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Abstract

Background: Plasmodium falciparum is the main causative agent of malaria. Of the 5 484 predicted genes of P.
falciparum, about 57% do not have sufficient sequence similarity to characterized genes in other species to warrant
functional assignments. Non-homology methods are thus needed to obtain functional clues for these
uncharacterized genes. Gene expression data have been widely used in the recent years to help functional
annotation in an intra-species way via the so-called Guilt By Association (GBA) principle.

Results: We propose a new method that uses gene expression data to assess inter-species annotation transfers.
Our approach starts from a set of likely orthologs between a reference species (here S. cerevisiae and D.
melanogaster) and a query species (P. falciparum). It aims at identifying clusters of coexpressed genes in the query
species whose coexpression has been conserved in the reference species. These conserved clusters of coexpressed
genes are then used to assess annotation transfers between genes with low sequence similarity, enabling reliable
transfers of annotations from the reference to the query species. The approach was used with transcriptomic data
sets of P. falciparum, S. cerevisiae and D. melanogaster, and enabled us to propose with high confidence new/
refined annotations for several dozens hypothetical/putative P. falciparum genes. Notably, we revised the
annotation of genes involved in ribosomal proteins and ribosome biogenesis and assembly, thus highlighting
several potential drug targets.

Conclusions: Our approach uses both sequence similarity and gene expression data to help inter-species gene
annotation transfers. Experiments show that this strategy improves the accuracy achieved when using solely
sequence similarity and outperforms the accuracy of the GBA approach. In addition, our experiments with P.
falciparum show that it can infer a function for numerous hypothetical genes.

Background
Malaria is one of the deadliest infectious diseases, threa-
tening half a billion humans worldwide with a yearly
death toll of 1 to 2 million people, mainly in developing
countries (World Malaria Report 2005, Geneva, World
health Organization, WHO/UNICEF; 2005). Malaria is
due to infections by protozoan parasites of the Plasmo-
dium genus, transmitted by bites of female Anopheles
mosquitoes. Of the four species that infect humans, P.
falciparum causes the greatest incidence of illness and
death [1]. Despite sustained efforts to combat the dis-
ease, safe and affordable new drugs, and new drug

targets, are still required to circumvent drug resistance
outbreaks triggered by the use of existing drugs, as anti-
malarial vaccines are not yet available [2,3]. The P. falci-
parum genome was published in 2002, initially revealing
5 268 protein coding genes, of which about 60% did not
have sufficient similarity to characterized genes in other
species to justify provision of functional assignments [4].
At the date of writing, the PlasmoDB 5.4 database
includes 5 484 coding genes, 3 155 of which (57%) are
still annotated as hypothetical. Thus, more than half of
P. falciparum genes lack a functional annotation, which
is a high proportion compared to that usually observed
in other eukaryotic genomes [4]. Although this situation
may be explained by the existence of genes that are
unique to the P. falciparum species, the Plasmodium
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genus or even the Apicomplexan phylum to which these
organisms belong [5], it is certainly further exacerbated
by the high evolutionary distance between P. falciparum
and other sequenced organisms [6], which makes
homology detection particularly difficult. The extreme
AT bias (above 80%), the high amino-acid bias (six
amino acids account for more than 50% of the protein
composition), and the presence of a large number of
low-complexity regions that are believed to form
unstructured segments [7], can impede the efficacy of
standard methods of sequence comparison based on
BLAST [8,9] or HMMER [10]. Thus, P. falciparum is a
typical organism for which new approaches are needed
to help detection of distant homologs.
Usually, a low (stringent) e-value threshold is used to

determine whether a measured BLAST sequence simi-
larity allows functional annotation transfer. However,
even if they have high sequence similarity, homologous
proteins are not necessarily functionally equivalent [11].
Moreover, in the case of highly divergent proteins like
those of P. falciparum, this strategy can fail to annotate
many proteins. In this latter case, increasing the e-value
threshold might enable annotation of a larger propor-
tion of proteins, but with the risk of more spurious
annotations. Here, we propose to use the conservation
of coexpression between species to decide whether to
transfer, or not, the functional annotations from homo-
logs with potentially weak sequence similarity.
Gene expression data have been widely used in recent

years to help gene annotation via the so-called Guilt by
Association (GBA) principle. Contrary to sequence
homology which involves inter-species annotation trans-
fers—i.e. genes characterized in other species are used
to annotate genes of the newly sequenced genome—
GBA approaches involve intra-species annotation trans-
fers: annotations of an already characterized gene in the
organism are transferred to an uncharacterized gene if
the two genes share similar transcriptomic profiles
[12,13]. This approach has been successfully applied to
P. falciparum [14-16] and provides functional clues for
many uncharacterized genes. However, depending on
the data sets and on the type of function, the accuracy
of the GBA predictions can be low [16].
Several studies report the conservation of coexpression

between species [17-19]. In particular, these analyses
show that if two genes are coexpressed in one organism,
then their orthologs also tend to be coexpressed in
other organisms, i.e. coexpression is sometimes con-
served. In this paper, we propose a method that uses
this property to help for annotation transfer in an inter-
species way. The principle is as follows: we have (1) a
query species (P. falciparum) and a reference species
(for example S. cerevisiae), (2) two microarray data sets
that monitor the level of expression of the genes of the

two species, and (3) a set of likely orthologs between the
two species. The coexpression context of a gene in one of
the species is defined as the set of genes that appear to
be coexpressed with this gene in the microarray data of
the species. Then, if two homologs with potentially
weak sequence similarity have similar coexpression con-
text—i.e., if their coexpression contexts share a suffi-
ciently high number of orthologs—, they likely have the
same function.
We show that considering conserved coexpression (or

co-coexpression for short) between species improves the
accuracy of functional annotation transfers by sequence
similarity alone, and outperforms the accuracy of the
classical GBA approaches. Moreover, it also allows reli-
able annotation transfers when the homology is doubt-
ful, a useful property for the highly divergent proteins of
P. falciparum. The method was applied on two different
reference species (S. cerevisiae and D. melanogaster),
and with different gene expression data screening differ-
ent biological conditions for each species. These studies
enabled us to provide a function for 74 previously
hypothetical genes and to confidently propose refined
annotations of previously incomplete or wrong original
functions for 58 additional genes. Notably, we revised
the annotation of genes involved in ribosomal proteins
and ribosome biogenesis and assembly, thus highlighting
several potential drug targets.

Results
Gene expression data
For the P. falciparum query species, we used two series
of transcriptomic profiles produced during the parasite
life cycle. The first series, referred to as the Bozdech
data set (BO), measures the expression level of P. falci-
parum genes once an hour during one complete 48-
hours erythrocytic cycle [20]. The second data set,
referred to as the Le Roch data set (LR), measures the
expression level of P. falciparum genes in 9 different
developmental stages during the entire life cycle both in
its human host and in the insect vector, in two experi-
mental conditions (a total of 16 expression measure-
ments) [14]. For the reference species, we selected two
S. cerevisiae and one D. melanogaster transcriptomic
studies. The first S. cerevisiae data set, referred to as the
Gasch data set (GA), is a compendium of 176 transcrip-
tomic measurements in a variety of stress conditions
[21] and the second one, the Spellman data set (SP)
measures gene expression levels during a little more
than two yeast cell cycles (77 expression measurements)
[22]. Finally, the D. melanogaster data set (PI) corre-
sponds to a transcriptomic study of 15 time points in
the early development of the fly [23]. One advantage of
our approach is that it can deal with transcriptomic data
monitoring different conditions in the two organisms.
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Even if better results can be expected from data pro-
duced by identical assays, in practice this is often impos-
sible. Rather, the aim here is to find gene clusters likely
involved in analogous pathways.
The approach
Our approach involves the detection of clusters of coex-
pressed genes in the query species whose coexpression
is conserved in the reference species. We implemented
this approach with a probabilistic model specially
designed for modeling the cluster of coexpressed genes
in each species as well as the conservation of coexpres-
sion between the two species.
The model
In each species, coexpression is modeled with prototypes
of gene expression profiles. This is an approach similar
to that used in classical clustering algorithms such as
SOM [24] or K-MEANS [25,26]. The probabilistic
model has the following structure (see Figure 1). We
use K prototypes of gene expression profiles for P. falci-
parum, and K’ prototypes for the reference species. In
the experiments below, we use 100 prototypes for each
species. Each prototype (of P. falciparum and the refer-
ence species) is modeled with a probabilistic, multivari-
ate Gaussian distribution defining a probability function
over the gene expression profiles of the species. As all
prototypes are different, the profile of a given gene has
different probabilities depending on the prototype con-
cerned, and hence some prototypes are more likely than
others for the gene. Genes are associated with their
most likely prototype, and all genes associated with the
same prototype are considered to be coexpressed. There
is a prior-probability distribution on the prototypes of
each species, which reflects the proportion of genes that
are associated with each prototype in the species.
When the coexpression of a set of genes associated

with prototype k of P. falciparum is conserved, the
homologs of these genes in the reference species also
tend to share a common prototype k’ in this species.
This is modeled by a transition between k and k’, labeled
with a probability P(k’ |k) representing the proportion of
genes associated with k whose homologs are associated
with k’. Finally, an additional mute state M is used for
modeling all non-conserved coexpressions: it is possible
to reach the M state from every prototype of P. falci-
parum, and reach every prototype of the reference spe-
cies from the M state. Prototypes of P. falciparum are
labeled with their prior probability P(k), k = 1 ... K. The
prior probabilities of the prototypes of the reference P(k’
), k’ = 1 ... K’ are on the outgoing transitions from the
M state.
Usually, one prototype is linked with zero or with one

prototype of the other species. However, as illustrated
by the last P. falciparum prototype in Figure 1, one pro-
totype can sometimes be linked with two or more

prototypes. This may occur for several reasons. For bio-
logical reasons first: since some genes are part of several
pathways, the same pathway is not necessarily active in
the two species—either due to the species’ specificities,
or because the microarray data monitor different condi-
tions in the two species. For experimental reasons next:
the experimental noise in microarray data can artificially
break down a set of coregulated genes into two (or
more) different clusters. Conversely, two clusters with a
specific but close signature of expression profiles may
appear to be similar and associated with the same
prototype.
This model defines a probabilistic model of pairs of

gene expression profiles. From a computational stand-
point, it is a Hidden Markov Model (HMM) [27,28],
therefore we benefit from all classical algorithms
designed for using and training these models (see refer-
ence [27] for a description of these algorithms). Given
the expression profiles of a pair of query-reference
genes, this HMM can be used to compute the probabil-
ity density of the profiles under two different hypoth-
eses. Under the hypothesis of dependence of the
expression profiles—that is, homologous genes belong-
ing to a group of conserved coexpression— this is the
probability of generating the two profiles by a path in
the HMM that uses only direct transitions between pro-
totypes. Under the independence assumption of the
expression profiles, this is the probability of generating
the two profiles by a path that uses the M state: this
way, the density only depends on the prototype’s prior
probabilities and not on conditional probabilities
between prototypes.
Learning the model
Learning the model involves 1) building the structure (i.
e. deciding on the direct transitions between prototypes);
2) training the model to estimate the numerical para-
meters of the HMM (i.e. Gaussian distributions, transi-
tion probabilities, and prototype prior probabilities).
Building the structure involves identifying the conserved
coexpressed clusters between the two species. For this
purpose, we designed an algorithm which takes as input
a set of gene pairs with high sequence similarity selected
with the Reciprocal Best Hit procedure (RBH) between
the two species (see Methods). An initial gene clustering
of each species in K and K’ clusters is computed with
the K-MEANS algorithm [25]. Next, a statistical proce-
dure computes, for each cluster pair (k, k’), the number
of gene pairs with high sequence similarity between k
and k’, and tests if this can be expected by chance.
When this is not the case, a transition between k - k’ is
added to the model. By the end of the process, the
structure of the HMM has been built, and the classical
Baum-Welch algorithm [29] is then run to train the
model.
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Assessing functional conservation
Once this model is built, it can be used for assessing the
functional conservation between two putative homologs.
Given the gene expression profiles of the two genes, the
procedure involves searching for the prototypes k and k’
that have the highest probability of generating the two
profiles. This can be done with the classical Viterbi algo-
rithm of the HMMs [27]. If these prototypes share a
direct transition, then P(k’ |k) reflects the conservation
of coexpression between k and k’. P(k)·P(k’ |k) is the
prior probability of these prototypes under the hypoth-
esis of dependence of the two profiles. In a similar way,
P(k)·P(k’ ) is the prior probability of these prototypes for
genes that are conditionally independent. The greater
the difference between these probabilities, the more
likely the functional conservation between genes. Thus,
if the ratio of these probabilities, i.e. P(k’ |k)/P(k’ ) is
higher than a given threshold ξ, the annotations of the
reference gene are transferred to the query gene. Other-
wise, the annotations are not transferred.
Estimate of accuracy with the Gene Ontology
We first investigated the global accuracy of our
approach using genes already annotated in the Gene
Ontology (GO, http://www.geneontology.org), which is a
systematic and standardized nomenclature to annotate
genes in terms of their associated biological processes

(BP), cellular components (CC) and molecular functions
(MF), in a species-independent manner. The validation
procedure is as follows. First, an HMM is learned from
a set of gene pairs selected by RBH. Next, given several
(putative) homologous genes, the HMM is used to select
from among these pairs those authorizing annotation
transfers from the reference to the query species. Trans-
fers involving gene pairs already annotated in both spe-
cies are used to compute an estimate of the accuracy of
the method. Namely, the proportion of annotations of
the reference gene shared by the query gene is com-
puted, and the global accuracy is then estimated by
averaging all results (see Methods).
Most available P. falciparum annotations have an IEA

code only, indicating that they have not been reviewed
by a curator. In the BP ontology for example, of the
1799 annotated genes (35%), 1067 (68%) have an IEA
code. In these conditions, it is recommended to first
check the method on curated annotations of better
annotated organisms. To this end, we estimated the
method accuracy using D. melanogaster as the query
species and S. cerevisiae as the reference species. The
procedure was applied to the Pilot (PI) and Spellman
(SP) data sets. We first investigated the method accuracy
on genes with high sequence similarity, by applying it to
the RBH pairs used to learn the HMM.

Figure 1 The probabilistic model. For each species, only three prototypes are represented here, while several dozens are usually used.
Prototypes are modeled with multivariate Gaussian models represented here by series of means and standard deviations. P. falciparum
prototypes are labeled with their prior probabilities. Prior probabilities of the prototype of the reference species are on the outgoing transitions
from the mute state M. Direct transitions corresponding to evolutionary conservation between prototypes are in bold.
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Figure 2(a) summarizes the accuracy achieved on the
BP and MF ontologies, when varying the ξ threshold to
decide on the annotation transfer. In addition, the accu-
racy of the RBH method alone was also computed. For
this method, a BLAST e-value cutoff was introduced to
control the accuracy and number of functional transfers
—i.e. all RBH pairs above the cutoff are not considered.
Accuracies achieved on the BP and MF ontologies

strongly differ. For the MF ontology, sequence informa-
tion alone (RBH) is accurate (around 80%) and no
improvement is observed using coexpression context.
However, for the BP ontology, the RBH accuracy is
below 60%, and using coexpression context clearly
improves the results. As expected, the number of gene
pairs authorizing a functional transfer (x-axis) increases

with the ξ threshold, while the accuracy of the method
decreases. Surprisingly, the e-value cutoff introduced in
the RBH approach fails to control the accuracy, which
tends to prove that the RBH strategy already captures
most of the sequence information relevant for the anno-
tation transfer.
We next investigated the potential of the approach to

assess functional conservation between gene pairs with
less stringent sequence similarity. To this end, all gene
pairs with BLAST sequence similarity below a loose e-
value threshold (0.1) were considered. This list contains
all pairs selected by the RBH strategy, but also many
others. Figure 2(b) summarizes the accuracy achieved
for the MF and BP ontologies. For the purpose of com-
parison, we also estimated the accuracy of the approach

Figure 2 Estimate of the method accuracy with GO: D. melanogaster vs. S. cerevisiae. Accuracy achieved on the MF (left) and BP (right)
ontologies when using sequence information alone (orange curves, for different e-value cutoffs) and when exploiting the expression context
(blue curves, for different ξ thresholds). The x-axis shows the number of gene pairs authorizing annotation transfers. (a) Results achieved on RBH
gene pairs. (b) Results achieved on gene pairs with potentially low sequence similarity.
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that associates with each D. melanogaster gene its best
BLAST hit in S. cerevisiae, using different e-value cutoff
to control the number and accuracy of functional trans-
fers. Here again we observe for the BP ontology that
using expression context greatly improves the accuracy
achieved using only sequence similarity.
Next, the same experiments were conducted on P. fal-

ciparum using S. cerevisiae as reference species (tran-
scriptomic studies Le Roch vs. Gash and Bozdech vs.
Spellman) and with all available GO annotations (IEA
included). In each experiment, the HMM was learned
using the P. falciparum-yeast orthologs selected with
the RBH procedure, and was then used to assess the
functional annotation transfers of all gene pairs with
BLAST sequence similarity below 0.1. Results were com-
pared with the accuracy of the method that associates
with each gene P. falciparum of its best BLAST hit in S.
cerevisiae, using different e-value cutoffs (see Figure 3).
Like for D. melanogaster, taking coexpression context
into account outperforms the accuracy achieved when
using only sequence information. Table 1 is an estimate
of the method potential on genes that have no, or only
non-curated GO annotations. This table shows that,
depending on the threshold chosen, several dozen genes
with no BP annotation can be associated with a S. cere-
visiae gene annotated in this ontology. Moreover, even
more genes that only possess non-curated annotations
(mainly derived from sequence similarity) can be asso-
ciated with a S. cerevisiae gene with curated annotations.
This reveals the potential of our method for improving
annotations based on sequence similarity only, by using
information derived from gene expression.
Appraisal of the proposed annotation transfers
We next investigated the potential of co-coexpression
analysis to improve simple homology-based annotation
transfers in a more careful and systematic way. The
method was applied to the P. falciparum vs. S. cerevisiae
and P. falciparum vs. D. melanogaster studies LR-GA,
LR-SP, BO-GA, BO-SP, and BO-PI. For each analysis, a
model was learned using gene pairs selected by RBH,
and was then used to assess functional transfers for
gene pairs with BLAST sequence similarity below 0.1.

For each experiment, our method outputs the gene pairs
authorizing a functional transfer in an organized way, by
presenting in cluster pairs the coexpressed genes whose
coexpression has been conserved. Outputs of all above
analyses along with useful links to appropriate databases
and BLAST alignments can be browsed in the Supple-
mentary Data files (see Additional Files 1, 2, 3, 4 and 5).
All pairs were analyzed in all clusters to validate (or

invalidate) the identified pairs and, in addition, we
checked that P. falciparum genes were associated with
the same yeast genes independently of the data sets con-
sidered (for example in LR-GA versus BO-GA or BO-
GA versus BO-SP). In cases where P. falciparum genes
were paired both with yeast and Drosophila genes, we
checked that the two latter genes had concordant anno-
tations, further supporting the inter-species annotation
transfer. When both genes of the output pairs had a
previously inferred function, we observed nearly no
annotation conflict. All discrepancies could be attributed
to an obvious error, or incomplete analysis of the Plas-
modium gene. We did not detect any Plasmodium gene
with known function, paired with hypothetical Saccharo-
myces or Drosophila genes. However, on several occa-
sions, hypothetical Plasmodium genes were paired with
hypothetical genes in the reference species—mostly Dro-
sophila, which is not yet as extensively annotated as
yeast.
Several hypothetical P. falciparum genes were paired

with annotated S. cerevisiae/D. melanogaster genes. In
some of these pairs, the P. falciparum gene is only par-
tially annotated, as for example in the LR-GA co-coex-
pression analysis, the gene pairs (PFE1240w; YPL207W)
and (PF11_0090; YGR103W) in the first cluster pair
(cluster pair #0), or the gene pair (PF14_0661;
YOR145C) in cluster pair #1 (see Additional File 1). In
other pairs, the P. falciparum gene has absolutely no
GO data. See, for example, the pairs (PF11_0471;
YCR072C), (PF07_0121; YHR170W), or (PF10_0200;
YNL132W) in the cluster pair #0 of the LR-GA analysis.
The comparative analysis therefore allows correction of
incomplete annotations and proposes annotations for
completely unannotated P. falciparum genes. Several

Table 1 Number of uncharacterized or poorly characterized genes of P.falciparum that can be annotated by the LR-GA
or BO-SP comparisons with different ratio thresholds.

ξ ratio threshold 40 20 10 5 2

LR-GA # unchar. genes 4 47 80 142 183

# IEA char. genes 74 90 127 163 214

BO-SP # unchar. genes 1 31 92 129 167

# IEA char. genes 77 106 115 176 230

Lines “# unchar. genes” show the number of genes without any annotation in the BP ontology that can be associated with an S. cerevisiae gene annotated in this
ontology. Lines “# IEA char. genes” show the number of genes with only electronic non-curated annotations (GO Evidence Code IEA) in the BP ontology that can
be associated with an S. cerevisiae gene with a curated annotation in this ontology.
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pairs associating hypothetical P. falciparum genes have
surprisingly good or even excellent BLAST matches,
with e-values lower than 1.e-40. For the others, with
moderate or poor BLAST matches, careful examination
was crucial to assess the proposed annotation transfer.
This led to the identification of several homologs with
probably the same function, generally with amino acid
compositional biases and the occurrence of low com-
plexity inserts in the Plasmodium genes. See for exam-
ple the pairs (PF10_0278; YKR081C), e-value = 2e-05,
and (PF14_0072; YNR046W), e-value = 2e-09, in the
cluster pair #0 of the LR-GA co-coexpression analysis.
For some other pairs, however, the sequence alignments
are clearly irrelevant, aligning repeated domains, low
complexity segments, or very short proportions of one
gene—e.g. in the LR-GA analysis, (PFI0635c; YML093W)
and (PF13_0256; YCL037C) in the cluster pair #0. Thus,
the co-coexpression analyses are very interesting indica-
tors to identify hypothetical Plasmodium genes that
have sequence and expression similarities with a yeast
and/or Drosophila functional gene, but they cannot
entirely replace an expert examination of the sequences
to support or reject the possible annotation transfers
they propose.
Three tables summarize the most interesting annota-

tion transfers proposed by the co-coexpression analysis:

• Additional File 6 shows the results obtained when
focusing on the cytosolic and organellar (mitochon-
drial and apicoplast) ribosomal proteins
(GO:0003735) based on comparative analysis
between P. falciparum and S. cerevisiae expression
profiles (LR-GA; BO-GA and BO-SP) and between
P. falciparum and D. melanogaster expression pro-
files (BO-PI). For genes encoding ribosomal proteins

of the cytosol, the co-coexpression analyses enable
the recovery of 57 functional genes previously avail-
able in the PlasmoDB v5.4 resource, the refinement
of 8 incomplete or wrong annotations, an inference
of a function for 2 hypothetical genes, and provide
no information on 9 already known genes. For genes
encoding mitochondrial ribosomal proteins, 6 could
be annotated on the basis of the co-coexpression
analysis (4 confirmed PlasmoDB v5.4 annotation, 1
refinement of an incomplete annotation and 1 func-
tional inference of hypothetical genes). None of the
30 apicoplast ribosomal proteins could be annotated
according to the co-coexpression analysis, which is
consistent with the lack of plastid in yeast and Dro-
sophila, and consequently provides a negative con-
trol for this procedure.
• Additional File 7 shows the pairing of P. falci-
parum genes with S. cerevisiae or D. melanogaster
genes functionally annotated as factors of the ribo-
some assembly and biogenesis (GO:0042254) in the
nucleolus and/or nucleus or cytoplasm, factors
involved in the rRNA metabolic process
(GO:0016072) and tRNA processing (GO:0008033).
In these 102 pairs, co-coexpression analysis con-
firmed the functional inference of 7 Plasmodium
genes, a proposed refinement or correction of 46
genes and inference of a function for 49 hypothetical
genes. In this analysis, careful examination was criti-
cal for reviewing gene pairs when BLAST matches
were questionable—see, for example, (PFL2295w;
YKL099C), e-value = 0.095 found in BO-GA and
BO-SP and predicting a nucleolar rRNA processing
protein associated with U3 snoRNA. A few unex-
pected situations were discovered, such as
PFA0330w known as the PfAARP2 protein [30] that

Figure 3 Estimate of the method accuracy with GO: P. falciparum vs. S. cerevisiae. Accuracies achieved on the Le Roch-Gasch (orange
curve) and Bozdech-Spellman (blue curve) comparisons, estimated on the MF (left) and BP (right) ontologies with different ξ thresholds—from
left to right on each curve: 40, 20, 10, 5, 2, 1. The x-axis shows the number of gene pairs authorizing annotation transfers. The brown curves
show the accuracy achieve when associating each gene of P. falciparum with its best BLAST hit in S. cerevisiae, for different e-value thresholds.
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turned out to correspond to a nucleolar small ribo-
somal subunit assembling protein similar to
YPL217C, with an e-value = 1.4e-45. Likewise, the
pairing of two contiguous P. falciparum genes,
PF14_0436 and PF14_0437, with distinct parts of the
same yeast gene YNL112W involved in ribosomal
biogenesis and assembly, allowed us to propose a
revised gene structure at the corresponding P. falci-
parum locus (Additional File 8).
• Additional File 9 is a series of other remarkable
pairings between P. falciparum and S. cerevisiae or
P. falciparum and D. melanogaster that were discov-
ered. Apart from the pair (PFL1345c; YPL095C) that
allowed us to propose a refined annotation as a “his-
tone S-adenosyl methyltransferase, putative” for
PFL1345c, and the pair (PF14_0178; YGR048W), that
led to a new annotation as a “polyubiquitinated pro-
tein - 26S proteasome guiding protein, putative” for
PF14_0178, most of these pairs were only found in
only one co-coexpression analysis. For example, see
the P. falciparum gene PFC0100c, now proposed to
be involved in “Golgi organisation and biogenesis”
(pair (PFC0100c; FBgn0030365) in BO-PI analysis).

On the whole, the biological functions attributed to
the gene of the reference species in the output gene
pairs show that a limited number of cellular processes
are represented. In particular, genes coding for ribosome
constituents are extremely abundant, for example in
cluster pairs #13, #14 and #18 of the LR-GA analysis, or
in cluster pairs #14 and #24 of the BO-GA analysis. Pro-
teins involved in ribosomal biogenesis and assembly and
rRNA metabolism and processing, most of which are
annotated as nucleolar proteins in Yeast and/or Droso-
phila, are also frequently returned in co-coexpressed
clusters (such as in cluster pair #2 of the BO-GA analy-
sis). To a lesser extent, genes encoding proteins playing
roles in histone modifications, cytoskeleton dynamics,
Golgi organization and biogenesis, proteasome, and cell
cycle regulation (see Discussion below) are also
discovered.

Discussion
Ribosomal proteins and potential drug targets
Many gene pairs highlighted in the present study com-
prise genes coding for ribosomal proteins or involved in
ribosome biogenesis and assembly. Whereas the struc-
ture of malarial ribosomal RNAs has attracted consider-
able attention and has been analysed in many
comparative studies, no census of ribosomal proteins
was undertaken in the first large scale expert annotation
of P. falciparum [4,31] and annotations have not been
seriously revised since. The results of the present study,
combined with other published data [32] and an analysis

by Akhil Vaidya group (Philadelphia, USA), were there-
fore used to propose a revised annotation for the future
versions of the GeneDB and PlasmoDB public databases.
The annotation presented here was transferred to the
PlasmoDB database before the submission of this article
and was used in a recent study by Mishra et al. (2009)
[33].
This re-annotation potentially involves promising drug

targets. Many of the drugs used in clinical medicine to
treat infectious diseases interfere with protein synthesis
by targeting the pathogen ribosomes, e.g. macrolides,
ketolides, lincosamides, oxazolidinones, aminoglycosides
and tetracyclines [34]. Many teams have studied Plasmo-
dium ribosomal RNAs as targets for antimalarial drugs,
including thiostrepton, known to bind the apicoplast
large ribosomal subunit rRNA [35,36], clindamycin,
shown to also act on the large ribosomal subunit rRNA
in Toxoplasma [37] and tetracycline, whose antimalarial
effect is likely due to its binding to the mitochondrial
and/or apicoplast small subunit rRNA [38]. Whereas
recent studies focused on the ribonucleic constituents of
ribosomes, i.e. rRNAs, as a promising target for innova-
tive drugs [39], ribosomal proteins are also candidates of
choice in the search for antimalarial drugs. Sidhu et al.
(2007) [40] reported, for instance, that azithromycin, a
broad spectrum antibiotic macrolide, could bind the api-
coplast ribosomal protein L4 (PFCOMPIRB-rpl4; see
Add. File 6), a polypeptide suspected to interact with
the apicoplast ribosomal protein L22 (PF14_0642, anno-
tated from our analysis as an organelle ribosomal pro-
tein L22/L17 precursor, putative; see Add. File 6) and
the apicoplast large RNA subunit. In general, the main
problem in contemporary drug development is toxicity
[34]. Concerning the uses of ribosomes as drug targets,
the characterization of structural domains that diverge
between a pathogen and its host, and the identification
of residues whose polymorphism might be related to
drug resistance, are crucial in the search for new drug
candidates. The present study, which allows prediction
of ribosomal proteins with low or very low sequence
conservation, points to regions of the ribosomes that
likely bind specific small molecules that would not inter-
fere with the host ribosomes.
Proteins involved in cell cycle regulation
Molecular mechanisms and proteins involved in the
control of P. falciparum cell cycle are largely unknown
[41]. We focused on this biological process as a case
study, and attempted to uncover some related malarial
genes, by paying special attention to the Bozdech data
sets in which the cell cycle was synchronized. 38 genes
were proposed to be involved in cell cycle regulation by
Tienda-Luna et al. (2008) [42], and 97 P. falciparum
kinase genes were reported by Ward et al. (2004) [43] as
representative of the malarial kinome. From these genes,
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24 and 30 have expression measurements in the Boz-
dech data, respectively, while 9 and 4 genes are actually
retrieved by co-coexpression analysis. These genes code
for three putative DNA replication licensing factors
(PF07_0023, PF13_0291 and PFL0580w), two putative
minichromosome maintenance proteins (PFE1345c and
PFL0560c), the proliferating cell nuclear antigen
(PF13_0328), the putative karyopherin alpha
(PF08_0087) and beta (PFE1195w) homologs, the Myb2
protein (PF10_0327), the NIMA-related protein kinase
(PFL1370w), the ROI kinase like protein (PFD0975w),
casein kinase I (PF11_0377) and casein kinase II regula-
tory subunit (PF13_0232). Interestingly, most of these
genes were found in the Bozdech versus Spellman com-
parison (see cluster pairs #24, #27 and #28 in Additional
File 4). A few other P. falciparum genes are paired with
S. cerevisiae genes with annotations related to cell cycle
control (see Add. File 9). For example, analysis of cluster
pair #24 of the BO-SP output allowed us to refine the
annotations of a ROI kinase like protein (PFD0975w);
analysis of cluster pair #28 allowed refinement of the
annotation of a putative serine/threonine kinase similar
to RAD53 (PF11_0488); in cluster pair #20, several
hypothetical P. falciparum genes could be pinpointed as
putatively involved in a cell cycle related process. In
cluster pair #11 of the LR-GA output, which contains
the casein kinase I gene (PF11_0377) [43], a functional
annotation of a chromosome condensation protein
involved in sister chromatid exchange is proposed for
the hypothetical gene MAL13P1.21, paired with a signifi-
cant e-value = 4e-07 to YBL097W.
By contrast with the genes involved in ribosomal bio-

genesis and assembly, very few P. falciparum genes
involved in cell cycle regulation can be eventually identi-
fied. This is possibly due to the lack of some of the mar-
ker genes in the data sets compared, to the highly
atypical way in which the parasite divides, i.e. schizog-
ony [44], and to the evolutionary distance between P.
falciparum and the model organisms in which the cell
cycle has been studied in depth, i.e. animals and fungi
[45].
High and low representation of certain functions in co-
coexpression analysis
The high representation of biological functions such as
ribosome biogenesis and assembly, as well as the appar-
ent lack of other biological functions such as cell cycle
regulation might be a bias of the present method for dif-
ferent biological reasons. First, we expected to find the
conservation of housekeeping genes throughout eukar-
yote biodiversity, including genes involved in protein
biosynthetic processes. Secondly, the biological specifici-
ties of the published studies we selected as data sets for
our analyses might also explain this fact. Intuitively, out-
puts of co-coexpression analysis and therefore

usefulness in terms of gain to transfer annotations are
likely highly dependent on the type of transcriptomic
data sets compared. In particular, co-coexpression based
annotations are expected to depend both on (1) the
organisms that are compared (i.e. their phylogenetic dis-
tance), and (2) on the biological conditions of the assays
used to produce the transcriptomic profiles.
Concerning the choice of organisms, we obtained bet-

ter results in terms of the capacity to transfer annota-
tions by comparing P. falciparum to S. cerevisiae than
by comparing P. falciparum to D. melanogaster. The
reasons for the better performance of the P. falciparum
vs. S. cerevisiae comparisons may be due to the better
annotation status of the S. cerevisiae genome compared
to that of D. melanogaster and/or the relative genetic
distance between the species we compared. Undoubt-
edly, improvements in D. melanogaster genome annota-
tions will improve our ability to transfer annotations
from the fly to P. falciparum, which were sometimes
limiting in the present study.
Concerning the biological conditions, the transcrip-

tomic data we selected in published studies (for review,
[46]) for our analyses focused on proliferating and dif-
ferentiating stages of Plasmodium, mobilizing the tran-
scriptional/translational machinery and possibly adding
weight to this particular cellular process in the final out-
put. This is further supported by the presence in the
results of several clusters involved in subcellular target-
ing of proteins soon after their biosynthesis. Moreover,
querying P. falciparum genes involved in cell cycle regu-
lation using the Spellman data set [22] that directly
deals with this question, gave more results than using
the Gasch data set [21], a compendium of 176 stress
conditions, which gave no results at all when compared
to the Bozdech data set, and very few when compared
to the Le Roch data set. Thus, while it is possible that
the potential of the co-coexpression analysis as a strat-
egy to assist in the functional inference of hypothetical
genes may be exhausted after covering a limited number
of conserved eukaryotic housekeeping processes, it may
also benefit from two improvements: 1) using species
that are phylogenetically less distant, ideally, other Api-
complexans, and 2) comparing profiling studies of biolo-
gical situations specifically chosen to answer specific
questions. For example, comparing Arabidopsis thaliana
to P. falciparum transcriptomic data could help uncover
genes inherited from the ancestral algae [9].
Comparison with the GBA approach
During the writing of this article, Zhou et al. (2008) [15]
published a database of GO functional predictions for
several P. falciparum genes based on a Guilt By Associa-
tion method named OPI. Their predictions are based on
a transcriptomic data set covering all life cycle stages of
the parasite and combining gene expression
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measurements from both P. falciparum and P. yoelii.
The OPI approach provides us with an interesting refer-
ence to compare annotation transfers allowed by co-
coexpression and GBA. To this end, we first estimated
the global accuracy of the OPI method using GO. OPI
provides for each GO term an estimate of the False Dis-
covery Rate (FDR) associated with the term. For exam-
ple, a GO term with a FDR of 20% means that all
predictions in this term have an error probability of
20%. We used this FDR as a cutoff to control the accu-
racy and the number of OPI annotation predictions.
Namely, all GO terms with FDR below the cutoff are
considered, and the already annotated genes predicted
in these terms by OPI are used to estimate the global
accuracy of the method in a way similar to that used to
assess the accuracy of our approach (see Methods). Fig-
ure 4 shows the OPI results achieved when varying the
FDR threshold, as well as the accuracy of the already
described LR-GA and BO-SP experiments. As we can
see on this figure, the results obtained with expression
data alone are not as accurate as those obtained when
also using sequence information.
Note that in reference [15], the authors also further

corroborated some of their predictions by applying the
OPI method to known orthologous genes of P. falci-
parum in S. cerevisiae and Homo sapiens (using yeast
and Homo sapiens microarray gene expression data
sets), and checking that these genes are predicted in the
same GO terms as their P. falciparum orthologs. This
approach to combine sequence and gene expression
data for purpose of annotation transfer is different from
ours. Zhou et al. rely on the GBA principle to transfer
the annotations in an intra-species way; they use
another organism to validate some of their predictions
by running a second independent GBA procedure. On
the other hand, we use conserved co-expression to

assess inter-species annotation transfers suggested by
borderline sequence similarity.
Finally, we investigated whether the results, collected

here by co-coexpression analysis between P. falciparum,
S. cerevisiae and D. melanogaster overlapped the results
obtained by Zhou et al. (2008) [15], but also the results
of previous GBA studies on P. falciparum [14,47]. Our
work allowed a systematic revision of the annotation of
ribosomal proteins, and of proteins involved in ribosome
biogenesis. From the “hypothetical” genes of this series,
OPI proposes consistent annotations for one of the
genes coding for ribosomal proteins (PF07_121) and 3
genes involved in ribosome biogenesis and assembly
(PF14_0055, PF11_090 and PF11_0471). These annota-
tions were further corroborated by applying OPI on the
same yeast genes as those presented here. In the case of
PF07_121, this gene was reported in one of the expres-
sion clusters in the study of Le Roch et al (2003),
although it was not annotated at that time. Of the other
43 hypothetical genes that have been functionally anno-
tated here, none was attributed any function in previous
studies by Le Roch et al. (2003) [14], Young et al (2005)
[47] and Zhou et al (2008) [15], either because they
were not part of expression clusters in their analyses or
because the homology searches were not conclusive.

Conclusions
We propose a method that uses coexpression to anno-
tate genes in an inter-species way. Classical GBA
approaches work in an intra-species way, by transferring
annotations between coexpressed genes. Our approach
searches for conserved coexpression between a query
species and a reference species, and uses this informa-
tion to increase confidence of annotation transfers
between genes with borderline sequence similarity. Our
analyses show that this strategy improves the accuracy

Figure 4 Comparison with a GBA approach. Accuracy achieved by the OPI approach (brown curves) on the MF (left) and BP (right)
ontologies when using different FDR thresholds. The orange and blue curves show the accuracy achieved on the Le Roch-Gasch and Bozdech-
Spellman experiments, respectively.
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achieved when using sequence similarity alone. It also
outperforms the accuracy of classical GBA approaches.
Results achieved on P. falciparum allowed us to pool
and review series of genes involved in particular pro-
cesses such as ribosomal complex elaboration and bio-
genesis. Notably, it allowed us to highlight potential
drug targets. We observed high representation of certain
biological functions and an apparent lack of other func-
tions. The potential of such an analysis appears to
depend on the choice of both the species compared and
of the biological conditions screened by the microarray
data. Nonetheless, results on P. falciparum show that
the approach has high accuracy and potentially allows a
function to be inferred for several unknown genes.

Methods
The model
HMMs are probabilistic models that are widely used in
biological sequence modeling to recognize protein
families and predict gene models [28]. Here they are
used for modeling pairs of gene expression profiles. Our
HMM has a predefined structure with a mute state M,
as depicted in Figure 1, and a set of numerical para-
meters Θ. Each prototype is parameterized by a multi-
variate normal distribution of dimension equal to the
profile sizes—i.e., the number of time points (or experi-
ments) of the gene expression profiles. In our experi-
ments, we restricted the covariance matrices to be
diagonal and equal for all prototypes of one species
(homoscedastic assumption). Moreover, there is a prior
probability distribution on the prototypes of the query
species, and a probability distribution on the outgoing
transitions from each of these prototypes and from the
M state.
Assessing functional conservation
We assessed the transfer of function of numerous gene
pairs between S. cerevisiae/D. melanogaster and P. falci-
parum. We used the BLASTP software of NCBI with
default parameters to measure sequence similarity
between genes. All gene pairs between the query and
the reference species with an e-value below 0.1 were
considered. For query genes possessing several homologs
in the reference species, the BLAST bit scores (used to
compute the e-value) were compared, and gene pairs
with scores under 95% of the largest one were removed.
This allowed us to associate at least one gene in S. cere-
visiae and D. melanogaster with 3 664 and 3 115 genes
of P. falciparum, respectively. As some of these P. falci-
parum genes are actually associated with more than one
gene in each reference species, the total number gene
pairs considered was 5 345 between P. falciparum and
S. cerevisiae, and 3 904 between P. falciparum and D.
melanogaster. For each gene pair, the classical Viterbi
algorithm [27] was used to search the prototypes k and

k’ that have the highest probability of generating the
associated gene expression profiles. Then, each pair for
which the ratio P(k’ |k)/P(k’ ) was higher than the
threshold ξ = 10 was considered eligible for a functional
transfer.
Learning the model
The learning algorithm takes the number of prototypes
K and K’ for the two species as parameters—in the
experiments we used K = K’ = 100. It is applied to a
learning set L of gene pairs selected by Reciprocal Best
Hit (RBH). The procedure involves associating with
each gene of the query (respectively reference) species
the gene in the reference (resp. query) species that most
resembles it, and identifying the gene pairs g - g’ such
that g is the best hit for g’, and g’ is the best hit for g.
We obtained 1 427 and 1 855 aligned pairs of sequences
between P. falciparum and S. cerevisiae, and P. falci-
parum and D. melanogaster, respectively.
Learning the HMM involves to learn both its structure

(i.e. the presence/absence of direct transitions between
prototypes), and parameters Θ (i.e. parameters of the
Gaussian models, prior probabilities of the prototypes,
and transition probabilities). Given a predefined struc-
ture, the second problem can be handled with the classi-
cal Baum-Welch algorithm [29] used for training the
HMMs. Solving the former problem involves deciding,
for each prototype pair (k, k’ ), if it involves conserved
coexpressed genes. To this end, an initial clustering in K
and K’ clusters is computed by running the K-MEANS
algorithm [25] on the expression data of each species.
Then, for each cluster pair (k, k’ ), the number of gene
pairs of L involving genes assigned to clusters k and k’
by the K-MEANS algorithm is computed, and a statisti-
cal test is applied to test if this number can be expected
by chance (see below). When this is not the case (the
null hypothesis is rejected), the two clusters are consid-
ered to reveal conserved coexpression between the two
species, and a transition is added in the HMM from
prototype k to prototype k’. At the end of the process,
the HMM structure has been built.
The Baum-Welch algorithm is then run to train this

structure. It is applied to the pairs of expression profiles
in L and aims at maximizing the model likelihood:

P P g g
g g

( | ) ( , | ),
( , )




  
 
 (1)

with P(g, g’ |Θ) being the probability of generating the
expression profiles associated with genes g and g’ with
the HMM with parameters Θ. Thus, the Baum-Welch
algorithm searches for the parameters Θ that maximizes
Expression (1). It is an iterative algorithm, which starts
from an initial set of parameter Θ0, and iteratively rees-
timates the parameters at each step of the process. We
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use the initial K-MEANS clusterings to set parameters
Θ0. Namely, means and covariance matrices of the
Gaussian distributions are estimated from the profiles of
the genes associated with each prototype. Prior probabil-
ities of the prototypes are estimated by the proportion
of genes associated with, and probability transitions
between prototypes are estimated by the proportion of
genes whose coexpression has been conserved.
Testing for coexpression conservation
Let k and k’ be two gene clusters for which we want to
know if they reveal conserved coexpression. For this
purpose, we designed a statistical test that uses the
number nkk’ of gene pairs of L between the two clusters.
More precisely, we compute the probability of observing
nkk’ or more gene pairs of L between cluster k and a
randomly composed cluster of size #k’. This p-value can
be written as

P r n k k P r u k kkk

u n

k k

kk

( | , , # ) ( | , , # ),
min(# ,# )

    






  (2)

with P(r = u|L, k, #k’) being the probability of obser-
ving u gene pairs of L between cluster k and a ran-
domly composed cluster of size #k’. Let G’ be the
number of genes of the reference species. We can mark
the genes of the reference species that are paired with a
gene of k in L. The probability P(r = u|L, k, #k’ ) is
actually the probability of finding u marked genes when
picking #k’ genes among the G’ genes, and thus follows
an hypergeometric distribution. In our experiments, all
cluster pairs that get a p-value below 10-3, as computed
by Expression (2), are considered to reveal conserved
coexpression, and a direct transition is added in the
HMM between the associated prototypes.
Accuracy estimate on the Gene Ontology
Each ontology (MF, BP or CC) is a pseudo-hierarchy
describing generalization relationships between hun-
dreds of terms. The most general term is at the top of
the ontology, while the terms at the bottom are the
most specific ones. The specificity of a term can be
assessed by its depth in the ontology, i.e. the number of
levels that separate this term from the top. In the fol-
lowing, we consider a term as “specific” if it is deeper
than the 4th level of the ontology. Note that a gene may
be annotated with several GO terms of the same ontol-
ogy. Moreover, due to the generalization relationship,
when a gene is annotated with a term t, it is also anno-
tated with all the upper level terms that generalize t (a
principle known as the “true path rule” in GO context).
Let g be a gene of the query species already annotated
in a given ontology (for example BP), and let A be the
“specific” annotations associated with g in this ontology.
Now, let A’ be the set of specific annotations transferred

to g by one of the methods assessed in the experiments.
Four different methods are tested: the RBH procedure,
the best BLAST procedure, the co-coexpression
approach, and OPI. For the first three approaches, A’ is
the set of specific annotations associated with the refer-
ence gene used for the transfer; for the OPI approach,
A’ is the set of specific annotations (plus the specific
annotations of the upper levels) that have been pre-
dicted for g with a FDR below the cutoff. The transfer
accuracy is estimated by the proportion of annotations
of A’ that are in A, i.e. | ’|

| ’|
A A

A
 , with |·| denoting the

cardinal number of a set. Transfers involving the same
specific annotations have accuracy 1, while those invol-
ving completely different specific annotations have accu-
racy 0. The global accuracy of a method is then
estimated by averaging the accuracy of all transfers
involving a query gene already annotated in the ontol-
ogy. We used annotations available on the GO website
and provided by GeneDB http://www.genedb.org/, the
Saccharomyces Genome Database http://www.yeastgen-
ome.org/, and FlyBase http://flybase.bio.indiana.edu/ for
P. falciparum, S. cerevisiae, and D. melanogaster,
respectively.

Additional file 1: Le Roch - Gasch analysis. This file presents the
cluster pairs identified as revealing a conservation of coexpression when
comparing the Le Roch and Gasch data. This file also provide additional
information on the available functional annotations, as well as links to
the BLAST alignments and the different databases (click on the ‘?’s to
access PlasmoDB, SGD, and Amigo databases). Gene functional
annotations are as follows. The short description immediately following
each P. falciparum gene comes from PlasmoDB (red = functional gene,
blue = putative gene, black = hypothetical gene). Other annotations are
Gene Ontology annotations (red = Molecular Function, green =
Biological Process, blue = Cellular Component).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S1.HTML ]

Additional file 2: Le Roch - Spellman analysis. This file presents the
cluster pairs identified as revealing a conservation of coexpression when
comparing the Le Roch and Spellman data. This file also provide
additional information on the available functional annotations, as well as
links to the BLAST alignments and the different databases (click on the
‘?’s to access PlasmoDB, SGD, and Amigo databases). Gene functional
annotations are as follows. The short description immediately following
each P. falciparum gene comes from PlasmoDB (red = functional gene,
blue = putative gene, black = hypothetical gene). Other annotations are
Gene Ontology annotations (red = Molecular Function, green =
Biological Process, blue = Cellular Component).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S2.HTML ]

Additional file 3: Bozdech - Gasch analysis. This file presents the
cluster pairs identified as revealing a conservation of coexpression when
comparing the Bozdech and Gasch data. This file also provide additional
information on the available functional annotations, as well as links to
the BLAST alignments and the different databases (click on the ‘?’s to
access PlasmoDB, SGD, and Amigo databases). Gene functional
annotations are as follows. The short description immediately following
each P. falciparum gene comes from PlasmoDB (red = functional gene,
blue = putative gene, black = hypothetical gene). Other annotations are
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Gene Ontology annotations (red = Molecular Function, green =
Biological Process, blue = Cellular Component).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S3.HTML ]

Additional file 4: Bozdech - Spellman analysis. This file presents the
cluster pairs identified as revealing a conservation of coexpression when
comparing the Bozdech and Spellman data. This file also provide
additional information on the available functional annotations, as well as
links to the BLAST alignments and the different databases (click on the
‘?’s to access PlasmoDB, SGD, and Amigo databases). Gene functional
annotations are as follows. The short description immediately following
each P. falciparum gene comes from PlasmoDB (red = functional gene,
blue = putative gene, black = hypothetical gene). Other annotations are
Gene Ontology annotations (red = Molecular Function, green =
Biological Process, blue = Cellular Component).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S4.HTML ]

Additional file 5: Bozdech - Pilot analysis. This file presents the cluster
pairs identified as revealing a conservation of coexpression when
comparing the Bozdech and Pilot data. This file also provide additional
information on the available functional annotations, as well as links to
the BLAST alignments and the different databases (click on the ‘?’s to
access PlasmoDB, FlyBase, and Amigo databases). Gene functional
annotations are as follows. The short description immediately following
each P. falciparum gene comes from PlasmoDB (red = functional gene,
blue = putative gene, black = hypothetical gene). Other annotations are
Gene Ontology annotations (red = Molecular Function, green =
Biological Process, blue = Cellular Component).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S5.HTML ]

Additional file 6: Predicted annotations of P. falciparum gene
coding for putative ribosomal proteins (structural constituent of
ribosomes, GO:0003735). Prediction gained by co-coexpression
analyses compared to PlasmoDB 5.4: (0) confirmed annotation; (1) refined
annotation of an incomplete or wrong original functional inference; (2)
previously hypothetical; (N): no advance based on co-coexpression
analyses; (+) functional inference of hypothetical gene products by Smits
et al. (2007) [32]; (*) correction of Smits et al. (2007) annotation; (Z) pair
also identified in Zhou et al. (2008) [15]; (x): pairing of P. falciparum and
S. cerevisiae or P. falciparum and D. melanogaster genes in co-
coexpression analyses.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S6.PDF ]

Additional file 7: Predicted annotations of P. falciparum gene
products involved in ribosome biogenesis and assembly
(GO:0042254), rRNA metabolic process (GO:0016072) and tRNA
processing (GO:0008033). Prediction gained by co-coexpression
analyses when compared to PlasmoDB 5.4: (0) confirmed annotation; (1)
refined annotation of an incomplete or wrong original functional
inference; (2) previously hypothetical; (Z) pair also identified in Zhou et
al. (2008) [15]. (x): pairing of P. falciparum and S. cerevisiae or P.
falciparum and D. melanogaster genes in co-coexpression analyses. (§):
pairing of P. falciparum and S. cerevisiae genes in co-coexpression with
different clustering parameters. (*): Correction of the gene models of
PF14_0436 and PF14_0437, forming a unique gene coding for a putative
nucleolar DEAD/DEAH box ATP-dependent RNA helicase (see Add. File 8).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S7.PDF ]

Additional file 8: Correction of the gene structures and functional
inference of PF14_0436 and PF14_0437 based on P. falciparum vs. S.
cerevisiae co-coexpression analyses. In co-coxpression analyses, both
PF14_0436 and PF14_0437 were in the same expression cluster and with
the same yeast sequence, YNL112W, involved in ribosome biogenesis and
assembly (GO:0042254, see Add. File 7). Sequence comparison of these

contiguous predicted open reading frames shows that they align with
both extremities of YNL112W, and that their overlapping region is an
error of the gene model, corrected in updated versions of PlasmoDB.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S8.PDF ]

Additional file 9: Other annotations of P. falciparum gene products
based on co-coexpression analyses. Prediction gained by co-
coexpression analyses when compared to PlasmoDB 5.4: (0) confirmed
annotation; (1) refined annotation of an incomplete or wrong original
functional inference; (2) previously hypothetical; (Z) pair also identified in
Zhou et al. (2008) [15]. (x): pairing of P. falciparum and S. cerevisiae or P.
falciparum and D. melanogaster genes in co-coexpressed analyses. (§):
pairing of P. falciparum and S. cerevisiae genes in co-coexpression with
different clustering parameters. This table summarizes important
functional annotation predicted for P. falciparum genes previously
reported as “hypotheticals” or with little indication of a putative function.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
35-S9.PDF ]
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