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Abstract

Risk assessment in coronary artery disease plays an essential role in the early identification of high-risk patients.
However, conventional invasive imaging procedures all require long intraprocedural times and high costs. The
rapid development of coronary computed tomographic angiography (CCTA) and related image processing tech-
nology has facilitated the formulation of noninvasive approaches to perform comprehensive evaluations. Evi-
dence has shown that CCTA has outstanding performance in identifying the degree of stenosis, plaque features,
and functional reserve. Moreover, advancements in radiomics and machine learning allow more comprehensive
interpretations of CCTA images. This paper reviews conventional as well as novel diagnostic and risk assess-
ment tools based on CCTA.

Key words: coronary computed tomographic angiography (CCTA); coronary artery disease; risk assessment;
prediction value

Background

Ischaemic heart disease (IHD) has become a global
healthcare concern in recent years.1 Among IHDs, coro-
nary artery disease (CAD) is one of the leading causes
of myocardial ischaemia.2 Risk assessments in the CAD
population play a pivotal role in the early identifica-
tion of high-risk patients as well as the optimization of
treatment options such as medication, coronary inter-
vention, or surgery, thus improving prognosis.3 The

conventional evaluation of CAD relies heavily on invasive
imaging procedures. To date, invasive coronary angiog-
raphy (ICA) has been the most widely adopted tech-
nique due to its performance in quantifying the degree of
stenosis of coronary arteries.4 Both intravascular ultra-
sound (IVUS) and optical coherence tomography (OCT)
have also been used in addition to ICA to obtain a
more comprehensive view of atherosclerotic lesions.5–7

However, all these techniques are invasive approaches
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with relatively long intraprocedural times and high
costs.

Later, in 1998, spiral multidetector CT further
improved the spatial and imaging quality of com-
puted tomorgraphy (CT), fuelling the rapid development
of CT technology in the clinical management of car-
diovascular disease. Furthermore, coronary computed
tomographic angiography (CCTA) allows physicians to
obtain high-quality images of coronary anatomy in a
shorter period of time, enhancing the diagnostic accu-
racy. Compared with ICA, CCTA has a higher specificity
(90%–95%), which makes it an effective tool for exclud-
ing CAD as a diagnosis.8,9 Thus, CCTA has become the
first-line diagnostic tool in the clinical management of
CAD. According to current guidelines, CCTA is the rec-
ommended tool for screening (Class I, Level B) and risk
stratification (Class I, Level B) in CAD.3 Multiple novel
evaluation and diagnostic tools have been derived from
CCTA and CCTA-based imaging techniques. These tools
can provide further information beyond the basic car-
diovascular anatomy and morphology characteristics.
Thus, we performed a literature search on EMBASE, Ovid,
and PubMed with the following search terms: coronary
computed tomographic angiography; risk assessment;
prognostic value; prediction model; high risk signs;
fractional flow reserve; radiomics; machine learning;
deep neural networks. This study aimed to conduct a
comprehensive review regarding conventional as well
as novel diagnostic and risk assessment tools based on
CCTA.

Risk assessment based on anatomical
characteristics of the coronary artery

CCTA is being applied in a widening range of clinical sce-
narios due to its ability to locate the affected coronary
segment with precision and speed.10,11 Previous studies
have shown that this modality has a sensitivity of 75%–
90% and a specificity of 90%–95% in terms of diagnos-
ing haemodynamic abnormalities caused by coronary
stenosis.8 According to a meta-analysis that included 27
studies, 64-slice CCTA has a sensitivity of 87% (95% CI:
86.5%–88%), a specificity of 96% (95% CI: 95.5%–96.5%),
and a total accuracy of 94% in terms of detecting coro-
nary stenosis relative to traditional invasive approaches
such as ICA.8 The high negative predictive value (>95%)
makes CCTA an efficient tool for excluding CAD as a diag-
nosis, which has proven to be of great value in the clin-
ical management of acute chest pain.12 Compared with
other noninvasive approaches, such as cardiac magnetic
resonance imaging, single-photon emission computed
tomography, or stress echocardiography, CCTA has the
highest accuracy in diagnosing CAD patients presenting
with acute chest pain. Patients with normal CCTA results
have a relatively low incidence of adverse cardiovascu-
lar events within a year of discharge (<1%). Moreover,
the implementation of emergency CCTA in patients with

acute chest pain reduces medical expenses and shortens
hospital stays.13

Several studies have focused on the predictive value
of CCTA in evaluating coronary stenosis. Hadamitzky et
al. found that the use of CCTA to classify CAD patients
into those with or without obstructive arteries exhib-
ited a greater long-term predictive value than the Fram-
ingham risk score.14 Min et al. also observed the pre-
dictive values of CCTA findings (including the degree,
location, quantity and properties of coronary stenosis)
for long-term prognosis and established three risk algo-
rithms: segment stenosis score (SSS), segment involve-
ment score, and 3-vessel plaque score.15 All three risk
scores have high discriminatory power in predicting
the long-term cumulative survival rate. In the CONFIRM
study, patients were categorized as non-CAD, nonob-
structive CAD (a ≤50% luminal diameter stenosis in a
major coronary artery), nonhigh-risk obstructive CAD
(a ≥50% luminal diameter stenosis in a major coronary
artery), and high-risk obstructive CAD (patients with at
least two-vessel obstructive CAD with proximal left ante-
rior descending artery involvement, three-vessel CAD, or
left main CAD).16 After a median follow-up of 22 months,
the all-cause mortality rates were 0.65%, 1.99%, 2.90%,
and 4.95%, respectively, with significant differences in
survival between groups (P < 0.001). Multivariate Cox
regression analysis was conducted with the mentioned
subgroups as categorical variables, and the hazard ratio
(HR) was 1.58 (95% CI: 1.42–1.76). When combined with
clinical characteristics such as age, sex, symptoms, and
National Cholesterol Education Program Expert Panel
on Detection, Evaluation, and Treatment of High Blood
Cholesterol in Adults (Adult Treatment Panel III) (NCEP
ATP III) score, the receiver operating characteristics (ROC)
curve analysis for long-term mortality demonstrated an
area under the curve (AUC) of 0.75, which was bet-
ter than that of left ventricular ejection fraction-based
risk models (AUC = 0.68, P < 0.001). Additionally, high-
risk obstructive CAD patients benefited more from sur-
gical interventions than from medication (HR = 0.22;
95% CI 0.11–0.47), indicating the potential use of CCTA
in CAD patients receiving cardiac surgery or interven-
tions.17 Subsequent studies created an online risk scor-
ing system and included factors such as affected prox-
imal segment (≥50% luminal diameter stenosis), mixed
or calcified plaques in proximal segments and NCEP
ATP III score.18 The machine learning-based CONFIRM
score has been suggested to have better predictive value
than conventional risk scores in both the training and
test sets.

The CAD-RADS scoring system published in 2016
ranked CAD stenosis severity as 0 (0%), 1 (1%–24%), 2
(25%–49%), 3 (50%–69%), 4A (70%–99% in 1–2 vessels), 4B
(70%–99% in 3 vessels or ≥ 50% left main), or 5 (100%).19

The study also provided further descriptions and per-
formed evaluations on patients with different risk levels.
CAD-RADS is an efficient scoring system with outstand-
ing discriminatory power. The cumulative 5-year survival
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ranged from 95.2% in patients considered level 0 to 69.3%
in patients considered level 5. The ROC curve for predict-
ing all-cause mortality or myocardial infarction (MI) was
0.7052 for CAD-RADS, which was noninferior to that of
the Duke Index (AUC = 0.7073).20

The accuracy of CCTA in evaluating coronary stenosis
serves as the cornerstone of its rapid development and
wide dissemination. As previously mentioned, multiple
large-scale clinical trials have shown the efficacy of CCTA
in the risk stratification of CAD patients. Although there
are several theories for interpreting the results of CCTA,
its widespread application in clinical settings requires
easily obtained risk scores. The currently available scor-
ing systems are outlined in Table 1.

Identifying high-risk patients based on
morphological characteristics in CCTA
findings

Histological studies have shown that coronary plaques
play a vital role in the progression of endothelial dam-
age and atherosclerosis.21,22 The morphology, compo-
sition and inflammatory process of atheroma plaques
have more clinical implications for the identification
of high-risk CAD patients than the degree of stenosis
alone.23 Acute coronary syndrome (ACS) is a disease with
rapid progression and poor prognosis. Various under-
lying mechanisms of ACS have been proposed, includ-
ing plaque rupture, plaque erosion, calcifications, and
spasms of the epicardium vessels or arterioles.24,25 Stud-
ies based on biopsies have indicated that plaque rup-
ture is the leading cause of fatal coronary embolism
(>70%).26,27 These ruptured plaques are termed vulner-
able plaques or high-risk plaques (HRPs). Davies et al.
summarized the features of these plaques as follows:
a large lipid core with macrophage infiltration, a thin
fibrous cap (<65 μm), positive remodelling (PR) or spotty
calcifications (SC).28,29 The early identification of HRPs
in high-risk patients based on these features is cru-
cial to improving prognosis. Invasive tests are the gold
standard in diagnosing atheroma plaques. Compared
with IVUS, OCT provides a better resolution (10 μm)
but a lower depth of penetration. Although both meth-
ods can be used to evaluate plaque formation in CAD,
neither is widely adopted due to their high costs and
invasiveness.

As a promising diagnostic tool, CCTA not only is
able to measure the degree of coronary stenosis, but
also can visualize the morphology and composition of
plaques. Plaques with thin fibrous caps (<65 μm) cannot
be detected by CCTA due to its limited resolution. How-
ever, certain plaque features observed by CCTA have a
proven correlation with the occurrence of major adverse
cardiac events (MACEs) and overall prognosis, so this
method may be useful in risk stratification.30,31 Low
attenuation plaque (LAP), also known as soft plaque, has
a CT value less than 30–60 HU and can be viewed as
an HRP with a large lipid core.27,32 PR is indicated by a

remodelling index (RI) greater than 1.1, which is defined
as the ratio between the diameter of the largest remod-
elled vessel and the reference vessel.33 SCs are calcified
plaques that are less than 3 mm in all dimensions.34

The Napkin ring sign (NRS) is characterized by a plaque
core with low CT attenuation surrounded by a rim-like
area of higher CT attenuation.35 A meta-analysis includ-
ing 18 studies revealed that according to CCTA, com-
pared with stable angina, ACS has a higher rate of SCs
(odds ratios (OR): 1.42, 95% CI (1.05–1.92), P = 0.023), a
higher percentage of LAP with CT value < 30 HU (OR:
4.1, 95% CI (2.5–5.7), P < 0.0001), and higher RI (weighted
mean difference (WMD), 95% CI (0.25–0.70)).36 Addition-
ally, compared with patients with low-risk plaque, HRP
patients had a higher incidence of ACS during follow-up
(26% vs. 22%, OR: 12.14, 95% CI (5.2–28.1), P = 0.0001).36

Another meta-analysis37 suggested that HRP is strongly
correlated with the occurrence of MACEs based on long-
term follow-up. The HRs for LAP, NRS, SC, and PR
were 2.95 (95% CI, 2.03–4.29), 5.06 (95% CI, 3.23–7.94),
2.25 (95% CI, 1.26–4.04), and 2.58 (95% CI, 1.84–3.61),
respectively.

Despite the correlation between HRP and coronary
events, risk models based on these characteristics
remain lacking. In the ROMICAT II study, risk mod-
els based on the characteristics of HRPs had a supe-
rior predictive value for ACS events than conventional
risk models, which were based only on the degree of
stenosis (AUC = 0.91 vs. 0.85, P = 0.002).38 In a large-
scale cohort study published in 2019,39 the cumulative
5-year all-cause mortality rate was significantly higher
in CAD patients with HRP than in those without HRP
(21.7% vs. 5.1%, P < 0.001). The same conclusion was
drawn with other cardiovascular endpoints. No signifi-
cant differences were found between CAD patients with
no HRP and non-CAD patients, indicating that HRP is a
reliable marker in the progression of CAD. Other than
the aforementioned features of HRP, a recent study has
proven that the perivascular fat accumulation is strongly
associated with coronary inflammation.40 In the Cardio-
vascular RISk Prediction using Computed Tomography
(CRISP-CT) study, a novel imaging biomarker called the
perivascular fat attenuation index (FAI) demonstrated
promising predictive value (HR: 2.06, 95% CI (1.50–2.83),
P < 0.0001). Thus, perivascular imaging in CCTA may
also be of great value in the risk assessment of CAD
patients.41

The physiological functions of the
coronary artery based on CT

Neither the degree of stenosis nor plaque character-
istics are a direct reflection of the extent of myocar-
dial ischaemia. Based on ICA, fractional flow reserve
(FFR) is able to detect the reversible ischaemia of the
myocardium that could lead to disease progression.42

Regarding its use in revascularization procedures such as
percutaneous coronary intervention or coronary artery
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bypass graft, FFR has achieved better prognostic pre-
dictions than ICA.43–45 Current guidelines recommend
that when noninvasive coronary evaluations are not
possible, FFR should be used in the assessment of the
coronary artery in revascularization procedures (Level I,
Class A).46

CT-FFR is a noninvasive approach that demonstrates
coronary perfusion based on the processing of CCTA
images. A high-speed computer enables the processing
of images through computational fluid dynamics (CFD)
and machine learning, constituting the very foundation
of CT-FFR. The results of CT-FFR are obtained through
the following steps: (1) reconstruct the 3D anatomy of
the coronary artery tree based on CCTA; (2) calculate
baseline coronary perfusion based on the volume of
the coronary artery tree; (3) establish the hyperaemia
model according to the impact of adenosine on micro-
circulation resistance; and (4) calculate coronary per-
fusion pressure using the Navier–Stokes equation and
create a colour-coded 3D-FFR anatomy model.47 Cur-
rently, there are three types of CT-FFR systems: the FDA-
approved FFRCT (HeartFlow Inc., Redwood City, CA)48; the
CFDA-approved DEEPVESSEL FFR (Shenzhen Keya Medi-
cal Technology Co., Ltd, Shenzhen, China); and the cFFR
by Siemens (Siemens Medical Solutions; Forchheim, Ger-
many), which is a relatively simplified device that is
awaiting approval.

CT-FFR is a promising diagnostic tool for the evalua-
tion of physiological coronary function based on image
processing from CCTA. This method reduces radiation
exposure and avoids unnecessary medications. To date,
FFRCT is the most frequently used system. According
to three randomized controlled trials, FFRCT has a high
accuracy with an invasive FFR ≤ 0.8 as the diagnostic cri-
terion.49–51 The sensitivity, specificity, positive predictive
value, and negative predictive value of the three versions
of FFRCT (1.0–1.2–1.4) ranged from 84% to 89%, 61% to 86%,
56% to 74%, and 84% to 95%, respectively. The AUC ranged
from 0.79 to 0.93. Multiple single-centre cohort studies
on cFFR also suggested similar results.52–54 A prospective
cohort study with 68 individuals who adopted the DEEP-
VESSEL FFR system found that compared with invasive
FFR, this system had a sensitivity of 97%, specificity of
75%, positive predictive value of 82%, negative predictive
value of 95%, and an AUC of 0.93.55 Thus, CT-FFR has a
high diagnostic accuracy and has improved the speci-
ficity of the evaluation of coronary stenosis compared
with that of CCTA alone. CT-FFR aids the risk stratifica-
tion of CAD patients with CCTA images, avoiding unnec-
essary invasive procedures.

Currently, it is recommended that patients with a
medium to high degree of coronary stenosis (30%–
90% luminal diameter stenosis, as indicated by CCTA)
undergo further CT-FFR.56 However, the concomitant cal-
cification in patients with severe stenosis or complete
occlusion of coronary vessels may limit the use of CT-
FFR. Previous studies have arrived at a consensus that
the use of CT-FFR is of maximal benefit in the risk assess-
ment and treatment of patients with moderate stenosis.

Compared with analysis based solely on CCTA, CT-FFR
greatly improved the specificity in detecting ischaemic
lesions and thus subsequently contributed to the
cost-effectiveness in CAD management.52 An FFR value
of 0.8 is the cut-off for medication therapy or revascular-
ization procedures.56 The PLATFORM study showed that
FFRCT significantly decreased the percentage of nonob-
structive CAD patients receiving cardiac interventions
(73.3% vs. 12.4%, P < 0.001).57 From a socioeconomic
standpoint, FFR is also associated with reduced medi-
cal expenses, even after taking into account the costs
of the FFR exam itself ($9036 vs. $12 145, P < 0.0001).
In the largest real-world study to date (Assessing
Diagnostic Value of Noninvasive FFR-CT in Coronary
Care, ADVANCE), 72.3% of the patients with an FFRCT

value ≤ 0.8 underwent invasive treatments after reeval-
uation.58 Both the MACE rate and the MI/all-cause mor-
tality rate within 90 days of follow-up for patients with
an FFRCT value >0.8 were 0%. In contrast, the all-cause
mortality rate and MACE rate for patients with an FFRCT

value ≤0.8 were 0.6% (P = 0.0019) and 0.45% (P = 0.0070),
respectively. The results reflect the high discriminatory
power of FFR. In addition, according to the EMERALD
study by Lee et al.59,60 the culprit vessels in ACS patients
showed lower CT-FFR values than the nonculprit ves-
sels (0.72 ± 0.17 vs. 0.79 ± 0.14, P = 0.006), and greater
differences were observed in the CT-FFR values before
and after the culprit lesion was excised (0.17 ± 0.17 vs.
0.06 ± 0.07, P < 0.001). The risk model combining the
degree of stenosis, high-risk haemodynamic parameters
(CT-FFR ≤ 0.8 or �CT-FFR ≥ 0.06) and HRP characteristics
obtained by CT-FFR exhibited the best predictive value
for ACS. The concordance statistic (c-index) was 0.789,
which was higher than that for the risk model based
only on HRP characteristics and the degree of steno-
sis (c-index = 0.747, P = 0.014). In the marginal Cox
hazard ratio model, with HRP (–) and high-risk haemo-
dynamics (–) as baseline hazard functions, the HR for
patients with both HRP (–) and high-risk haemodynam-
ics was 11.753. The results show promising potential
techniques that can yield data on both coronary phys-
iological function and plaque morphology in CAD risk
stratification.

Quantitative analysis to obtain plaque
parameters by radiomics

Radiomics was first introduced by the Dutch radiation
oncologist Lambin in 2012; it aims to extract quanti-
tative features from radiographic images and create a
data set accordingly.61 These features contain thousands
of parameters, and radiomics establishes a correlation
among these parameters themselves as well as between
these parameters and clinical data. New markers and
risk models derived from these results improve the diag-
nostic accuracy of radiographic imaging and expand our
perception of the pathophysiological process of certain
diseases.
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As previously stated, different stages of coronary
atherosclerosis manifest differently on CT imaging.
Qualitative features, such as those of HRP, have already
been proven to be closely correlated with MACEs.62

Instead of qualitatively analysing features, radiomics
quantifies the results by calculating various parameters,
thus improving the accuracy and objectivity. There are
four steps involved in radiomics analysis:63 (1) Intensity-
based extraction, also known as first-order statistics,
involves the simple statistical analysis of pixels or vox-
els, such as the calculation of the mean or standard
deviation. Although radiomics is a relatively new con-
cept, it has already been applied in the coronary artery
calcium score and other diagnostic tools. (2) Texture-
based extraction,64 including the grey-level cooccurrence
matrix65 and grey-level run-length matrix (GLRLM),66

turns voxels into matrices through mathematical analy-
sis. (3) Shape-based extraction, including 1D, 2D, and 3D
measurements and Minkowski Functionals,67 demon-
strates the spatial distribution of plaques. (4) Transform-
based extraction uses methods such as Fourier trans-
forms68 to transform the images from the spatial domain
to the frequency domain, making the features more suit-
able for calculations.

Although the calculations and models used in
radiomics are not novel, their application has remained
superficial for many years. Due to machine learning and
computer-based quantitative image processing technol-
ogy, radiomics is being applied in clinical settings at an
accelerated pace. In the field of cardiology, the radiol-
ogy team led by Márton Kolossváry and Pál Maurovich-
Horvat conducted a systematic analysis and explorative
validation regarding CCTA-based radiomics.63 In a clini-
cal trial of 60 patients,69 researchers used the R program-
ming language and their own radiomics image analy-
sis to extract 4440 radiomics features. After selection,
916 (20.6%) features were proven to be associated with
NRS. For the prediction of NRS, half of the features
(440/916) had an AUC > 0.80. The parameters obtained
by GLRLM had the best predictive value and an AUC of
0.918. These parameters greatly exceeded those of tra-
ditional CCTA-based methods, such as attenuation char-
acteristics and plaque volume (AUC: 0.508–0.770). In sub-
sequent studies, radiomic parameters significantly out-
performed measurements of noncalcified plaque vol-
ume to identify attenuated plaque by IVUS (AUC: 0.72
vs. 0.59, P < 0.001); radiomics also outperformed tradi-
tional LAP features (i.e. the presence of low attenuation
voxels) to identify thin-cap fibroatheroma by OCT (AUC:
0.80 vs. 0.66, P < 0.001). Finally, radiomics outperformed
high-risk features in identifying NaF18 positivity (AUC:
0.87 vs. 0.65, P < 0.001).70 Radiomics demonstrated a
good diagnostic accuracy in terms of identifying invasive
and radionuclide imaging markers of HRPs and evaluat-
ing plaque vulnerability. Radiomics features also exhib-
ited significant advantages compared with other conven-
tional high-risk features. In addition to CAD, radiomics
parameters also showed promising results in recognizing
pannus formation in prosthetic valve obstruction after

valve replacement surgeries (AUC = 0.876).71 As we are
embracing the rapid development of transcatheter aortic
valve implantation technology, radiomics may be used
to evaluate valve failure after bioprosthesis replacement
procedures and guide cardiac care teams in developing
treatment protocols.

It is worth mentioning that radiomics and machine
learning can be combined almost seamlessly due to their
endogenous theoretical features. The high-dimensional
data set recognized by radiomics can be reduced into
low-dimensional data by machine learning. Because
these data are derived from the transformation and nor-
malization of images, the high-order fitting of machine
learning has greater proficiency than that of conven-
tional statistical analysis. Kolossváry et al. found that
radiomics models built on machine learning were able
to improve the recognition of high-risk coronary abnor-
malities (AUC = 0.73).70 However, the flaws of radiomics
and machine learning are very similar as well. Although
radiomics provides a more subjective quantitative anal-
ysis of images and has higher accuracy in HRP recogni-
tion, radiomics markers and models lack a theoretical
foundation. This problem is similar to the problem
of machine learning interpretability: specifically, the
more complex and higher dimension the mathematical
tools are, the more difficult it is to interpret the results.
This is an obstacle that needs to be addressed in the
quantitative evaluation of patients by CCTA, precision-
individual medicine, and artificial intelligence in
medicine.

Machine learning, CAD, and coronary CT

Machine learning can be viewed as a branch of artifi-
cial intelligence (AI). Based on mathematics and com-
puter science, machine learning involves the study of
large amounts of data and subsequent classification or
prediction of new data. The theories of machine learning,
such as regularization, clustering, cross-validation, and
use of numerous algorithms, have been widely applied
to clinical research and big data analytics. Classic algo-
rithms, including logistic regression, the Gaussian Bayes
classifier, decision trees, and random forest and gradi-
ent ascending algorithms such as XGBoost, have already
demonstrated excellent proficiency in analysing struc-
turalized medical data with better predictive value than
conventional risk assessment tools based on statistical
analysis.72,73 Deep learning, an algorithm built on arti-
ficial neural networks (ANNs), outperforms medical pro-
fessionals in terms of analysing consecutive information
(medical images or sensors) and complex correlations
in genomic data.74,75 Deep learning has already become
a powerful tool in the field of oncology and psychiatric
disorders.76,77 Both CCTA images and the information
obtained by CCTA images can feasibly be analysed by
machine learning to conduct risk assessments due to
their detailed features and unproven correlations.
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Risk assessment based on conventional machine
learning algorithms

The detection of calcified plaques by CCTA can reduce
medical expenses due to unnecessary noncontrast CT
imaging and avoid radiation exposure. Machine learn-
ing offers a new approach to improve CCTA technology.
Mittal et al. suggested that probabilistic boosting-tree
and random forest were able to accurately detect calci-
fied plaques in CCTA, and random forest demonstrated
a detection rate of 90%.78 According to Yang et al., a
support vector machine (SVM) enhanced the detection
of coronary calcifications in CCTA.79 Focusing on plaque
features, the NXT randomized controlled trial analysed
the high-risk factors for patients and HRPs detected
by CCTA using information gain and revealed that the
difference in contrast concentration, plaques with low
attenuation and noncalcification, noncalcified plaque,
and plaque volume were the most important features in
predicting stenosis with an FFR < 0.8. The risk model of
these features (built by LogitBoost) had an AUC of 0.84
in predicting stenosis with an FFR < 0.8, which was bet-
ter than that of the risk models built on the degree of
coronary stenosis (AUC = 0.76, P = 0.005) and CAD pretest
probability (AUC = 0.63, P < 0.0001).80 Another study also
found that risk models of plaque features built based
on SVMs outperformed radiologists in predicting stenotic
CAD (AUC = 0.94).81 Damini Dey et al. built the machine
learning ischaemia risk score (ML-IRS) based on various
CCTA imaging features. ML-IRS was superior than con-
ventional risk assessment tools in terms of predicting
revascularization (AUC = 0.69 to 0.78, P < 0.0001).82

The CONFIRM study is a good example of how to
predict long-term prognosis based on CCTA information
using machine learning. In a study published in 2016,83

10 030 suspected CAD patients were included, and the
mean follow-up duration was 5.4 ± 1.4 years. The data
set contained 20 clinical features and 40 CCTA param-
eters. Parameters with information gain > 0 (19 clini-
cal features and 35 CCTA parameters) were included in
the risk model. A subsequent risk model for predicting
the 5-year all-cause mortality rate was built using Logit-
Boost, and 10-fold cross-validation was conducted. The
risk model was proven to be better than conventional
clinical risk assessments and had an AUC of 0.79. The
risk model classifies patients into low-risk, intermediate-
risk, and high-risk groups. The mortality rates of the
three subgroups were 1.8%, 6.7%, and 27%, respectively.
The validation curve demonstrated high uniformity with
the actual mortality rate and had a Brief score of 0.08.
Thus, machine learning has excellent discrimination
and calibration abilities in predicting clinical outcomes.
Another study published in 2018 by the CONFIRM inves-
tigators demonstrated a similar proficiency in predict-
ing the composite endpoint of all-cause mortality and MI
using a risk model based on 35 CCTA parameters built by
XGBoost. The AUC was 0.771, which was better than that
of the SSS (AUC = 0.701, P < 0.001).84

Deep learning and neural networks for CCTA
images

One of the major uses of deep learning in the analy-
sis of CCTA images is the calculation of CT-FFR. Unlike
FFRCFD, machine learning/deep learning inputs features,
then conducts fitting through ANN, and eventually out-
puts FFRML. Itu et al. first introduced this method and
calculated the value of CT-FFR with an ANN with 4 hid-
den layers.85 The CT-FFR values based on machine learn-
ing and CFD were closely correlated (correlation coeffi-
cient = 0.9994, P < 0.001). Compared with invasive FFR,
this method demonstrated high diagnostic proficiency:
accuracy 83.2%, sensitivity 81.6%, specificity 83.9%, and
correlation coefficient 0.729 (P < 0.001). Another impor-
tant advantage is that FFR based on deep learning can
be run offline using individual equipment, and the aver-
age calculation time is 196 s, shorter than that of CFD-
based methods. The study by Tesche suggested that CT-
FFR based on deep learning had a similar diagnostic
value for regarding ischaemic pathologies to that of the
computational fluid dynamics-based Siemens Healthi-
neers model (AUC: 0.89 vs. 0.89).86 The MACHINE study
(Machine Learning Based CT Angiography Derived FFR:
A Multi-Center Registry) showed an accuracy of 78% for
FFRML in predicting stenosis with an FFR < 0.8, and the
AUC was 0.84. In addition, in vessels with low to medium
calcifications (Agatston > 0 to < 400), FFRML had a supe-
rior diagnostic value to that of visual evaluation through
CCTA (AUC: 0.86 vs. 0.63, P < 0.001).53

Previous studies have suggested that deep learning
contributes greatly to the early diagnosis and prognosis
of lung cancer.77 Convolutional neural networks (CNNs)
also have good predictive value for coronary stenosis
presenting as left ventricular ischaemia on CCTA. Two
studies showed AUCs of 0.76 and 0.74.87 Denzinger et
al. discussed the use of several approaches combin-
ing radiomics and machine learning in plaque evalu-
ation. The study performed dimensionality reduction
on radiomics parameters using XGBoost.88 Deep learn-
ing was combined with multiplanar reformat and CNNs.
Gated recurrent units were used in the output layer. The
risk model that combined radiomics and deep learn-
ing demonstrated the best predictive values for coro-
nary stenosis with an AUC of 0.96 and accuracy of 92%.
Regarding the evaluation of revascularization strategies,
the above risk model also outperformed models based
on radiomics and XGBoost or ANN alone. The results
indicated that a more accurate evaluation of coronary
plaques could be made by combining radiomics and deep
learning.

Machine learning offers a new direction in the anal-
ysis of CCTA images and parameters. Advanced mathe-
matical analysis contributes to the accurate fitting of risk
models, and the image processing ability of ANNs has
already exceeded human limits. Although the methodol-
ogy of machine learning deviates from conventional sta-
tistical analysis and certain changes were made to the
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Figure 1. The process from lesion to risk model based on radiomic and machine learning by Siemens (Healthineers, Forchheim, Germany).

parameters (e.g. sensitivity in statistics was changed into
recall rate in machine learning), the ability of machine
learning to classify and predict outcomes of unknown
data sets offers significant potential for the establish-
ment of risk models in clinical management. To date,
several clinical trials have built risk models in accordance
with the TRIPOD guidelines based on machine learn-
ing.89 Nonetheless, machine learning still faces many
obstacles in data collection, training set volume, and
interpretability. Solving those obstacles requires the joint
efforts of physicians and data scientists.

Future perspectives

Apart from improvements to CT imaging technology, we
should also focus on how to gain as much clinical infor-
mation as possible from existing CCTA images. Applying
physics models, new algorithms and image-processing
technology provides a more detailed interpretation of
CCTA images and enables physicians to conduct a more
accurate and quantitative analysis. In addition to CCTA,
deep learning has also achieved superiority over physi-
cian evaluations in the recognition of atherosclerotic
plaques on OCT; however, the background noise or irrel-
evant pixels can decrease the accuracy of ANNs. This is
a problem faced in CT imaging and many other clinical
practices. Quantitative features of HRPs can be obtained
through the observation and extraction of plaque fea-
tures via radiomics. Currently, feature fitting conducted
in machine learning enhances the proficiency of risk
models. However, due to the unequal distribution of
clinical data, small samples and inadequate application
of study results, the development of AI in medicine is
still in the preliminary stage. Moreover, novel algorithms
such as reinforcement learning have already exhibited

promising proficiency in clinical practice. The effective
combination of these algorithms with radiology or clin-
ical data on cardiovascular diseases still needs to be
explored and awaits solutions from computer scien-
tists and physicians. Regarding the technical challenges
posed by radiomics and machine learning, in addition
to multidisciplinary collaborations, online platforms are
rapidly emerging. For instance, the platform founded by
Siemens (Healthineers, Forchheim, Germany) provides a
one-station extraction of radiomics features as well as
the establishment of risk models based on PyRadiomics
and random forest and is extremely beneficial in low-
ering the learning costs of radiology imaging analysis
(Fig. 1).90 As a noninvasive imaging modality, CCTA is
more acceptable to patients as an alternative to ICA.
Over the past two decades, it has been proven to be
safe, effective, and feasible. Based on the provided three-
dimensional information, CCTA is able to delineate and
evaluate coronary arteries and its associated lesions in
great detail.91 CCTA-derived risk assessment tools are
relatively simple for physicians to implement into daily
clinical practice. For most patients, anatomical features
such as degree of stenosis, calcification score, and HRP
features demonstrated promising results in terms of pre-
dicting cardiovascular adverse events. As for patients
with borderline stenosis (stenosis degree of 50%–75%),
CT-FFR also plays a vital role in clinical decision mak-
ing. Combined with machine learning and platforms of
neural network, these tools are able to conduct a more
comprehensive evaluation of CAD patients based on
CCTA imaging as well as baseline characteristics. Under
the emerging trend of multidisciplinary collaborations,
CCTA holds great potential for providing a more accu-
rate diagnosis and evaluation in multiple dimensions
(Fig. 2).
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Figure 2. Using coronary computed tomographic angiography to perform risk assessment in patients with coronary disease in multiple dimen-
sions.

Conclusions

The development of cardiac imaging is attributable to
improvements in CT technology. Because of the emer-
gence of CCTA, noninvasive evaluations of CAD and
quick risk stratifications of patients have risen to a new
level. The radiation exposure associated with CT exam-
inations still presents a health concern for patients,
especially when multiple examinations are required to
obtain a consecutive picture of the disease. However, new
methodologies and image-processing technologies have
promoted comprehensive evaluations by CCTA based on
multiple aspects, such as the degree of stenosis, plaque
features, and functional reserve. Moreover, radiomics
and machine learning provide an objective mathemati-
cal foundation and method for accurately evaluating of
CCTA images. In the era of big data analytics and AI,
CCTA will definitely be well-equipped to perform mul-
tidimensional risk stratifications of CAD patients.
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69. Kolossváry M, Karády J, Szilveszter B, et al. Radiomic fea-
tures are superior to conventional quantitative computed
tomographic metrics to identify coronary plaques with
napkin-ring sign. Circ Cardiovasc Imaging 2017;10:e006843.
doi:10.1161/circimaging.117.006843.
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