B cell maturation and differentiation, where an
alteration in the rearrangement of the receptors of the pre-B cells, could condition the inadequate production of immunoglobulin light chains and, consequently, the
defective expression of immunoglobulins. Modified from Winkler and Mårtensson (12).

When we analyzed the four previously described patterns of
sFLCs in CVID (6–8, 29): 53.84% (14/26) disclosed the κ−λ−

pattern; 30.76% (8/26) the κ+λ+ pattern; 7.69% (2/26) the κ−λ+

pattern; and 7.69% (2/26) κ+λ− pattern.
We then tested sFLC values in pure commercial

gammaglobulin preparations, detecting mean levels of 4.15 mg/L
of κ and 1.59 mg/L of λ, sum κ + λ 5.74 mg/L. However, it was
insignificant when gammaglobulin was diluted 1:10, as found in
normal plasma.

sFLCs May Aid in the Diagnosis of
Secondary Immunodeficiencies
Regarding the comparison of sFLC expression in SID and
CVID patients, we evaluated 49 patients with hematological
malignancy: CLL (n = 12), NHL (n = 22), MGUS (n = 12) and
MM (n = 3). CVID patients showed significantly lower kappa
and/or lambda values than SID (mean: κ 1.39 ± 1.7 mg/L versus
κ 20.9 ± 22.8 mg/L, p < 0.001; and λ 1.97 ± 2.24 mg/L versus λ

12.8 ± 8.7 mg/L, respectively, p < 0.001). When comparing the
κ/λ ratio in both cohorts, CVID κ/λ ratio was significantly lower
than SID (0.94 versus 1.91, p < 0.005). The sum κ + λ in CVID
was also significantly lower than SID patients (7.25 ± 7.90 mg/L
versus 28.25± 26.24 mg/L, p = 0.0002).

In our SID cohort to B-CLPD, 7 patients with CLL and
NHL that showed very low or undetectable sFLC at diagnosis of
malignancy were highly suspicious of an underlying CVID based
on history of infections since childhood (n = 2) or suspicious

family history of PID (n = 2), which were not diagnosed at the
time, which could only be confirmed if PID-predisposing gene
defect were found (30).

ROC Curves
The diagnostic performance of a CVID-pattern (i.e., diminished
levels of free L κ and/or λ in respect to the reference range) was
evaluated for the diagnosis of CVID with respect to other PID
and SID, showing a sensitivity of 76.00%, specificity of 85.71%,
positive predictive value (PPV) 52.78% and negative predictive
value (NPV) of 94.4% for CVID diagnosis.

We then compared the diagnostic value of the sum of free
L κ + λ levels in this setting. ROC analysis disclosed an area
under the curve (AUC) of 0.894 (SD 0.031; 95% CI: 0.83–0.95,
p < 0.0001), with optimal cut-off of 16.7 mg/L for the sum κ+ λ

giving the highest combination of sensitivity (92%) and specificity
(75.6%), with NPV (97.8%). The Relative Risk (RR) found for
CVID was of 20.35-fold (95% CI 5.630–75.93) for patients with
sum κ + λ levels below 16.7 mg/L (Supplementary Figure S3).
The frequency of patients below the recommended sum κ + λ

cut-off of 16.7 mg/L was 92% of CVID patients; 10% of other
PIDs; and 28% of SID (p < 0.0001, both).

Comparison of sFLC Values With Clinical
Associations in CVID
We observed a significant correlation between κ−λ− pattern and
CD27+IgD−IgM− switched-memory B cells (p < 0.05). We did
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FIGURE 2 | (A) Distribution of lambda and kappa chains among CVID, PID and SID patients (N = 100). (B) Distribution of sFLC concentration (sum κ + λ) in CVID
versus other PIDs and SID.

not find statistical significance between specific sFLC patterns
and age (p = 0.20), sex (p = 0.30), clinical onset (p = 0.15),
CD21low B cells (p = 0.76) or Ig levels at diagnosis of CVID
(p = 0.94). We then compared sFLC patterns (κ−λ+, κ+λ−,
κ−λ−, κ+λ+) with clinical associations in CVID patients. We
found that κ−λ− pattern was highly prevalent in CVID patients
with enteropathy (66.66%, 4/6 patients, p = 0.01), splenomegaly
(50.00%, 7/14 patients, p = 0.2) and bronchiectasis (68.75%, 11/16
patients, p = 0.1), compatible with the association described by
other groups (6, 7, 29).

Regarding clinical associations in CVID patients using the
sum κ + λ below 16.7 versus above this cut-off, 28.57% (6/21
patients) presented enteropathy versus 0% (p = 0.1), 57.14%

(12/21) splenomegaly versus 40% (p = 0.4) and 66.66% (14/21)
bronchiectasis versus 40% (p = 0.2).

DISCUSSION

sFLC as a Diagnostic Tool in Primary
Immunodeficiencies
Compatible with previous studies, a similar distribution of
normal sFLC levels among all PID was observed, except for
CVIDs, with significantly lower κ and/or λ values than other PIDs
(p < 0.001). To better define the most optimal cutoff level for
sFLC in our population, we used the sum κ + λ of 16.7 through
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standard statistical ROC analyses for discriminating CVID from
other PID and SID, AUC of 0.894 (p < 0.0001, for both). The
sum κ + λ provided a high sensitivity, specificity and NPV
for CVID diagnosis.

Several groups have pioneered a greater understanding on the
role of sFLCs in the clinical scenario of PIDs (6–8, 29). While
many primary antibody deficiency (PAD) share a common profile
of hypogammaglobulinemia, it has not been fully elucidated why
only CVID presents a characteristic profile of low or undetectable
sFLC (6–8, 29). Unsworth et al. described very low sFLCs in
18 out of 20 PID cases, CVID being the commonest diagnosis
(16/20), followed by X-linked agammaglobulinemia (XLA, 2/20).
Hyper-IgM syndrome (HIGM, 1/20) and non-HIGM with raised
polyclonal IgM (1/20) showed normal sFLC values. The common
denominator for all 20 patients was antibody immunodeficiency
and associated increased frequency of bacterial infections (8).
Scarpa et al. have recently described significant variations in
sFLCs values in a wide cohort of PID. CVID patients showed
decreased or undetectable values of sFLCs compared to normal
values in patients with unclassified antibody defects (p < 0.0001)
(7). Their findings were similar to those described in other studies
with different PIDs cohorts (6–8, 29, 31, 32). Regarding XLA,
there are contradictory results in the different cohorts described,
ranging from low to normal sFLC, which may depend on the
genetic defect (33).

In the present study, we used nephelometry with the same test,
reagents, and platforms described by Scarpa et al. and Unsworth
et al. in PIDs cohorts (7, 8), which reduces the variability among
results. The technique used has shown the highest sensitivity for
sFLC, with detection up to 0.1 mg/L for both κ and λ as low
reference levels (5). However, it could be interesting to design
comparative studies between the different techniques currently
available for measuring sFLC in the PID setting.

The marked decrease in sFLCs could reflect a profound
damage, both quantitatively and functional of the BCR during
lymphocyte differentiation in CVID. Moreover, a dysfunctional
BCR might be at the origin of a lymphoproliferative or self-
reactive status in this patients’ population (12). In general, the
production of both L chains increases during infections or
inflammatory states, with higher absolute concentrations but
without change in κ/λ ratio (5, 6, 8). Infection and inflammation
are very common and define the clinical phenotypes “cytopenia,”
“polyclonal lymphocytic infiltration,” “unexplained enteropathy,”
and “no disease-related complications (only infections)” of
CVID patients (3). We could infer that CVID patients
with chronic inflammatory phenotype would present with
high levels in a κ+λ+ pattern. Scarpa et al. analyzed
the association of sFLCs patterns (κ−λ+, κ+λ−, κ−λ−,
κ+λ+) and CVID clinical phenotypes. Counterintuitively,
infectious and inflammatory phenotypes were more frequently
observed in CVID patients with low or absent levels of
sFLC (κ−λ−) (6, 7, 29). Likewise, we found that enteropathy,
splenomegaly and bronchiectasis were more prevalent in the
κ−λ− pattern in our cohort, although the non-significance
in splenomegaly and bronchiectasis could be due to the
small sample size (Supplementary Figure S1). Our findings
did not demonstrate statistical significance between specific

sFLC patterns and age, sex, clinical onset or Ig levels at
diagnosis of CVID. In the study of Compagno et al., κ−λ+

pattern was the most represented in CVID (21 out of 46
patients, 46%) with higher risk of mortality derived from
autoimmune cytopenias, lymphoproliferation and enteropathy
(12/21 patients, 57%), followed by κ−λ− pattern (15/46
patients, 33%) with a trend to present splenomegaly (6/15
patients, 40%) and malignancy (5/15 patients, 33%) (6).
Scarpa et al. hypothesized that low sFLC levels may be
an epiphenomenon of a higher degree of impairment in B
cell differentiation, with reduced B cell class-switch affecting
immunoglobulins’ production (7). Altogether, these findings
support that diminished sFLC values observed in CVID are
associated with this pathology and can be used as an accessory
diagnostic tool to support CVID diagnosis. However, the clinical
significance of these patterns is still under study and needs
further validation.

Comparison of sFLC Patterns With Other
CVID Biomarkers
There is no clear correlation between sFLC with all serum Ig
levels at diagnosis in the different PIDs groups studied (7, 8,
29). Scarpa et al. described a direct association of IgA and IgM
with serum κ and λ chain concentrations in CVID but not in
control groups, while no association between sFLC and serum
IgG neither in CVID or control groups (7). Unsworth et al.
did not find correlation between IgG and IgA values with sFLC
concentrations in their PID cohort (8). Hanitsch et al. described
significantly lower IgG levels in κ−λ− CVID, although IgA and
IgM levels were not different (29).

There are controversial results regarding sFLC with
B cell phenotype in CVID patients. We observed a
significant correlation between κ−λ− pattern and class-
switch CD27+IgD−IgM− memory B cells (p < 0.05), without
association between CD21low B cells and sFLC patterns. In
contrast, Compagno et al. described a significant decrease
in numbers of switched memory, marginal zone, CD21low
B cells in the κ-λ- pattern, and a marked decrease of the
subsets linked to B-cell activation and Ig production, while no
correlation with transitional B cells (6). IN contrast, Scarpa
et al. showed the highest frequency of CD21low B cells in κ-λ-
group (7). The clinical association derived from these results
warrants further study.

Most of our patients were on Ig replacement therapy
(IgRT), and serum testing at CVID diagnosis and pre-infusion.
Commercial gammaglobulin preparations of pooled normal IgG
did contain detectable κ and λ sFLCs, similar to previously
published data (8), thus it seems unlikely that they may affect
the results, since all patients had normal renal function and
the half-life of sFLC in the circulation is 2–6 h (5). IgG
infusions are typically repeated every 3–4 weeks so that pre-
infusion concentrations measured are likely to only contain
sFLC produced by the patient’s immune system. Likewise,
the multi-time measurement of sFLC in order to determine
intra-individual variability showed no difference in our patients
(data not shown).
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sFLC and the Dilema Between Primary
and Secondary Immunodeficiencies
There is a cancer-immune paradox in PID described by some
authors (34). The type of malignancy seems to be highly
dependent on the specific PID, the age of the patient, and chronic
infectious stimuli or dysbiosis involving complex pathogenic
mechanisms (35). Cancer is 1.4 to 5-fold higher in registry-
based PID studies respect to general population (36, 37),
from which 70% corresponds to lymphoid malignancy (38,
39). Individuals with CVID are at 5 to 10-fold higher risk
of developing hematological malignancies (36, 37, 40), while
unexpectedly lower incidence on most common cancers than
general population has been described (41, 42). Cancer is a
leading cause of mortality in PID, and thus early diagnosis and
treatment of malignancy is a priority (22, 43). When comparing
the κ/λ ratio in both cohorts, SID showed significantly higher
κ/λ ratio (p < 0.005), as expected (7, 29, 43). In CVID patients,
the κ/λ ratio is usually normal. In CVID, a B-CLPD can be the
first and only clinical manifestation and thus the diagnosis of PID
versus SID represents a difficult clinical dilemma. Low κ and/or λ

values at hematological malignancy diagnosis might be pointing
an underlying CVID. There are no data on the “potential PID
patients” in the whole pool of patients with B-CLPD, which may
justify to investigate an underlying PID as cancer predisposing
factor (35, 40, 41, 44). Also, κ/λ ratio could be important in the
follow-up of CVID patients, and hence an altered κ/λ ratio or a
sudden increase in sFLC values may be an indicator for further
investigation (blood smear, LDH, serum β2-microglobulin, PET-
TAC, etc.) that allows appropriate and timely strategies. We
consider that the κ/λ ratio behaves like a more reliable marker
than the isolated determination of the sFLC when comparing
both cohorts.

The Key to CVID: Distinctive Light Chain
Defect
The extremely low sFLC in CVID might be explained by
different reasons: (i) the lowest the plasma cells numbers,
the lowest secretion of sFLC; (ii) increased elimination of
sFLC; (iii) altered rearrangement, assembly or secretion of
LC during B cell ontogeny; (iv) an intrinsic defect of
plasma cells secretion of light chains. To address precisely
the first argument, we should quantify plasma cells in the
bone marrow, which is not feasible. Indirect measures of
total peripheral B cells, class-switched B cells or total serum
IgG did not explain sFLC (Supplementary Figure S2). We
discarded the second argument, since none of the patients
had renal or other protein loss. The two last hypothesis imply
that the low levels of sFLC in CVID patients may reflect
an intrinsic alteration affecting normal production, assembly
or secretion of L chains into Ig molecules, which points
either to specific defects in plasma cell differentiation (45),
or stretches the way back to a critical early event during
B cell differentiation. Ig genes are first rearranged in early
B cell development through the V(D)J recombination in the
liver and then bone marrow and then further modified upon
antigenic encounter through the somatic hypermutation (SHM)

process in germinal centers of lymphoid nodes. We hypothesize
that different underlying mechanisms might correlate with
different sFLC patterns, which we discuss below according
to clinical and immunological observations and experimental
published data:

1. Early B cell defect: Particularly in cases where sFLC
are undetectable, L chains should be more profoundly
affected than H chains, for which a revision of genetic
and molecular processes in the generation of Ig diversity is
required. L chains of Ig are encoded in different multigene
families from H chains and in different chromosomes: κ in
chromosome 2p11.2, λ in chromosome 22q11.2 and H in
chromosome 14q32.2, Several potential genetic variations
might occur during this process (10, 31), affecting
rearrangement of H and L chains in CVID (germline
polymorphisms, allelic variants, insertion, deletion, etc.)
(14, 46). At pre-B cells stage, first phase (antigen-
independent) rearrangement of the H chain occurs, which
reacts with light chain-like molecule called surrogate L (SL)
chains by allelic exclusion (14, 46, 47). During the cell
division cycles, the composition of the pre-B cell receptors
(BCR) in the daughter cells engender successful production
of a complete κ or λ light chain and further allows the
expression of IgM on B cell surface (10).

The pre-BCR is a heterodimer composed of a H chain
covalently associated with a surrogate light chains (SL)
chain, a temporary common light chain composed by two
non-covalently associated proteins, namely lambda-5 (λ5)
and V-preB, which together have structural homology
with conventional L chains (48). VDJ recombination of
the H chain (pre-B cell) precedes pairing with SL chains,
proliferation of large pre-B cells and subsequently L chain
rearrangement (Figure 2). At this stage (at pre-BI to pre-
BII or at pre-BII cell to immature B cells for pre-BCR), any
transcriptional error in the SL chains, involving the region
of the interchain bond during pre-B cells, would affect the
correct linkage of SL to H chains and results in lack of LC.
Conley reported the first patient with autosomal recessive
mutation in the λ5 gene causing severe B cell deficiency
and agammaglobulinaemia (33). The mutant λ5 resulted in
impaired protein folding and secretion of Ig. It is conceivable
that alteration of the players of this highly coordinated
process at the pre-BCR stage may result in complete lack
of secretion of L chains and undetectable sFLC. Isolated
lack of single L chains occurs lately during this sequence.
Complete absence of κ chain with normal Ig concentrations
has been reported in a patient due to a heterozygous point
mutation (1288 GG) that generated an amino acid substitution
from Cys to Gly in the protein sequencing, causing an
abnormal folding of the polypeptidic constant region of κ

chain (31). In this patient, lack of κ chains determined a
reduced antibody repertoire despite normal Ig concentrations,
associated to recurrent bacterial infections. A correct class
switch of H chains requires that the functional CH genes,
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located at one end of the rearranged H chain, are activated (10,
47). This synergy of mechanisms might explain in part why, in
CVID patients, the decrease in sFLC is frequently associated
with the inability to generate CD27+IgD−IgM− switched
memory B cells. Additionally, an aberrant recombination
of the L chain gene repertoire might favor autoreactive
phenomena (49), while altered DNA repair controlling
this recombination process would entail an increased
pool of aberrant protein involves in B-cell oncogenesis
(50, 51).

2. Plasma cell defect: acquired or genetic functional B cell
defects have been described after TLR, CD40 and BCR-
mediated NFκB signaling pathways that account for altered
memory B cell phenotype in CVID patients and low Ig
(52, 53). Deep sequencing of IgH locus demonstrated
restriction of characteristic patterns of IgHV and IgHJ
usage depending on the B cell stimulus (54). Specific
defects in the terminal plasma cell differentiation were
shown in a subgroup of CVID patients at germinal center
responses, with diverse mechanisms converging into the
block of final step of plasma cell differentiation (45).
In addition, gene lesions in MSH5 has been related to
a few CVID patients, with defective S region junctions
between LC and HC that would take place after antigen
encounter (55). Altogether, these diverse mechanisms
result in reduced and modulated class-switched B cells and
Ig, which may relate to L chains’ restriction and low levels
of sFLC secretion (Figure 1).

Concluding Remarks and Further
Perspectives
Our data validates previous studies emphasizing the relevance
of sFLC quantification in the diagnosis and follow-up of
CVID patients. sFLC behaves as a promising biomarker in
the differential diagnosis of CVID with other PID and SID,
and κ/λ ratio as a prognostic biomarker associated with
specific clinical phenotypes. A cutoff level κ + λ < 16.7 mg/L
supports CVID diagnosis. Moreover, κ/λ ratio alteration
or a sudden increase in sFLC values may alert lymphoid
malignancy and prompt appropriate and timely diagnostic
work-out and therapy, a major concern in this patients’
population that impacts the survival. Reference values
and cut-off points must be validated for each technique
and then compare the different available immunoassays
to come up with a reference range for each assay in
different populations.

We hypothesize that decreased levels of sFLC in CVID
patients may reflect an intrinsic early defect at a critical
common step of B cell differentiation in the bone marrow
affecting SL or L chain assembly or secretion that would affect
memory B cell phenotype. Work is ongoing to check the
hypothesis rooting this phenomenon by discarding gene defects
during early B cell ontology, or intrinsic alterations in the
terminal plasma cell differentiation, by in vitro differentiation
of plasma cells from CVID patients after stimulation with
subsequent determination of sFLC production and secretion.

Altogether, we provide new evidence that this biologic
phenomenon of low κ and λ provides a common feature
of CVID, and leaves entirely open the question of whether
would it be necessary to revisit the classification of CVID
according to it.
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